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An Interaction Integral Method for Computing Fracture
Parameters in Functionally Graded Magnetoelectroelastic

Composites
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Abstract: A contour integral method is developed for the computation of stress
intensity, electric and magnetic intensity factors for cracks in continuously non-
homogeneous magnetoelectroelastic solids under a transient dynamic load. It is
shown that the asymptotic fields in the crack-tip vicinity in a continuously nonho-
mogeneos medium are the same as in a homogeneous one. A meshless method
based on the local Petrov-Galerkin approach is applied for the computation of the
physical fields occurring in the contour integral expressions of intensity factors. A
unit step function is used as the test functions in the local weak-form. This leads
to local integral equations (LIEs) involving only contour-integrals on the surfaces
of subdomains. The moving least-squares (MLS) method is adopted for approx-
imating the physical quantities in the LIEs. The accuracy of the present method
for computing the stress intensity factors (SIF), electrical displacement intensity
factors (EDIF) and magnetic induction intensity factors (MIIF) are discussed by
comparison with numerical solutions for homogeneous materials.

Keywords: Smart materials, Fracture, Computational modelling, Numerical
analysis, Moving least-squares approximation

1 Introduction

Functional composite materials, such as piezoelectric, magnetostrictive and ther-
moelectroelastic composites are being rapidly developed with increasing applica-
tions in ultrasonic imaging devices, sensors, actuators and transducers etc. Such
composites inherit the characteristics of functional materials, such as the piezo-
electric and piezomagnetic properties which can be tailored to meet specific appli-
cations. Modern smart structures made of piezoelectric and piezomagnetic mate-
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rials offer certain potential performance advantages over conventional ones due to
their capability of converting the energy from one type to other (among magnetic,
electric, and mechanical) (Avellaneda and G. Harshe, 1994; Landau et al., 1984;
Nan, 1994). However, one great drawback of piezoelectric and piezomagnetic ma-
terials is their inherent brittleness (ultimate strength < 100 MPa) and low fracture
toughness (0.5–2.0 MPa

√
m). Furthermore, highly inhomogeneous and concen-

trated stresses, electrical and magnetic fields may occur inside the smart structures
and composites due to fabrication or operational loads. Therefore, much attention
has been devoted to fracture mechanics of piezoelectric, ferroelectric and magne-
toelectroelastic materials for the last 20 years. Following papers (Gao et al. 2003;
Hu et al. 2006; Song and Sih 2003; Tian and Gabbert 2005; Tian and Rajapakse
2005; Wang et al. 2006; Wang and Mai 2007; Zhou et al. 2004) are interesting in
fracture of 2D problems under a static load. Dynamic fracture analyses of magne-
toelectroelastic solids are sparse and they are mostly restricted to a relatively simple
anti-plane problem (Du et al. 2004; Feng and Su 2006,2007; Guo et al. 2009; Li
and Lee 2008; Ma et al. 2007,2009; Su and Feng 2007).

New structural concepts have emerged where multifunctional materials, exhibiting
a strong coupling between its mechanical response and its electrical, magnetic or
thermal behaviour, which can work as sensors and actuators. These structures are
termed as adaptive structures. It has been observed that remarkably large magne-
toelectric effects are observed for composites than for either composite constituent
(Nan, 1994; Feng and Su, 2006). If the volume fraction of the constituents is vary-
ing in a predominant direction we are talking about functionally graded materials
(FGMs). Originally these materials have been introduced to benefit from the ideal
performance of its constituents, e.g. high heat and corrosion resistance of ceramics
on one side, and large mechanical strength and toughness of metals on the other
side. A review on various aspects of FGMs can be found in the monograph of
Suresh and Mortensen (1998) and the review chapter by Paulino et al. (2003).
The FGM multiferroic model would result in substantial variations in magnetic pa-
rameters (magnetization, anisotropy, permeability and magnetostriction) (Han et
al. 2006; Ueda 2003; Zhu et al. 1995). Unfortunately, all published crack anal-
yses in continuously nonhomogeneous magnetoelectroelastic materials have been
restricted to anti-plane mechanical deformation (Feng and Su 2006, 2007; Guo et
al. 2009; Li and Lee 2008; Ma et al. 2007,2009).

Advanced numerical methods are required to solve general boundary value prob-
lems for continuously nonhomogeneous magnetoelectroelastic solids. It is due to
the high mathematical complexity following from coupling of fields and spatial
variation of material properties. In recent years, meshless formulations are be-
coming popular due to their high adaptability and low costs to prepare input and
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output data in numerical analysis. The moving least squares (MLS) approximation
is generally considered as one of many schemes to interpolate discrete data with
a reasonable accuracy. Meshless methods can easily simulate crack propagation
without remeshing (Li and Liu 2004). A variety of meshless methods has been pro-
posed so far with some of them being applied for modeling of smart materials (Liu
et al. 2002; Ohs and Aluru 2001; Sladek et al. 2007a, 2007b, 2008). The mesh-
less local Petrov-Galerkin (MLPG) method is a fundamental base for the derivation
of many meshless formulations, since trial and test functions can be chosen from
different functional spaces. Recently, the MLPG method with a Heaviside step
function as the test functions (Atluri 2004; Atluri et al. 2003) has been applied
to solve two-dimensional (2-D) homogeneous piezoelectric problems (Sladek et al.
2006).

The MLPG method is applied, in the present paper, to solve 2-D continuously non-
homogeneous magnetoelectroelastic solids with cracks. The weak-forms for the
coupled governing partial differential equations on small subdomains with a Heav-
iside step function as the test functions are applied to derive local integral equations.
Applying the Gauss divergence theorem to the weak-forms, the local boundary-
domain integral equations are derived. The spatial variations of the displacements,
electric and magnetic potentials are approximated by the MLS (Atluri 2004; Be-
lytschko et al. 1996). After performing the spatial MLS approximation, a system
of ordinary differential equations for certain nodal unknowns is obtained. Then,
the system of the ordinary differential equations of the second order resulting from
the equations of motion is solved by the Houbolt finite-difference scheme (Houbolt
1950) as a time-stepping method.

Intensity factors for cracks in piezoelectric and magnetoelectroelastic solids are
mostly evaluated from the asymptotic expansion of the physical fields in the crack-
tip vicinity (Garcia-Sanchez et al. 2007; Sladek et al. 2008). However, from
elastic analyses it is well known that the accuracy of the computed stress and dis-
placement fields in the crack-tip vicinity is lower than far away from the crack-tip
(Kim and Paulino 2003). Cherepanov (1979) presented invariant integrals from
which it is possible to derive the J-integral for piezoelectric materials. Later Pak
and Herrmann (1986) derived a path independent integral for nonlinear dielectric
materials. For piezoelectric materials, the J-integral was derived on the base of the
electric enthalpy density (Pak 1990). Kim and Paulino (2003, 2004) computed the
stress intensity factors (SIFs) and T-stress in orthotropic FGMs using the FEM by
the interaction integral method. Similar procedure has been applied to derive con-
servation integrals for the evaluation of intensity factors in piezoelectric materials
by Enderlein et al. (2005), Rao and Kuna (2008a) and to magnetoelectroelastic
ones (Rao and Kuna 2008b). Independently, Banks-Sills et al. (2008) have derived
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a conservation integral for the evaluation of the intensity factors associated with
piezoelectric materials for impermeable crack-face conditions. Motola and Banks-
Sills (2009) have extended the conservation integral for calculating intensity fac-
tors for cracked piezoelectric ceramics using the exact boundary conditions on the
crack-faces. All presented conservation integral methods are based on the domain
integral form. Therefore, those methods are more convenient as post-processors
to numerically obtained fields by domain discretization techniques. In the present
paper we present conservation integrals in contour-domain integral form for contin-
uously nonhomogeneous magnetoelectroelastic solids. Only the inertial term and
gradients of the material parameters contribute to the domain integrals. These terms
are vanishing for a steady-state and homogeneous material case. Thus, the conser-
vation integral expression is dominantly given by the contour integral. The accu-
racy of the contour integral method is very high for the present meshless method,
since its path can be chosen sufficiently far from the crack-tip.

The accuracy and the efficiency of the proposed MLPG method are verified by
several numerical examples for computing the stress intensity factors (SIF), elec-
trical displacement intensity factor (EDIF) and magnetic induction intensity factor
(MIIF). Numerical results are presented and compared with BEM solutions for ho-
mogeneous materials.

2 Asymptotic fields in the crack-tip vicinity in FGMs

The basic equations of phenomenological theory of linear magnetoelectroelastic
materials consist of the governing equations (Maxwell equations and the balance
of momentum) and the constitutive relations. The governing equations completed
by the boundary and initial conditions should be solved for unknown primary field
variables such as the elastic displacement field ui(x,τ), the electric potential ψ(x,τ)
(or its gradient called the electric vector field Ei(x,τ)), and the magnetic potential
µ(x,τ) (or its gradient called the magnetic intensity field Hi(x,τ)). The consti-
tutive equations co-relate the primary fields {ui, Ei, Hi} with the secondary fields
{σi j, Di, Bi} which are the stress field, the electric displacement field, and the mag-
netic induction field, respectively. The governing equations give not only the rela-
tionships between the conjugated fields in each of the pairs(σi j, εi j),(Di, Ei),(Bi, Hi)
but describe also the magnetoelectroelastic interactions in the phenomenological
theory of continuous solids.

Taking into account the typical material coefficients, it can be found that the char-
acteristic frequencies for elastic and electromagnetic processes are fel = 104Hz and
felm = 107Hz, respectively. Thus, if we consider such solids under transient load-
ings with temporal changes corresponding to fel , the changes of the electromag-
netic fields can be assumed to be immediate, or in other words the electromagnetic
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fields can be considered like quasi-static [57]. Then, the Maxwell equations are
reduced to two scalar equations

D j, j(x,τ)−R(x,τ) = 0, (1)

B j, j(x,τ) = 0, (2)

where R is the volume density of free charges, and τdenotes the time variable.

The remaining vector Maxwell equations in the quasi-static approximation, ∇×
E = 0 and ∇×H = 0, are satisfied identically by an appropriate representation
of the fields E(x,τ) and H(x,τ) as gradients of the scalar electric and magnetic
potentials ψ(x,τ) and µ(x,τ), respectively,

E j(x,τ) =−ψ, j(x,τ) , (3)

H j(x,τ) =−µ, j (x,τ). (4)

To complete the set of the governing equations, eqs. (1) and (2) need to be supple-
mented by the equation of motion in the elastic continuum

σi j, j(x,τ)+Xi(x,τ) = ρ üi(x,τ), (5)

where üi ,ρ and Xi denote the acceleration of the displacements, the mass density,
and the body force vector, respectively. A comma after a quantity represents the
partial derivatives of the quantity and a dot is used for the time derivative.

The constitutive relations represent the coupling of the mechanical and the elec-
tromagnetic fields. They can be obtained as derivatives of the electromagnetic en-
thalpy density defined by

W (εi j,Ei,Hi,x) =
1
2

ci jkl(x)εi j(x)εkl(x)−eikl(x)Ei(x)εkl(x)− 1
2

hi j(x)Ei(x)E j(x)−

−d jkl(x)H j(x)εkl(x)−α jk(x)E j(x)Hk(x)− 1
2

γ jk(x)H j(x)Hk(x) . (6)

The constitutive equations involving the general magnetoelectroelastic interaction
(Nan 1994) in media with spatially dependent material coefficients for continuously
non-homogeneous media can be written as

σi j(x,τ) =
∂W
∂εi j

= ci jkl(x)εkl(x,τ)− eki j(x)Ek(x,τ)−dki j(x)Hk(x,τ), (7)

D j(x,τ) =− ∂W
∂E j

= e jkl(x)εkl(x,τ)+h jk(x)Ek(x,τ)+α jk(x)Hk(x,τ), (8)
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B j(x,τ) =− ∂W
∂H j

= d jkl(x)εkl(x,τ)+αk j(x)Ek(x,τ)+ γ jk(x)Hk(x,τ), (9)

with the strain tensor εi j being related to the displacements ui by

εi j =
1
2

(ui, j +u j,i) . (10)

The functional coefficients ci jkl(x) , h jk(x)and γ jk(x) are the elastic coefficients,
dielectric permittivities, and magnetic permeabilities, respectively; eki j(x) , dki j(x)and
α jk(x)are the piezoelectric, piezomagnetic, and magnetoelectric coefficients, re-
spectively. Owing to transient loadings, inertial effects and coupling, the elastic
fields as well as electromagnetic fields are time dependent.

In the case of some crystal symmetries, one can formulate also the plane-deformation
problems (Parton and Kudryavtsev 1988). For instance, in the crystals of hexago-
nal symmetry (class6mm) with x3 being the 6-order symmetry axis and assuming
u2 = 0 as well as the independence of the field quantities on x2, i.e. (·),2 = 0, we
have ε22 = ε23 = ε12 = E2 = H2 = 0. Then, the constitutive equations (7)-(9) are
reduced to the following forms

σ11
σ33
σ13

=

c11 c13 0
c13 c33 0
0 0 c44

 ε11
ε33
2ε13

−
 0 e31

0 e33
e15 0

[E1
E3

]
−

 0 d31
0 d33

d15 0

[H1
H3

]
=

= C(x)

 ε11
ε33
2ε13

−L(x)
[

E1
E3

]
−K(x)

[
H1
H3

]
, (11)

[
D1
D3

]
=
[

0 0 e15
e31 e33 0

] ε11
ε33
2ε13

+
[

h11 0
0 h33

][
E1
E3

]
+
[

α11 0
0 α33

][
H1
H3

]
=

= G(x)

 ε11
ε33
2ε13

+H(x)
[

E1
E3

]
+A(x)

[
H1
H3

]
, (12)

[
B1
B3

]
=
[

0 0 d15
d31 d33 0

] ε11
ε33
2ε13

+
[

α11 0
0 α33

][
E1
E3

]
+
[

γ11 0
0 γ33

][
H1
H3

]
=
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= R(x)

 ε11
ε33
2ε13

+A(x)
[

E1
E3

]
+M(x)

[
H1
H3

]
. (13)

It should be noted that G = LT and R = KT . Recall that σ22 does not influence the
governing equations, although it is not vanishing in general, since σ22 = c12ε12 +
c13ε33− e13E3−d13H3.

Let us write the material parameters at the crack-tip vicinity as

ci jkl(x) = c0
i jkl + c̃i jkl(x) , eki j(x) = e0

ki j + ẽki j(x) , hi j(x) = h0
i j + h̃i j(x) ,

dki j(x) = d0
ki j + d̃ki j(x) , α jk(x) = α

0
jk + α̃ jk(x) . (14)

Then, the perturbations, denoted by a wave “∼”, behave like O(r), where r is the
distance of the observation point x from the crack-tip.

The governing equations involve the gradients of the stresses, electrical displace-
ments and magnetic inductions, which are given in a medium with continuously
varying material properties as

σi j, j = ci jkluk,l j− eki jEk, j−dki jHk, j + ci jkl, juk,l− eki j, jEk−dki j, jHk,

D j, j = e jkluk,l j +h jkEk, j +α jkHk, j + e jkl, juk,l +h jk, jEk +α jk, jHk ,

B j, j = d jkluk,l j +αk jEk, j + γ jkHk, j +d jkl, juk,l +αk j, jEk + γ jk, jHk . (15)

For analyzing the asymptotic fields in the crack-tip vicinity, the body forces, vol-
ume charges and magnetic induction sources are assumed to be zero. Utilizing eqs.
(14) for a quasi-static case, one obtains from (1) and (2)

c0
i jkluk,l j− e0

ki jEk, j−d0
ki jHk, j + c̃i jkluk,l j− ẽki jEk, j− d̃ki jHk, j + ci jkl, juk,l− eki j, jEk

− dki j, jHk = 0, (16)

e0
jkluk,l j +h0

jkEk, j +α
0
jkHk, j + ẽ jkluk,l j + h̃ jkEk, j + α̃ jkHk, j + e jkl, juk,l +h jk, jEk

+ α jk, jHk = 0, (17)

d0
jkluk,l j +α

0
k jEk, j + γ

0
jkHk, j + d̃ jkluk,l j + α̃k jEk, j + γ̃ jkHk, j +d jkl, juk,l +αk j, jEk

+ γ jk, jHk = 0. (18)

The method of separation of variables in polar coordinate system is appropriate to
solve equations (16)-(18). Our aim is to show that the asymptotic fields in contin-
uously nonhomogeneous medium are the same as in a homogeneous one. For this
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purpose we assume that in the near vicinity of the crack-tip, the radial variation of
the mechanical displacements is given as ui∼ rλ , where λ is an unspecified positive
parameter. From the governing equations (1), the constitutive equation (8) as well
as eqs. (2) and (9), one can find directly that the electric and magnetic fields behave
like Ei ∼ rλ−1 and Hi ∼ rλ−1, respectively. Then, taking into account the asymp-
totic behaviour of the material parameters in the continuously non-homogeneous
medium in accordance with eq. (14), we can rewrite equations (16)-(18) into the
following form

c0
i jkluk,l j− e0

ki jEk, j−d0
ki jHk, j +O(rλ−1) = 0, (19)

e0
jkluk,l j +h0

jkEk, j +α
0
jkHk, j +O(rλ−1) = 0, (20)

d0
jkluk,l j +α

0
jkEk, j + γ

0
jkHk, j +O(rλ−1) = 0. (21)

where the first three terms in each equation are proportional to rλ−2.

Thus, the leading singularity is determined by the following equations

c0
i jkluk,l j− e0

ki jEk, j−d0
ki jHk, j = 0, (22)

e0
jkluk,l j +h0

jkEk, j +α
0
jkHk, j = 0, (23)

d0
jkluk,l j +α

0
jkEk, j + γ

0
jkHk, j = 0, (24)

which are valid for a homogeneous solid with the material constants given by the
crack-tip values of the corresponding material parameters in the considered nonho-
mogeneous medium. A similar approach has been used by Jin and Noda (1994) to
show the dominant crack-tip singularity in a continuously nonhomogeneous solid
in linear elasticity. The nature of the stress singularity has precisely the same well-
known form applicable to homogeneous materials (Eischen 1987).

For cracks in homogeneous and linear piezoelectric and piezomagnetic solids the
asymptotic behaviour of the field quantities has been given by Wang and Mai
(2003). In the crack-tip vicinity, the displacements as well as the electric and mag-
netic potentials show the classical

√
r asymptotic behaviour. Hence, correspond-

ingly, the stresses, the electrical displacements and magnetic inductions exhibit a
1/
√

r -behaviour, where r is the radial polar coordinate with the origin at the crack-
tip. Garcia-Sanchez et al. (2007) extended the approach used in piezoelectricity
to magnetoelectroelasticity to obtain the following asymptotic expression for the
generalized intensity factors

KII

KI

KD

KB

=
√

π

2r

[
Re(ΠΠΠ)−1]


u1
u3
ψ

µ

 , (25)



An Interaction Integral Method 43

where matrix ΠΠΠ is determined by the material properties (Garcia-Sanchez et al.
2005, 2007) and

KI = lim
r→0

√
2πrσ33(r,0),

KII = lim
r→0

√
2πrσ13(r,0),

KD = lim
r→0

√
2πrD3(r,0),

KB = lim
r→0

√
2πrB3(r,0)

are the stress intensity factors (KI and KII), the electrical displacement intensity
factor (KD), and the magnetic induction intensity factor (KB), respectively.

3 Evaluation of the intensity factors in FGMs

The gradient of the electromagnetic enthalpy density (6) is given as

W,m (εi j,E j,H j,xi) =
∂W
∂εi j

∂εi j

∂xm
+

∂W
∂E j

∂E j

∂xm
+

∂W
∂H j

∂H j

∂xm
+
(

∂W
∂xm

)
exp l

, (26)

where the term for the “explicit” derivative of the enthalpy density for non-homogeneous
materials can be written as

(
∂W
∂xm

)
exp l

=
1
2

ci jkl,mεi jεkl−e jkl,mE jεkl−
1
2

h jk,mE jEk−d jkl,mH jεkl−α jk,mHkE j−

−1
2

γ jk,mH jHk. (27)

Then, utilizing eqs. (7)-(10), the gradient of the enthalpy density can be rewritten
into the form

W,m = (σi jui,m) , j−σi j, jui,m−D jE j,m−B jH j,m +(W,m)exp l . (28)
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Bearing in mind of eqs. (3) and (4), one can write the third and the fourth term in
eq. (28) as

D jE j,m =−D jψ, jm = D jEm, j = (D jEm), j−D j, jEm ,

B jH j,m =−B jµ, jm = B jHm, j = (B jHm), j−B j, jHm .

Then, in view of the governing equations (1), (2) and (5), the following identity can
be obtained

(Wδ jm−σi jui,m +D jEm +B jHm) , j = (Xi−ρ üi)ui,m +REm +(W,m)exp l . (29)

Integrating the identity (29) over a regular finite domain Ω with the boundary Γ ,
we obtain∫
Γ

(Wδ jm−σi jui,m +D jEm +B jHm)n jdΓ =
∫
Ω

(Xi−ρ üi)ui,mdΩ+

+
∫
Ω

(REm)dΩ +
∫
Ω

(W,m)exp l dΩ , (30)

where n is a unit outward normal vector on Γ .

For a linear magnetoelectroelastic solid it can be shown that the electromagnetic
enthalpy is equal to W = (σi jεi j −DiEi−BiHi)/2. The integral identity (30) is
valid in a region where no field irregularities prevail. In the presence of a crack, the
stresses at the crack-tip are singular and the displacements are discontinuous across
both crack-faces. Therefore, a cut-off along the crack with a small circular region
in the vicinity of a crack-tip Ωε has to be excluded. This small region has a radius
ε and is surrounded by Γε as shown in Fig. 1.

The global Cartesian coordinate system is defined in such a way that the principal
axes of the material orthotropy are aligned with the global coordinates. All field
quantities σi j , ui , D j , E j and H j are regular in the region Ω−Ωε . The contour Γ =
Γ0 + Γ+

c −Γε + Γ−c is a closed integration path in the counter-clockwise direction.
The radius ε is considered to be very small and shrunk to zero in the limiting
process. The crack-faces Γ+

c and Γ−c are assumed to be traction-free, with vanishing
normal components of the electric displacements and magnetic inductions, i.e., ti =
σi jn j = 0 , Dn=0 and Hn=0, and the crack is parallel to the x1 - axis of the local
Cartesian coordinate system. Then, eq. (30) can be written as
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x3

x1

n

c
+

c
-

0

r






 

Figure 1: Integration paths and coordinate definitions

lim
ε→0

∫
Γε

(Wδ jm−σi jui,m +D jEm +B jHm)n jdΓ

=
∫
Γ0

(Wδ jm−σi jui,m +D jEm +B jHm)n jdΓ+

+
∫

Γ
+
c

[
W+−W−

]
δ2mdΓ− lim

ε→0

∫
Ω−Ωε

(Xi−ρ üi)ui,mdΩ− lim
ε→0

∫
Ω−Ωε

REmdΩ−

− lim
ε→0

∫
Ω−Ωε

(W,m)exp l dΩ . (31)

The left hand side of eq. (31) is identical to the definition of the J- integral (Wang
and Mai 2003, 2004) form = 1 in the linear magnetoelectroelasticity, which has
the following form

J1 =
∫
Γ0

(Wδ j1−σi jui,1 +D jE1 +B jH1)n jdΓ− lim
ε→0

∫
Ω−Ωε

(Xi−ρ üi)ui,1dΩ−

− lim
ε→0

∫
Ω−Ωε

RE1dΩ − lim
ε→0

∫
Ω−Ωε

(W,1)exp l dΩ . (32)
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Consider now two independent equilibrium states in an orthotropic functionally
graded material. Let the first state be represented by the actual state specified by the
prescribed boundary conditions, and the second state (called auxiliary and denoted
by superscript 2) is assumed to be a steady-state solution obeying the homogeneous
governing equations in the infinite plane. Superposition of the actual and the aux-
iliary fields leads to another equilibrium state (state “s”) for which the J-integral is
given as

J(s) =
∫
Γ0

[
W (s)n1− (σi j +σ

(2)
i j )n j(ui,1 +u(2)

i,1 )+
(

D j +D(2)
j

)
n j

(
E1 +E(2)

1

)
+

+
(

B j +B(2)
j

)
n j

(
H1 +H(2)

1

)]
dΓ− lim

ε→0

∫
Ω−Ωε

(Xi−ρ üi)(ui,1 + u(2)
i,1 )dΩ−

− lim
ε→0

∫
Ω−Ωε

R
(

E1 +E(2)
1

)
dΩ−

− lim
ε→0

∫
Ω−Ωε

[
1
2

ci jkl,1

(
εi j + ε

(2)
i j

)(
εkl + ε

(2)
kl

)
− e jkl,1

(
E j +E2

j
)(

εkl + ε
(2)
kl

)
−

(33)

−1
2

h jk,1
(
Ek +E2

k
)(

E j +E2
j
)
−d jkl,1

(
H j +H2

j
)(

εkl + ε
(2)
kl

)
−

−α jk,1
(
Hk +H2

k
)(

E j +E(2)
j

)
−1

2
γ jk,1

(
Hk +H2

k
)(

H j +H(2)
j

)]
dΩ,

where

W (s) =
1
2

[
(σi j +σ

(2)
i j )(εi j + ε

(2)
i j )− (D j +D(2)

j )(E j +E(2)
j )− (B j +B(2)

j )(H j +H(2)
j )
]
.

The J-integral (33) can be conveniently decomposed into

J(s) = J + J(2) +M, (34)

where
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J(2) =
∫
Γ0

[
W (2)n1−σ

(2)
i j n ju

(2)
i,1 −D(2)

j n jE
(2)
1

]
dΓ−

− lim
ε→0

∫
Ω−Ωε

[
1
2

ci jkl,1ε
(2)
i j ε

(2)
kl − e jkl,1E(2)

j ε
(2)
kl −

−1
2

h jk,1E(2)
k E(2)

j −d jkl,1H(2)
j ε

(2)
kl −α jk,1H(2)

k E(2)
j −

1
2

γ jk,1H(2)
k H(2)

j

]
dΩ, (35)

with

W (2) =
1
2

[
σ

(2)
i j ε

(2)
i j −D(2)

j E(2)
j −B(2)

j H(2)
j

]
.

The interaction integral M is then given by

M =
∫
Γ0

[
W (1,2)n1− (σi jn ju

(2)
i,1 +σ

(2)
i j n jui,1)+D jn jE

(2)
1 +

+D(2)
j n jE1 +B jn jH

(2)
1 +B(2)

j n jH1

]
dΓ−

− lim
ε→0

∫
Ω−Ωε

(Xi−ρ üi)u(2)
i,1 dΩ− lim

ε→0

∫
Ω−Ωε

RE(2)
1 dΩ−

− lim
ε→0

∫
Ω−Ωε

[
1
2

ci jkl,1

(
εi jε

(2)
kl + ε

(2)
i j εkl

)
− e jkl,1

(
E jε

(2)
kl +E(2)

j εkl

)
−

−1
2

h jk,1

(
EkE(2)

j +E(2)
k E j

)
−d jkl,1

(
H jε

(2)
kl +H(2)

j εkl

)
−

−α jk,1

(
HkE(2)

j +H(2)
k E j

)
− 1

2
γ jk,1

(
HkH(2)

j +H(2)
k H j

)]
dΩ. (36)

The magnetoelectroelastic J- integral can be expressed in terms of the SIFs, the
electrical displacement intensity factor (EDIF) and the magnetic induction intensity
factor (MIIF) as (Rao and Kuna 2008b)

J =
1
2

KLKNYLN , (37)
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where YLN is the generalized Irwin matrix with a size (5x5) (Rao and Kuna 2008b).
For 2-D problems one can write

J = K2
IIY11/2+K2

I Y22/2+K2
DY44/2+K2

BY55/2+KIKIIY12 +KIKDY24+

+KIKBY25 +KIIKDY14 +KIIKBY15 +KDKBY45. (38)

The J-integral for auxiliary fields and the M-integral are given as

J(2) = K(2)2
II Y11/2+K(2)2

I Y22/2+K(2)2
D Y44/2+K(2)2

B Y55/2+K(2)
I K(2)

II Y12+

+K(2)
I K(2)

D Y24 +K(2)
I K(2)

B Y25 +K(2)
II K(2)

D Y14 +K(2)
II K(2)

B Y15 +K(2)
D K(2)

B Y45,

M = KIIK
(2)
II Y11 +KIK

(2)
I Y22 +KDK(2)

D Y44 +KBK(2)
B Y55 +(KIK

(2)
II +KIIK

(2)
I )Y12+

+(KIK
(2)
D +KDK(2)

I )Y24 +(KIK
(2)
B +KBK(2)

I )Y25 +(KIIK
(2)
D +KDK(2)

II )Y14+

+(KIIK
(2)
B +KBK(2)

II )Y15 +(KDK(2)
B +KBK(2)

D )Y45. (39)

The individual intensity factors (SIFs, EDIF, MIIF) are evaluated by solving the
system of linear algebraic equations obtained from eq. (39) by choosing appropriate
auxiliary states. If K(2)

I = 1 and K(2)
II = K(2)

D = K(2)
B = 0 one obtains

MI = KIY22 +KIIY12 +KDY24 +KBY25. (40)

Similarly, one obtains 3 additional equations as

MII = KIY12 +KIIY11 +KDY14 +KBY15,

MD = KIY24 +KIIY14 +KDY44 +KBY45,
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MB = KIY25 +KIIY15 +KDY45 +KBY55 (41)

resulting from eq. (39) by taking K(2)
II = 1, K(2)

I = K(2)
D = K(2)

B = 0 for MII , K(2)
D =

1, K(2)
I = K(2)

II = K(2)
B = 0 for MD, and K(2)

B = 1, K(2)
I = K(2)

II = K(2)
D = 0 for MB,

respectively. The values MI , MII , MD and MBare computed numerically by using
eq. (36) with an adequate choice of the auxiliary solutions.

The interaction integral expression M given in eq. (36) has a contour-domain inte-
gral character. Only the terms with the acceleration, the body forces, the volume
density of free charges and magnetic induction sources and the gradients of the ma-
terial parameters appear in the domain integrals. These terms are vanishing for a
steady-state and homogeneous material case provided that body sources are absent.
Then, the principal character of the M integral expression is given by the contour in-
tegral. Therefore, the present method is very convenient for computational schemes
where the accuracy of computed quantities on a contour is high, like in the BEM
or present meshless method. The domain integral form for the interaction integral
given by Rao and Kuna (2008b) is more convenient for the FEM, because the re-
sults are more accurate in the integration points than at interelement contours. The
volume integration is easier in the FEM concept.

4 Local integral equations for 2-D problems

The following essential and natural boundary conditions are assumed for the me-
chanical field

ui(x,τ) = ũi(x,τ), on Γu,

ti(x,τ) = σi jn j = t̃i(x,τ) , on Γt , Γ = Γu∪Γt .

We assume for the electrical field

ψ(x,τ) = ψ̃(x,τ), on Γp,

ni(x)Di(x,τ)≡ Q(x,τ) = Q̃(x,τ) , on Γq, Γ = Γp∪Γq,

and for the magnetic field

µ(x,τ) = µ̃(x,τ), on Γa,

ni(x)Bi(x,τ)≡ S(x,τ) = S̃(x,τ) , on Γb, Γ = Γa∪Γb,

where Γu is the part of the global boundary Γ with prescribed displacements, while
on Γt , Γp, Γq, Γa, and Γb the traction vector, the electric potential, the normal
component of the electric displacement vector, the magnetic potential and the nor-
mal component of the magnetic induction vector are prescribed, respectively. Re-
call that Q̃(x,τ) can be considered approximately as the surface density of free
charges, provided that the permittivity of the solid is much larger than that of the
surrounding medium (vacuum).
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The initial conditions for the mechanical displacements are assumed as

ui(x,τ)|
τ=0 = ui(x,0) and u̇i(x,τ)|

τ=0 = u̇i(x,0) in Ω.

Recently, the authors have derived the local integral equations to solve a general
boundary value problem in magneto-electro-elasticity [Sladek et al., 2008]. The
integral equations have the following form∫
Ls+Γsu

ti(x,τ)dΓ−
∫
Ωs

ρ üi(x,τ)dΩ =−
∫

Γst

t̃i(x,τ)dΓ−
∫
Ωs

Xi(x,τ)dΩ, (42)

∫
Ls+Γsp

Q(x,τ)dΓ =−
∫

Γsq

Q̃(x,τ)dΓ+
∫
Ωs

R(x,τ)dΩ, (43)

∫
Ls+Γsa

S(x,τ)dΓ =−
∫

Γsb

S̃(x,τ)dΓ, (44)

where

Q(x,τ) = D j(x,τ)n j(x) =
[
e jkluk,l(x,τ)−h jkψ,k(x,τ)−α jkµ,k(x,τ)

]
n j.

S(x,τ) = B j(x,τ)n j(x) =
[
d jkluk,l(x,τ)−αk jψ,k(x,τ)− γ jkµ,k(x,τ)

]
n j.

The trial functions can be approximated by the moving least squares (MLS) method
using a number of nodes spreading over the analyzed domain. According to the
MLS (Belytschko et al. 1996) method, the approximation of the mechanical dis-
placements, and the electric and magnetic potentials can be written as

uh(x,τ) = ΦΦΦ
T (x) · û =

n

∑
a=1

φ
a(x)ûa(τ),

ψ
h(x,τ) =

n

∑
a=1

φ
a(x)ψ̂a(τ),

µ
h(x,τ) =

n

∑
a=1

φ
a(x)µ̂

a(τ), (45)
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where the nodal values ûa(τ) = (ûa
1(τ), ûa

3(τ))T , ψ̂a(τ) and µ̂a(τ) are fictitious
parameters for the displacements, the electric and magnetic potentials, respectively,
and φ a(x) is the shape function associated with the node a. The number of nodes n
used for the approximation is determined by the weight function wa(x). A 4th order
spline-type weight function is applied in the present work.

Then, the traction vector ti(x,τ) at a boundary point x ∈ ∂Ωs is approximated in
terms of the same nodal values ûa(τ) as

th(x,τ) = N(x)C(x)
n

∑
a=1

Za(x)ûa(τ) +N(x)L(x)
n

∑
a=1

Pa(x)ψ̂a(τ)+

+ N(x)K(x)
n

∑
a=1

Pa(x)µ̂
a(τ), (46)

where the matrices C(x), L(x) and K(x) are defined in eq. (11), the matrix N(x) is
related to the normal vector n(x) on ∂Ωs by

N(x) =
[

n1 0 n3
0 n3 n1

]
,

and finally, the matrices Za and Pa are represented by the gradients of the shape
functions as

Za(x) =

φ a
,1 0
0 φ a

,3
φ a

,3 φ a
,1

 , Pa(x) =
[

φ a
,1

φ a
,3

]
.

Similarly the normal component of the electric displacement vector Q(x,τ) can be
approximated by

Qh(x,τ) = N1(x)G(x)
n

∑
a=1

Za(x)ûa(τ)−N1(x)H(x)
n

∑
a=1

Pa(x)ψ̂a(τ)−

−N1(x)A(x)
n

∑
a=1

Pa(x)µ̂
a(τ), (47)

where the matrices G(x), H(x) and A(x) are defined in eq. (12) and

N1(x) =
[
n1 n3

]
.



52 Copyright © 2011 Tech Science Press CMC, vol.23, no.1, pp.35-68, 2011

Eventually, the magnetic flux S(x,τ) is approximated by

Sh(x,τ) = N1(x)R(x)
n

∑
a=1

Za(x)ûa(τ)−N1(x)A(x)
n

∑
a=1

Pa(x)ψ̂a(τ)−

−N1(x)M(x)
n

∑
a=1

Pa(x)µ̂
a(τ), (48)

with the matrices R(x), A(x)and M(x) being defined in eq. (13).

Furthermore, in view of the MLS-approximations (46)-(48) for the unknown quan-
tities in the local boundary-domain integral equations (42)-(44), we obtain their
discretized forms as

n

∑
a=1

 ∫
Ls+Γst

N(x)C(x)Za(x)dΓ

 ûa(τ)−

∫
Ωs

ρ(x)φ adΩ

 ¨̂ua
(τ)

+

+
n

∑
a=1

 ∫
Ls+Γst

N(x)L(x)Pa(x)dΓ

 ψ̂
a(τ) +

n

∑
a=1

 ∫
Ls+Γst

N(x)K(x)Pa(x)dΓ

 µ̂
a(τ) =

= −
∫

Γst

t̃(x,τ)dΓ−
∫
Ωs

X(x,τ)dΩ, (49)

n

∑
a=1

 ∫
Ls+Γsq

N1(x)G(x)Za(x)dΓ

 ûa(τ)−
n

∑
a=1

 ∫
Ls+Γsq

N1(x)H(x)Pa(x)dΓ

 ψ̂
a(τ)−

−
n

∑
a=1

 ∫
Ls+Γsq

N1(x)A(x)Pa(x)dΓ

 µ̂
a(τ) =−

∫
Γsq

Q̃(x,τ)dΓ+
∫
Ωs

R(x,τ)dΩ, (50)

n

∑
a=1

 ∫
Ls+Γsb

N1(x)R(x)Za(x)dΓ

 ûa(τ)−
n

∑
a=1

 ∫
Ls+Γsb

N1(x)A(x)Pa(x)dΓ

 ψ̂
a(τ)−

−
n

∑
a=1

 ∫
Ls+Γsb

N1(x)M(x)Pa(x)dΓ

 µ̂
a(τ) =−

∫
Γsb

S̃(x,τ)dΓ, (51)
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which are considered on the subdomains adjacent to the interior nodes as well as to
the boundary nodes on Γst ,Γsq and Γsb.

The discretized local boundary-domain integral equations represent a complete sys-
tem of ordinary differential equations, and it can be rearranged in such a way that
all known quantities are on the r.h.s. Thus, in matrix form the system becomes

Fẍ+Λx = Y. (52)

There are many time integration procedures for solution of this system of ordinary
differential equations. In the present work, the Houbolt method is applied. In the
Houbolt finite-difference scheme (Houbolt 1950), the “acceleration” ẍ is approxi-
mated by

ẍτ+∆τ =
2xτ+∆τ −5xτ +4xτ−∆τ −xτ−2∆τ

∆τ2 , (53)

where ∆τ is the time-step.

Substituting eqs. (53) into eq. (52), we get the following system of linear algebraic
equations for the unknowns xτ+∆τ[

2
∆τ2 F+Λ

]
xτ+∆τ =

1
∆τ2 5Fxτ +F

1
∆τ2 {−4xτ−∆τ +xτ−2∆τ}+Y. (54)

The value of the time-step has to be appropriately selected with respect to material
parameters (elastic wave velocities) and time dependence of the boundary condi-
tions. Computed quantities from the system of algebraic equations (54) are used
for evaluation of the interaction integral M and for intensity factors.

5 Numerical examples

5.1 A central crack in a finite strip

In the first example, a straight central crack in a finite magnetoelectroelastic strip
under a uniform pure mechanical and/or electro-magnetic loading is analyzed. The
mechanical load σ0 = 1Pa or the magnetic induction load B0 = 1V s/m2 is applied
on the top side of the strip, respectively, in the static analysis. Each of the loads
can open the crack and even cause its propagation. Due to the bi-axial symmetry
of the problem only a quarter of the cracked strip is modeled (Fig. 2). The poling
direction of the material coincides with the x3coordinate direction. The cracked
strip is described by the geometrical parameters: a = 0.5m, a/w = 0.4 andh/w =
1.2. The mechanical displacements, the electrical and magnetic potentials in the
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Figure 2: A central crack in a finite magnetoelectroelastic strip

finite strip are approximated by using 930 (31x30) equidistantly distributed nodes.
The local subdomains are selected to be circular with a radius rloc = 0.028m.

To test the accuracy of the present method, homogeneous material properties are
first considered. The material parameters corresponding to the BaTiO3 - CoFe2O4 composite
are given by Li (2000)

c11 = 22.6×1010Nm−2 , c13 = 12.4×1010Nm−2,

c33 = 21.6×1010Nm−2 , c66 = 4.4×1010Nm−2 ,

e15 = 5.8Cm−2 , e31 =−2.2Cm−2 , e33 = 9.3Cm−2 ,

h11 = 5.64×10−9C2/Nm2 , h33 = 6.35×10−9C2/Nm2 ,
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d15 = 275.0N/Am , d21 = 290.2N/Am , d22 = 350.0N/Am ,

α11 = 5.367×10−12Ns/VC, α33 = 2737.5×10−12Ns/VC ,

γ11 = 297.0×10−6Ns2C−2, γ33 = 83.5×10−6Ns2C−2 , ρ = 5500kg/m3 . (55)

If a crack in magnetoelectroelastic solids is investigated, an important question is
how the medium inside the crack is modeled. Depending on the ratio between
the dielectric permittivity and/or magnetic permeability of the medium inside the
crack and that of the cracked solid, two extreme cases can be considered. In the
first extreme case, the crack is not visible for the electric and/or magnetic field if the
permittivity of the medium inside the crack is significantly larger than that of the
analyzed solid. In such a case, the potentials on both crack-surfaces are the same,
and thus one has the so-called electrically and magnetically permeable boundary
conditions on the crack-faces, i.e.,

ψ
+ = ψ

− , µ
+ = µ

− ,

D+
n = D−n , B+

n = B−n . (56)

In the second extreme case, the permittivity of the medium inside the crack is van-
ishing. Then, jumps in the electric and magnetic potentials occur, and the normal
electrical displacement and the magnetic induction on both crack-faces are vanish-
ing, i.e.,

∆ψ = ψ
+−ψ

− 6= 0,∆µ = µ
+−µ

− 6= 0,

D+
n = D−n = 0 , B+

n = B−n = 0 . (57)

This case corresponds to the so-called impermeable boundary conditions and they
are shown in Fig. 2. Though the crack opening displacement under static load-
ing conditions is slightly larger for permeable boundary conditions under a pure
mechanical load than that for the impermeable ones, the mode-I stress intensity
factor (SIF) under a pure mechanical load is the same for both boundary condi-
tions, i.e., Kstat

I = 1.4Pa ·m1/2. The boundary element method (BEM) is used here
for comparative purposes to test the present MLPG method. The BEM results are
obtained using 104 linear elements on the external boundary and 20 elements on
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the crack-face. At the crack-tips, the square-root shape functions are implemented
to describe the local behaviour of the displacements, the electric and magnetic po-
tentials properly. Both polynomial and enriched basis functions are applied in our
MLPG computations. However, the selection of the enriched basis functions has
no significant accuracy improvement of the mode-I SIF. This is due to the applica-
tion of the interaction integral method for the evaluation of the mode-I SIF. If the
asymptotic expansion equations have been applied for the evaluation of the mode-I
SIF, slight differences have been observed (Sladek et al. 2008). In our case the
integration contour for the computation of the M integral is sufficiently far from
the crack-tip and the influence of the enriched basis functions is thus vanishing.
The integration contour has a rectangular shape composed of 3 straight lines: two
vertical lines with x1 = 0.917m and x1 = 0., the horizontal line with x3 = 0.917m.
The contour is divided into 66 segments with a uniform length for the evaluation
of the contour integral and the domain is discretized by 441 square elements with
a side length equal to the distance between two nodes used in the MLPG analysis.
It is interesting to note that a pure mechanical loading induces finite values of the
electrical and magnetic potentials on both crack-faces, but the electrical displace-
ment intensity factor (EDIF) and/or the magnetic induction intensity factor (MIIF)
do not appear. It means that the crack displacement u3 and both the electrical and
magnetic potentials ψm and µm are coupled mutually, but the mode-I SIF and both
EDIF and MIIF in this case are uncoupled. The EDIF and MIIF are vanishing for a
pure mechanical load under a quasi-static assumption.

Next, the strip is subjected to an impact load with the Heaviside time variation and
the amplitudeσ0 = 1Pa for a pure mechanical load or B0 = 1V s/m2 for a pure
magnetic induction load, respectively. Both impermeable and permeable boundary
conditions on the crack-faces are considered. The time variation of the normalized
mode-I SIF is given in Fig. 3. Both extreme crack-face boundary conditions have
a vanishing influence on the mode-I SIF for a pure mechanical load. The dynamic
value of the mode-I SIF is approximately doubled as compared to the corresponding
static one.

In Figs. 4 and 5, we present the time variations of the EDIF and MIIF under a pure
mechanical load. On contrary to the static case, a finite value for both intensity fac-
tors is observed here. From the Maxwell‘s equations, it is known that the velocity
of electromagnetic waves is equal to the speed of light, which is much larger than
the velocity of elastic waves. Hence, the use of quasi-static approximation in the
governing equations is justified for the interaction of electro-magnetic and mechan-
ical fields. The response of the electro-magnetic fields is immediate, while that of
the elastic one takes some finite time because of the finite velocity of elastic waves.
On the other hand, in a static case, the response of both the mechanical (strains
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Figure 3: Normalized mode-I stress intensity factor for a central crack in a strip
under a pure mechanical load σ0H(τ−0)

and stresses) and the electro-magnetic fields is immediate. In the dynamic case
the stress evolution is affected by the inertia forces and the electro-magnetic fields
follow the time evolution of the mechanical field due to the immediate response
within their quasi-static approximation.

For normalized electrical displacement and magnetic induction intensity factors we
have used the normalization parameters Λd = e33/h33 andΛb = d33/γ33 , respec-
tively. The EDIF and MIIF are higher for permeable electro-magnetic crack-face
boundary conditions than that for the impermeable ones.

Figure 6 presents the normalized mode-I stress and electrical displacement intensity
factors for a pure magnetic induction impact load. The static magnetic induction
intensity factor Kstat

B = 1.4Vsm−3/2 is equal to the static mode-I SIF for a pure me-
chanical load due to their decoupling. Both mode-I SIF and EDIF are oscillating
around their mean value with vanishing amplitudes. Since the dynamic SIF and
EDIF exceed their static values, they have to be considered in the design of mag-
netoelectroelastic components and devices where transient processes are expected.
On the other hand, the temporal variation of the MIIF is slightly oscillating around
its static value Kstat

B , because the applied magnetic load is only slightly influenced
due to the weak magneto-elastic coupling. Nevertheless, there is a finite elastic
response and consequently the response of the electric field is influenced by the
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Figure 4: Normalized electrical displacement intensity factors (EDIF) for a central
crack in a strip under a pure mechanical load σ0H(τ−0)
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Figure 5: Normalized magnetic induction intensity factors (MIIF) for a central
crack in a strip under a pure mechanical load σ0H(τ−0)
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Figure 6: Normalized mode-I stress and electrical displacement intensity factors
for a central crack in a strip under a pure magnetic induction load B0H(τ−0)

inertial effect of the elastic field due to the electro-elastic coupling.

5.2 An edge crack in a finite strip

Next, an edge crack in a finite magnetoelectroelastic strip is analyzed. The geome-
try of the strip is given in Fig. 7 with the following values: a = 0.5, a/w = 0.4 and
h/w = 1.2. Due to the symmetry of the problem with respect to the x1-axis, only a
half of the strip is modeled. We have used again 930 equidistantly distributed nodes
for the MLS approximation of the physical fields. On the top of the strip either a
uniform tensionσ0 or a uniform magnetic induction B0 is applied. Firstly, the static
loading case is investigated. The functionally graded material properties in the x1-
direction are considered. An exponential variation of the elastic, piezoelectric, di-
electric, paramagnetic, electromagnetic and magnetic permeability coefficients are
assumed as

fi j(x) = fi j0 exp(γ f x1), (58)

where the symbol fi j is commonly used for particular material coefficients and fi j0
corresponds to the material parameters used in the previous example. It should be
noted here that different gradient parameters γ f can be used for particular material
coefficients.
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Figure 7: An edge crack in a finite strip with functionally graded material properties
in x1-direction

For simplicity, we have used the same gradient parameters for all material coeffi-
cients with the value γ = 2 in the numerical calculations. Then, all material param-
eters at the crack-tip are e1 = 2.718 times larger than that ones in the corresponding
homogeneous material. The normalized mode-I stress intensity factors for homoge-
neous and nonhomogeneous cracked strips take the values fI = KI/σ0

√
πa = 2.105

and 1.565, respectively. With increasing the gradient parameter γ the mode-I SIF
is decreasing. A similar phenomenon is observed for an edge crack in an elastic
FGM strip under a mechanical loading (Dolbow and Gosz 2002) and for a cracked
piezoelectric FGM strip (Sladek et al. 2007a). For a crack in a homogeneous
magnetoelectroelastic solid under a static loading condition as analyzed in the pre-
vious example, the mode-I SIF, EDIF and MIIF are uncoupled. However, this
conclusion is not valid generally for a continuously nonhomogeneous solid. For
the present example, we have obtained the following normalized intensity factors:
ΛdKD/Kstat

I = 0.049 and ΛbKB/Kstat
I = 0.0041. Thus, the material inhomogeneity

affects the interactions of the electro-magnetic fields with the mechanical one as
compared with the case of homogeneous materials. From the mathematical point
of view, one has to solve the boundary value problems described by partial differ-
ential equations (PDEs) with variable coefficients for FGMs instead of the PDEs
with constant coefficients for homogeneous materials.

Next, the strip is subjected to an impact mechanical load with Heaviside time
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variation and the amplitude σ0 = 1Pa. The impermeable crack-face boundary
conditions for the electrical and magnetic fields are considered. The time vari-
ation of the normalized mode-I stress intensity factor is given in Fig. 8, where
Kstat

I = 2.64Pa ·m1/2.

 

Figure 8: Normalized mode-I stress intensity factor for an edge crack in a strip
under a pure mechanical load σ0H(τ−0)

The elastic wave velocities are increasing in the x1 -direction, provided that me-
chanical parameters of FGMs are increasing in the x1 -direction and the mass den-
sity is uniform. Therefore, the peak values of the mode-I SIF are reached at a
shorter time instant in functionally graded strip than in a homogeneous one. The
maximum value of the mode-I SIF is reduced for the cracked FGM strip compared
to that for a cracked homogeneous strip. Also in this case the EDIF and MIIF have
finite values despite a pure mechanical load. The time variations of the EDIF and
MIIF are given in Figs. 9 and 10. Again the peak values of the EDIF and MIIF
are shifted to shorter time instants in the FGM strip than in a homogeneous one.
All three peaks for the SIF, EDIF and MIIF are reached almost at the same time
instants.

Finally, it should be noted that in this paper we have analyzed the transient response
of a stationary crack in a finite domain under an impact mechanical load with Heav-
iside time variation. In this case, the dynamic solution does not tend to the static
solution when the time t approaches infinity, due to repeated wave reflections at the
finite boundaries. In contrast, for the same crack problem but in an infinite domain,
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the dynamic solution will tend to the static one in the large-time limit t = ∞ as in
the purely elastodynamic case.
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Figure 9: Normalized electrical displacement intensity factors (EDIF) for an edge
crack in a strip under a pure mechanical load σ0H(τ−0)

6 Conclusions

Stress intensity factors and other intensity factors can be evaluated from asymp-
totic expansions of the field quantities in the crack-tip vicinity. The validity of the
asymptotic expansions is limited to a small region around the crack-tip. If we want
to obtain accurate intensity factors we need to get accurate quantities in the crack-
tip vicinity. Due to the high gradient of the field quantities in the crack-tip vicinity
it is difficult to get accurate quantities there. However, it is possible to develop
more sophisticated methods like in this paper, where intensity factors are evaluated
on the base of quantities at points far away from the crack-tip.

This paper presents an efficient numerical method for the evaluation of intensity
factors for crack problems in magnetoelectroelastic solids. Conservation integral
representations for the SIFs, EDIF and MIIF are derived. The present integral
method is numerically more expedient than those based on the direct computation
of the fracture parameters from the asymptotic expansion of the displacements and
potentials. The contour-domain integral approach is well suited for crack analysis
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Figure 10: Normalized magnetic induction intensity factors (MIIF) for an edge
crack in a strip under a pure mechanical load σ0H(τ−0)

by meshless methods. A meshless local Petrov-Galerkin method (MLPG) is ap-
plied for 2-D crack problems in continuously nonhomogeneous magnetoelectroe-
lastic solids subjected to a mechanical or magnetic induction loading. Both static
and impact loads are considered. The inertial term is considered in the equations of
motion. The coupled governing partial differential equations are satisfied in a weak-
form on small fictitious subdomains. A unit step function is used as the test function
in the local weak-form of the governing partial differential equations on small cir-
cular subdomains spread on the analyzed domain. The moving least-squares (MLS)
scheme is adopted for the approximation of the physical field quantities. One ob-
tains a system of ordinary differential equations for certain nodal unknowns. That
system is solved numerically by the Houbolt finite-difference scheme. The pro-
posed method is a truly meshless method, which requires neither domain elements
nor background cells in either the interpolation or the integration. Numerical ex-
amples demonstrate the accuracy and the efficiency of the present method.
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