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Finite Rotation Piezoelectric Exact Geometry Solid-Shell
Element with Nine Degrees of Freedom per Node

G. M. Kulikov1 and S. V. Plotnikova1

Abstract: This paper presents a robust non-linear piezoelectric exact geometry
(EG) four-node solid-shell element based on the higher-order 9-parameter equiva-
lent single-layer (ESL) theory, which permits one to utilize 3D constitutive equa-
tions. The term EG reflects the fact that coefficients of the first and second fun-
damental forms of the reference surface are taken exactly at each element node.
The finite element formulation developed is based on a new concept of interpo-
lation surfaces (I-surfaces) inside the shell body. We introduce three I-surfaces
and choose nine displacements of these surfaces as fundamental shell unknowns.
Such choice allows us to represent the finite rotation piezoelectric higher-order EG
solid-shell element formulation in a very compact form and to utilize in curvilinear
reference surface coordinates the strain-displacement relationships, which are ob-
jective, that is, invariant under arbitrarily large rigid-body shell motions. To avoid
shear and membrane locking and have no spurious zero energy modes, the assumed
displacement-independent strain and stress resultant fields are introduced. In this
connection, the Hu-Washizu variational equation is invoked. To implement the ana-
lytical integration throughout the element, the modified ANS method is applied. As
a result, the present finite rotation piezoelectric EG solid-shell element formulation
permits the use of coarse meshes and very large load increments.

Keywords: Piezoelectric laminated shell, exact geometry solid-shell element,
non-linear 9-parameter shell model

1 Introduction

In recent years, a considerable progress has been achieved on the development of
continuum-based finite elements [Tan and Vu-Quoc (2005), Klinkel and Wagner
(2006, 2008), Lentzen (2009)] that can handle the geometrically non-linear analy-
sis of thin piezoelectric laminated composite shells satisfactorily. These elements
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are typically defined by two layers of nodes at the bottom and top surfaces of the
shell with three displacement degrees of freedom per node and known as isopara-
metric 6-parameter piezoelectric solid-shell elements. Unfortunately, a 6-parameter
solid-shell element formulation based on the complete 3D constitutive equations is
deficient because thickness locking occurs. This is due to the fact that the linear
displacement field in the thickness direction results in a constant transverse normal
strain, which in turn causes artificial stiffening of the shell element in the case of
non-vanishing Poisson’s ratios. It should be mentioned that the errors caused by
thickness locking do not decrease with the mesh refinement because the reason of
stiffening lies in the shell theory itself rather than the finite element discretization.
To prevent thickness locking, the transverse normal strain is enriched in the thick-
ness direction by a linear term as suggested by Buchter, Ramm and Roehl (1994).

Another popular way of using 3D constitutive equations is to employ higher-order
shell models, as a rule, with seven displacement degrees of freedom for the non-
linear analysis of purely mechanical shell problems [Parisch (1995), Sansour (1995),
El-Abbasi and Meguid (2000), Brank (2005), Arciniega and Reddy (2007), Kulikov
and Carrera (2008), Kulikov and Plotnikova (2008a), Brank, Ibragimbegovic and
Bohinc (2008), Lee and Lee (2008)]. It is well-known that a conventional way for
developing the higher-order shell formulation is to utilize either quadratic or cu-
bic series expansions in the thickness coordinate and to choose as unknowns the
generalized displacements of the midsurface. Herein, the 9-parameter piezoelectric
laminated shell model is developed for the first time using a new concept of inter-
polation surfaces (I-surfaces) inside the shell body [Kulikov and Carrera (2008),
Kulikov and Plotnikova (2008a)]. We introduce three equally located I-surfaces,
namely, bottom, middle and top and choose the values of displacements with cor-
respondence to these surfaces as fundamental shell unknowns. Such choice of dis-
placements with the consequent use of the Lagrange polynomials of the second
order in the thickness direction permits one to represent the finite rotation higher-
order 9-parameter shell formulation developed in a very compact form and to utilize
non-linear strain-displacement equations, which are completely free for arbitrarily
large rigid-body shell motions. Taking into account that displacement vectors of I-
surfaces are resolved in the reference surface frame the proposed higher-order shell
formulation is very promising for developing the high performance piezoelectric
EG solid-shell elements. The term EG reflects the fact that the parametrization of
the reference surface is known and, therefore, coefficients of the first and second
fundamental forms are taken exactly at element nodes, which are employed in inno-
vative analytical integration schemes proposed by Kulikov and Plotnikova (2006,
2007, 2009).

It is assumed that the electric potential is linear through the thickness of the piezo-
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electric layer and all displacement and electric potential degrees of freedom are
coupled via 3D constitutive equations. The first assumption means that the elec-
tric field is constant through the thickness of the piezoelectric layer, which is in
bending dominated situations not correct [see, e.g. Sze, Yang and Fan (2004)]. Be-
sides, in such case the electric charge conservation law never can be satisfied pre-
cisely. The analytical developments for piezoelectric beams [Gopinathan, Varadan
and Varadan (2000)] and plates [Benjeddou, Deü and Letombe (2002)] showed that
the quadratic variation of the electric potential in the thickness direction is sufficient
to solve this problem. However, the quadratic approximation of the electric poten-
tial leads to including additional degrees of freedom in a finite element formulation
and seems to be excessive for the actuator shell analysis that is discussed in the
present paper.

To avoid shear and membrane locking and have no spurious zero energy modes, the
assumed displacement-independent strain and stress resultant fields are invoked.
This approach was developed for the finite rotation 6-parameter EG shell element
formulations by Kulikov and Plotnikova (2002, 2004, 2006). Herein, the above hy-
brid stress-strain formulation is generalized to the finite rotation piezoelectric EG
four-node solid-shell element based on the higher-order 9-parameter shell model.
The proposed piezoelectric EG solid-shell element formulation has computational
advantages compared to conventional piezoelectric isoparametric solid-shell ele-
ment formulations since it reduces the computational cost of numerical integration
in the evaluation of the tangent stiffness matrix. This is due to the facts that, first,
all element matrices require only direct substitutions, i.e., no expensive numerical
matrix inversion is needed. The latter is unusual for the hybrid/mixed isopara-
metric shell element formulations [e.g. Klinkel and Wagner (2006)]. Second, we
use the efficient 3D analytical integration that permits to employ coarse meshes. Fi-
nally, the hybrid stress-strain piezoelectric EG solid-shell element developed allows
one to utilize load increments, which are much larger than possible with existing
piezoelectric isoparametric solid-shell elements [e.g. Tan and Vu-Quoc (2005)].
Therefore, large-scale computations for thick piezoelectric laminated shell struc-
tures undergoing finite rotations can be carried out efficiently with the help of the
proposed higher-order hybrid stress-strain EG four-node solid-shell element.

2 Kinematic description of shell

Consider a shell built up in the general case by the arbitrary superposition across
the wall thickness of N layers of the uniform thickness hn = zn− zn−1 including the
`th piezoelectric layer (PZT) as shown in Figure 1. The nth layer may be defined
as a 3D body of volume Vn bounded by two surfaces Ωn−1 and Ωn, located at the
distances |zn−1| and |zn| measured with respect to the reference surface Ω, and the
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edge boundary surface Σn. It is supposed that the reference surface Ω is continuous,
sufficiently smooth and without any singularities [see discussion on this subject
in Kulikov and Plotnikova (2007)]. Let the reference surface be referred to the
orthogonal curvilinear coordinates θ1 and θ2, which are referred to the lines of
principal curvatures of its surface, whereas the coordinate θ3 is oriented along the
unit vector e3 normal to the reference surface; e1 and e2 are the unit vectors tangent
to the lines of principal curvatures. As I-surfaces, we choose bottom Ω−, middle
ΩM and top Ω+ surfaces of the shell. Here and in the following developments, the
index n identifies the belonging of any quantity to the nth layer and runs from 1 to
N; the index of the piezoelectric layer ` = i1, i2, . . . , iL, where L is the number of
piezoelectric layers bonded to the outer surfaces of the host structure or embedded
into its body; Greek indices α , β range from 1 to 2; indices i, j,m range from 1 to
3; the superscripts I,J identify the belonging of any quantity to the I-surfaces and
take values – , M and +.

 
Figure 1: Laminated shell with embedded piezoelectric layer (PZT)

The displacement field is approximated in the thickness direction according to [Ku-
likov (2001)]:

u = ∑
I

LIuI, (1)

where uI (θ1, θ2) are the displacement vectors of I-surfaces; LI (θ3) are the La-
grange polynomials of the second order defined as

L− =
2
h2

(
zM−θ3

)(
z+−θ3

)
,

LM =
4
h2

(
θ3− z−

)(
z+−θ3

)
,
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L+ =
2
h2

(
θ3− z−

)(
θ3− zM) , (2)

where h = z+− z− is the thickness of the shell; z− = z0, zM = (z0 + zN)/2 and
z+ = zN are the transverse coordinates of I-surfaces of the shell.

Next, we represent the displacement vectors of I-surfaces as follows:

uI = ∑
i

uI
i ei, (3)

where uI
i (θ1, θ2) are the components of displacement vectors of I-surfaces in the

orthonormal reference surface basis ei.

Therefore, the strain-displacement relationships of the 9-parameter shell model
[Kulikov and Plotnikova (2008a)] can be written as

εi j = ∑
I

LI
ε

I
i j. (4)

Here, ε I
i j (θ1, θ2) are the components of the Green-Lagrange strain tensor of I-

surfaces given by

2ε
I
αβ

= cI
αλ

I
αβ

+ cI
β

λ
I
βα

+∑
i

λ
I
iαλ

I
iβ ,

2ε
I
α3 = cI

αβ
I
α +λ

I
3α +∑

i
β

I
i λ

I
iα ,

2ε
I
33 = 2β

I
3 +∑

i
β

I
i β

I
i , (5)

where

λ
I
αα =

1
Aα

uI
α,α +Bβ uI

β
+ kαuI

3 for β 6= α,

λ
I
βα

=
1

Aα

uI
β ,α −Bβ uI

α for β 6= α,

λ
I
3α =

1
Aα

uI
3,α − kαuI

α , β
−
i =

1
h

(
−3u−i +4uM

i −u+
i

)
,

β
M
i =

1
h

(
−u−i +u+

i

)
, β

+
i =

1
h

(
u−i −4uM

i +3u+
i

)
,

cI
α = 1+ kαzI, Bα =

1
AαAβ

Aβ ,α for β 6= α, (6)
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where Aα and kα are the coefficients of the first fundamental form and principal
curvatures of the reference surface; cI

α are the components of the shifter tensor
at I-surfaces of the shell; the abbreviation (),α implies the partial derivatives with
respect to coordinates θα . It is noteworthy that strain-displacement relationships (4)
and (5) exactly represent arbitrarily large rigid-body shell motions in a convected
curvilinear coordinate system [Kulikov and Plotnikova (2008a)].

3 Description of electric field

The electric potential inside the `th piezoelectric layer is assumed to be linear in
the thickness direction

ϕ` = N−` ϕ
−
` +N+

` ϕ
+
` , (7)

N−` =
1
h`

(z`−θ3) , N+
` =

1
h`

(θ3− z`−1) , (8)

where ϕ
−
` (θ1, θ2) and ϕ

+
` (θ1, θ2) are the values of the electric potential on the

bottom and top surfaces of the `th layer; h` = z` − z`−1 is the thickness of the
piezoelectric layer.

The relation between the electric field E(`) and the electric potential ϕ` is given by

E(`) =−∇ϕ`, (9)

that is,

E(`)
α = N−` E(`)−

α +N+
` E(`)+

α , E(`)
3 =− 1

h`

(
ϕ

+
` −ϕ

−
`

)
,

E(`)−
α =− 1

Aα

ϕ
−
`,α , E(`)+

α =− 1
Aα

ϕ
+
`,α , (10)

where E(`)−
α and E(`)+

α are the tangential components of the electric field of outer
surfaces of the `th layer. It is seen that the normal component of the electric field
E(`)

3 is constant through the thickness of the piezoelectric layer. A short discussion
on that is presented in Introduction.

4 Constitutive equations of piezoelectricity

The constitutive equations of linear piezoelectricity for the monoclinic piezoelectric
layer with reflectional symmetry in surfaces parallel to the reference surface can be
expressed as

εεε = A(`)
σσσ

(`) +
(

d(`)
)T

E(`), (11)
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D(`) = d(`)
σσσ

(`) +ςςς
(`)E(`), (12)

where εεε is the strain vector; σσσ (`) is the stress vector; E(`) is the electric field vector;
D(`) is the electric displacement vector; A(`) is the elastic compliance matrix; d(`)

is the piezoelectric matrix; ςςς (`) is the dielectric matrix defined by

εεε = [ε11 ε22 ε33 2ε23 2ε13 2ε12]
T ,

σσσ
(`) =

[
σ

(`)
11 σ

(`)
22 σ

(`)
33 σ

(`)
23 σ

(`)
13 σ

(`)
12

] T
,

E(`) =
[
E(`)

1 E(`)
2 E(`)

3

] T
, D(`) =

[
D(`)

1 D(`)
2 D(`)

3

] T
,

A(`) =



A(`)
11 A(`)

12 A(`)
13 0 0 A(`)

16

A(`)
22 A(`)

23 0 0 A(`)
26

A(`)
33 0 0 A(`)

36

A(`)
44 A(`)

45 0
A(`)

55 0
sym. A(`)

66


,

d(`) =

 0 0 0 d(`)
14 d(`)

15 0
0 0 0 d(`)

24 d(`)
25 0

d(`)
31 d(`)

32 d(`)
33 0 0 d(`)

36

 ,

ςςς
(`) =

 ς
(`)
11 ς

(`)
12 0

ς
(`)
22 0

sym. ς
(`)
33

 . (13)

As we remember, the index of the piezoelectric layer ` = i1, i2, . . . , iL. Solving con-
stitutive equations (11) for stresses and substituting stresses in constitutive equa-
tions (12), one obtains

σσσ
(`) = C(`)

εεε−
(

e(`)
)T

E(`), (14)

D(`) = e(`)
εεε+ ∈(`) E(`), (15)

where C(`) is the material stiffness matrix; e(`) and ∈(`) are the piezoelectric and
dielectric matrices expressed as

C(`) =
(

A(`)
)−1

, e(`) = d(`)C(`),

εεε
(`) = ςςς

(`)−d(`)C(`)
(

d(`)
)T

. (16)
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5 Hu-Washizu variational equation for 9-parameter piezoelectric shell for-
mulation

A higher-order 9-parameter piezoelectric ESL shell theory developed is based on
the approximations of displacements (1), displacement-dependent strains (4), elec-
tric potential (7) and electric field (10) in the thickness direction. Additionally, to
circumvent shear and membrane locking, we introduce the similar approximation
for the assumed displacement-independent strains ε̂i j, that is,

ε̂i j = ∑
I

LI
ε̂

I
i j, (17)

where ε̂ I
i j (θ1, θ2) are the displacement-independent strains of I-surfaces.

Substituting approximations (1), (4), (7), (10) and (17) into the 3D Hu-Washizu
functional [Kulikov and Plotnikova (2008b)] and introducing stress-resultants

HI
i j = ∑

n

zn∫
zn−1

σ
(n)
i j LIdθ3, (18)

and invoking the stationarity of this functional with respect to independent vari-
ables, one derives the following mixed variational equation for the 9-parameter
piezoelectric EG solid-shell element formulation:

1∫
−1

1∫
−1

{
∑

I

[
δ

(
ε̂εε

I
)T
(

HI−∑
J

DIJ
uuε̂εε

J +D(`)I
uϕ Ẽ(`)

)

+δ
(
HI)T

(
ε̂εε

I−εεε
I
)
−δ

(
εεε

I)T HI
]

+δ

(
Ẽ(`)

)T
[
∑

I

(
D(`)I

uϕ

)T
ε̂εε

I +D(`)
ϕϕ Ẽ(`)

]
+δvTp+δχχχ

T
` q`

}
A1A2cM

1 cM
2 `1`2dξ1dξ2 +δWel = 0 . (19)

Here, convenient matrix notations are introduced

v =
[
u−1 u−2 u−3 uM

1 uM
2 uM

3 u+
1 u+

2 u+
3

] T
,

εεε
I =
[
ε

I
11 ε

I
22 ε

I
33 2ε

I
12 2ε

I
13 2ε

I
23
] T

,

ε̂εε
I =
[
ε̂

I
11 ε̂

I
22 ε̂

I
33 2ε̂

I
12 2ε̂

I
13 2ε̂

I
23
] T

,
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HI =
[
HI

11 HI
22 HI

33 HI
12 HI

13 HI
23
] T

,

ε̃εε
(`) =

[
E(`)−

1 E(`)+
1 E(`)−

2 E(`)+
2 E(`)

3

] T
,

p =
[
−p−1 − p−2 − p−3 0 0 0 p+

1 p+
2 p+

3

] T
,

χχχ` =
[
ϕ
−
` ϕ

+
`

] T
, q` =

[
q−` q+

`

] T
, (20)

where DIJ
uu, D(`)I

uϕ and D(`)
ϕϕ are the mechanical, piezoelectric and dielectric consti-

tutive matrices presented in Appendix A; ξα = (θα −dα)/`α are the normalized
curvilinear elemental coordinates depicted in Figure 2; dα are the coordinates of
the center of the element; 2`α are the lengths of the element in θα -directions; cM

α

are the components of the shifter tensor at the midsurface, see Eq. 6; p−i and p+
i are

the tractions applied to the bottom and top surfaces of the shell; q−` and q+
` are the

prescribed surface charge densities of the `th piezoelectric layer; Wel is the work
done by external loads acting on the edge boundary surface Σel.

Remark 1. For the simplicity, we limit our discussion to the case of one piezoelec-
tric layer, i.e., L = 1 and ` = i1 ∈ {1, 2, . . . , N} since only a sign of the summation
needs to be involved in Eq. 19 to generalize. Besides, it is assumed that metrics of
all I-surfaces are identical and equal to the metric of the midsurface.

 
Figure 2: Piezoelectric EG solid-shell element based on the 9-parameter ESL shell
model in the case of choosing the midsurface as a reference surface, where Pr is the
element node (r = 1, 2, . . . , NN)
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6 Modified assumed natural strain method

The finite element formulation is based on the simple and efficient approximation
of shells via piezoelectric EG four-node solid-shell elements

v = ∑
r

Nrvr, (21)

vr =
[
u−1r u−2r u−3r uM

1r uM
2r uM

3r u+
1r u+

2r u+
3r

] T
,

Nr =
1
4

(1+n1rξ1)(1+n2rξ2) ,

n1r =

{
1 for r = 1, 4
−1 for r = 2, 3

, n2r =

{
1 for r = 1, 2
−1 for r = 3, 4

,

χχχ` = ∑
r

Nrχχχ`r, χχχ`r =
[
ϕ
−
`r ϕ

+
`r

] T
, (22)

where Nr (ξ1, ξ2) are the bilinear shape functions of the element; vr and χχχ`r are the
displacement and electric potential vectors of the element nodes; the index r runs
from 1 to 4 and denotes the number of nodes.

To implement the analytical integration throughout the element, we employ the
assumed interpolations of natural strains and electric field vectors [Kulikov and
Plotnikova (2006, 2007, 2011)]

εεε
I = ∑

r
Nrεεε

I
r, εεε

I
r = εεε

I (Pr) , (23)

Ẽ(`) = ∑
r

NrẼ
(`)
r , Ẽ(`)

r = Ẽ(`) (Pr) , (24)

where εεε I
r are the strain vectors of I-surfaces at element nodes; Ẽ(`)

r are the electric
field vectors at element nodes.

Remark 2. The main idea of such approach can be traced back to the ANS method
[see, e.g. Bathe and Dvorkin (1986), Park and Stanley (1986)]. In contrast with
above formulations, we treat the term “ANS method” in a broader sense. In our
piezoelectric EG solid-shell element formulation, all components of the Green-
Lagrange strain tensor are assumed to vary bilinearly inside the element. This
implies that instead of expected non-linear interpolation the more suitable bilinear
ANS interpolation is utilized. It should be noticed that we advocate the use of the
modified ANS method (23) for all components of the Green-Lagrange strain tensor
to implement the efficient analytical integration throughout the element.
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Introducing further the displacement and electric potential vectors of the shell ele-
ment

U =
[
vT

1 vT
2 vT

3 vT
4
] T

, (25)

ΦΦΦ` =
[
χχχ

T
`1 χχχ

T
`2 χχχ

T
`3 χχχ

T
`4
] T

, (26)

one derives the following expressions for nodal strain and electric field vectors:

εεε
I
r = BI

rU +AI
r (U)U, (27)

Ẽ(`)
r =−B(`)

r ΦΦΦ`, (28)

where BI
r and AI

r (U) are the constant inside the element nodal matrices of order 6×
36 corresponding to the linear and non-linear strain-displacement transformations;
B(`)

r are the constant inside the element nodal matrices of order 5×8 corresponding
to the electric field transformation (10). The explicit presentations of nodal matrices
BI

r, AI
r (U) and B(`)

r can be found following a technique developed by Kulikov and
Plotnikova (2011), in particular,

BI
r =



cI
1r

(
ΛΛΛI

11r

)T

cI
2r

(
ΛΛΛI

22r

)T(
ΛΛΛI

33r

)T

cI
1r

(
ΛΛΛI

12r

)T + cI
2r

(
ΛΛΛI

21r

)T

cI
1r

(
ΛΛΛI

13r

)T +
(
ΛΛΛI

31r

)T

cI
2r

(
ΛΛΛI

23r

)T +
(
ΛΛΛI

32r

)T


, AI

r (U) =



UTΠΠΠI
11r

UTΠΠΠI
22r

UTΠΠΠI
33r

UTΠΠΠI
12r

UTΠΠΠI
13r

UTΠΠΠI
23r

 ,

ΠΠΠ
I
i jr =

1
2 ∑

m
ΛΛΛ

I
mir
(
ΛΛΛ

I
m jr
)T

for i = j,

ΠΠΠ
I
i jr =

1
2 ∑

m

[
ΛΛΛ

I
mir
(
ΛΛΛ

I
m jr
)T +ΛΛΛ

I
m jr
(
ΛΛΛ

I
mir
)T
]

for i < j, (29)

where cI
αr = 1+kαrzI are the nodal values of the shifter tensor at I-surfaces; ΛΛΛI

i jr are
the constant inside the element column matrices of order 36×1 given in Appendix
B.

From the computational point of view it is convenient to rewrite the ANS interpo-
lations (23) and (24) as follows:

εεε
I = ∑

r1,r2

(ξ1)
r1 (ξ2)

r2 εεε
Ir1r2 , εεε

Ir1r2 = BIr1r2U+AIr1r2 (U)U, (30)
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Ẽ(`) = ∑
r1,r2

(ξ1)
r1 (ξ2)

r2 εεε
(`)r1r2 , εεε

(`)r1r2 =−B(`)r1r2ΦΦΦ`. (31)

Here and in the following developments the indices r1, r2 take the values 0 and 1,
and the additional notations are introduced

BI00 =
1
4
(
BI

1 +BI
2 +BI

3 +BI
4
)

,

BI01 =
1
4
(
BI

1 +BI
2−BI

3−BI
4
)

,

BI10 =
1
4
(
BI

1−BI
2−BI

3 +BI
4
)

,

BI11 =
1
4
(
BI

1−BI
2 +BI

3−BI
4
)

.

Matrices B(`)r1r2 and AIr1r2(U) are written in a similar way by using nodal matrices
B(`)

r and AI
r (U).

7 Hybrid stress-strain method

To improve the computational efficiency of low-order EG solid-shell elements, a
hybrid method can be applied. It is well established now that “the hybrid method
in structural mechanics is defined at the one which is formulated by multivariable
variational functional, yet the resulting matrix equations consist of only the nodal
values of displacements as unknown” [Pian (1995)].

Thus, to avoid shear and membrane locking and have no spurious zero energy
modes, the assumed displacement-independent strains and stress resultants fields
throughout the element are invoked

ε̂εε
I = ∑

r1+r2<2
(ξ1)

r1 (ξ2)
r2 Qr1 r2ε̂εε

Ir1 r2 ,

ε̂εε
I00 =

[
ε̂

I00
11 ε̂

I00
22 ε̂

I00
33 2ε̂

I00
12 2ε̂

I00
13 2ε̂

I00
23
]T

,

ε̂εε
I01 =

[
ε̂

I01
11 ε̂

I01
33 2ε̂

I01
13
]T

, ε̂εε
I10 =

[
ε̂

I10
22 ε̂

I10
33 2ε̂

I10
23
]T

(32)

and

HI = ∑
r1+r2<2

(ξ1)
r1 (ξ2)

r2 Qr1 r2HIr1 r2 ,

HI00 =
[
HI00

11 HI00
22 HI00

33 HI00
12 HI00

13 HI00
23
] T

,
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HI01 =
[
HI01

11 HI01
33 HI01

13
]T

,

HI10 =
[
HI10

22 HI10
33 HI10

23
]T

, (33)

where Qr1r2 are the projective matrices defined as

Q00 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

Q01 =



1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

 , Q10 =



0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 1

 . (34)

This approach was developed for the purely mechanical geometrically non-linear 6-
and 7- parameter EG solid-shell element formulations by Kulikov and Plotnikova
(2006, 2007, 2008a, 2009).

Substituting interpolations (21), (22), (30)-(33) into the Hu-Washizu variational
equation (19) and integrating analytically throughout the element, one obtains the
elemental equilibrium equations of the developed piezoelectric finite element for-
mulation

ε̂εε
Ir1r2 = (Qr1 r2)T [BIr1r2 +AIr1r2 (U)

]
U forr1 + r2 < 2, (35)

HIr1r2 = ∑
J

(Qr1r2)T DIJ
uuQr1r2ε̂εε

Jr1r2

+ (Qr1r2)T D(`)I
uϕ B(`)r1r2ΦΦΦ` forr1 + r2 < 2, (36)

∑
r1+r2<2

1
3r1+r2 ∑

I

[
BIr1r2 +2AIr1r2 (U)

]T Qr1r2HIr1r2 = Fp , (37)

∑
r1+r2<2

1
3r1+r2 ∑

I

(
B(`)r1r2

)T(
D(`)I

uϕ

)T
Qr1r2ε̂εε

Ir1r2

−∑
r1,r2

1
3r1+r2

(
B(`)r1r2

)T
D(`)

ϕϕB(`)r1r2ΦΦΦ` = F(`)
q , (38)
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where Fp is the element-wise surface traction vector; F(`)
q is the element-wise elec-

tric force vector of the `th piezoelectric layer.

Remark 3. In order to carry out the analytical integration, we have supposed that
a product A1A2cM

1 cM
2 in Eq. 19 is constant throughout the element and is evaluated

at the element center.

For the actuator-embedded shell analysis when only a prescribed input voltage is
applied, the non-linear finite element equations are simplified because Eq. 38 can
be omitted. Employing further the Newton-Raphson iteration process

U[k+1] = U[k] +∆U[k], ε̂εε
Ir1r2[k+1] = ε̂εε

Ir1r2[k] +∆ε̂εε
Ir1r2[k],

HIr1r2[k+1] = HIr1r2[k] +∆HIr1r2[k] (k = 0, 1, . . .) (39)

and eliminating displacement-independent strains ∆ε̂εε
Ir1r2[k] and stress resultants

∆HIr1r2[k] from linearized equilibrium equations derived, we arrive at the governing
finite element equations

KT∆U[k] = ∆F[k], (40)

where KT = KD + KH is the tangent stiffness matrix; ∆F[k] is the right hand side
vector given by

KD = ∑
r1+r2<2

1
3r1+r2 ∑

I,J

(
LIr1r2[k]

)T
DIJr1r2

uu LJr1r2[k], (41)

KH = 2 ∑
r1+r2<2

1
3r1+r2 ∑

I
RIr1r2

(
Qr1r2HIr1r2[k]

)
, (42)

∆F[k] = Fp− ∑
r1+r2<2

1
3r1+r2

{
∑
I,J

(
LIr1r2[k]

)T
DIJr1r2

uu

[
LJr1r2[k]

−AJr1r2
(

U[k]
)]

U [k] +∑
I

(
LIr1r2[k]

)T
Qr1r2ΞΞΞ

Ir1r2
`

}
, (43)

where

LIr1r2[k] = BIr1r2 +2AIr1r2
(

U[k]
)

,

ΞΞΞ
Ir1r2
` = (Qr1r2)T D(`)I

uϕ B(`)r1r2ΦΦΦ`,

D̄IJr1r2
uu = (Qr1r2)T DIJ

uuQr1r2 , DIJr1r2
uu = Qr1r2D̄IJr1r2

uu (Qr1r2)T ,



Finite Rotation Piezoelectric Exact Geometry Solid-Shell Element 247

RIr1r2
(
HI)= ∑

i≤ j
HI

i jΠΠΠ
Ir1r2
i j for r1 + r2 < 2,

ΠΠΠ
I00
i j =

1
4
(
ΠΠΠ

I
i j1 +ΠΠΠ

I
i j2 +ΠΠΠ

I
i j3 +ΠΠΠ

I
i j4
)

,

ΠΠΠ
I01
i j =

1
4
(
ΠΠΠ

I
i j1 +ΠΠΠ

I
i j2−ΠΠΠ

I
i j3−ΠΠΠ

I
i j4
)

,

ΠΠΠ
I10
i j =

1
4
(
ΠΠΠ

I
i j1−ΠΠΠ

I
i j2−ΠΠΠ

I
i j3 +ΠΠΠ

I
i j4
)

. (44)

To find the tangent stiffness matrix, a useful matrix transformation[
AIr1r2 (U)

]T HI = RIr1r2
(
HI) U for r1 + r2 < 2 (45)

should be invoked.

Remark 4. As expected, the tangent stiffness matrix is symmetric. This is due to
the fact that both matrices KD and KH are symmetric. The proof of symmetry of
the latter matrix follows from Eqs. 29 and 44.

For computing the mode stress resultant vectors from Eq. 42 at the kth iteration
step, we employ the advanced finite element technique, that is

HIr1r2[k] = ∑
J

D̄IJr1r2ε̂εε
Jr1r2[k] +ΞΞΞ

Ir1r2
` for r1 + r2 < 2, (46)

ε̂εε
Ir1r2[k] = (Qr1r2)T [BIr1r2 U[k] +2AIr1r2

(
U[k−1]

)
∆U[k−1]

+AIr1r2
(

U[k−1]
)

U [k−1]
]

for r1 + r2 < 2, (47)

where ∆U[k−1] = U[k]−U[k−1]. Note that Eq. 47 holds for k ≥ 1, whereas at the
beginning of the iteration process one should set

∆U[0] = 0 and ÊIr1r2[0] = 0. (48)

The proposed approach allows the use of load steps, which are much larger than
possible with standard EG displacement-based solid-shell element formulations.
This is because of the fact that an additional load vector due to compatibility mis-
match (47) at the kth iteration is present in linearized equilibrium equations (40)
and disappears only at the end of the iteration process.

The equilibrium equations (40) for each element are assembled by the usual tech-
nique to form the global equilibrium equations. These equations have to be per-
formed until the required accuracy of the solution can be obtained. A displacement-
based convergence criterion employed herein can be described as∥∥∥U [k+1]

G −U [k]
G

∥∥∥< ε

∥∥∥U [k]
G

∥∥∥ , (49)
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where ‖•‖ stands for the Euclidean norm; UG is the global displacement vector; ε

is the prescribed tolerance.

8 Benchmark problems

The performance of the proposed non-linear piezoelectric EG four-node solid-shell
element EG9P4 is evaluated with several discriminating problems extracted from
the literature and authors’ example as well. For this purpose the following notations
are introduced: NStep is the number of load steps; NIter is the total number of
Newton iterations.

8.1 Slit ring plate under line load

This example was presented by Basar and Ding (1990) to test the non-linear finite
element formulations for thin-walled shell structures and further has been exten-
sively used by many investigators. The ring plate is subjected to a line load P
applied at its free edge of the slit, while the other edge is fully clamped (Figure 3).

 
Figure 3: Slit ring plate under the line load: (a) geometry and (b) deformed config-
uration (modeled by 6×30 mesh)

The displacements at points A and B of the plate, presented in Table 1 and Figure 4,
have been found by employing uniform meshes of EG9P4 elements. A comparison
with the purely mechanical 6-parameter EG four-node solid-shell element EG6P4
[Kulikov and Plotnikova (2006)] and isoparametric four-node solid-shell element
[Sze, Chan and Pian (2002)] is also given. As can be seen, coarse mesh configura-
tions with the EG9P4 element can be used because the 2× 5 mesh already yields
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Figure 4: Midplane displacements of the slit ring plate (modeled by 6×30 mesh)

96 % of the reference solution provided by Sze, Chan and Pian (2002). Note also
that in this case only 8 Newton iterations are needed to find a converged solution
with the chosen criterion and tolerance.

8.2 Cantilever laminated plate with segmented actuators

Consider a cantilever laminated plate with segmented PZT G1195 actuators at-
tached to its bottom and top surfaces [Crawley and Lazarus (1991)] as shown in
Figure 5. The plate core is composed of six AS4/3501 graphite/epoxy layers with a
stacking sequence [0/45/-45]s. The geometrical data of the problem are taken to be
a = 292 mm, b = 152 mm, hC = 0.83 mm and hPZT = 0.25 mm. The non-vanishing
material parameters for graphite/epoxy are E1 = 143 GPa, E2 = E3 = 9.7 GPa,
G12 = G13 = 6 GPa, G23 = 2 GPa, ν12 = ν13 = ν23 = 0.3 and for PZT G1195
are E = 63 GPa, G = 24.2 GPa, ν = 0.3, d31 = d32 = 0.254 nm/V, d15 = d24 =
0.584 nm/V, d33 = 0.374 nm/V.

The piezoceramic layers are polarized in opposite directions parallel to the thick-
ness direction and subjected to opposite electric potentials −ϕ̂ and ϕ̂ to the outer
patches surfaces to induce the bending actuation. The electrodes on the interfaces
are grounded. A plate is modeled by the non-uniform 16× 10 mesh of EG9P4
elements depicted in Figure 5.
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8.2.1 Geometrically linear plate response

Figure 6 displays the distribution of dimensionless midplane displacements w1 =
uM

3 (B)/b and w2 =
(
uM

3 (C)−uM
3 (A)

)
/b along the x-axis. A comparison with the

isoparametric piezoelectric four-node solid-shell element formulation [Tan and Vu-
Quoc (2005)] and experimental study [Crawley and Lazarus (1991)] is also given.
The results are presented for a plate loaded statically by a constant voltage of 157.6
V. It is seen that both four-node solid-shell elements perform excellently.

 
Figure 5: Cantilever plate with segmented actuators: geometry and mesh configu-
ration

8.2.2 Geometrically non-linear plate response

For the finite deformation analysis, we apply the electric potential ϕ̂ = 1576V. Fig-
ure 7 shows a voltage-displacement curve compared with a finite element solution
[Tan and Vu-Quoc (2005)]. One can observe that again all results agree closely
but the EG9P4 element is less expensive owing to the economical derivation of its
stiffness matrix. Moreover, the EG9P4 element requires only one load step to find
a converged solution of the problem.
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 Figure 6: Dimensionless displacements of the cantilever plate subjected to a con-
stant voltage ϕ̂ = 157.6V: (a) w1 and (b) w2

8.3 Spiral actuator

Consider a spiral actuator made of the PZT-5H ceramic with the following proper-
ties: c11 = c22 = 127.205GPa, c12 = 80.212GPa, c13 = c23 = 84.670 GPa, c33 =
117.436GPa, c44 = c55 = 22.988GPa, c66 = 23.474GPa, e31 = e32 =−6.62C/m2,
e33 = 23.24C/m2, e24 = e15 = 17.03 C/m2. The spiral, shown in Figure 8, consists
of four turns and has external radii rmin = 1.875mm and rmax = 15.2mm, an ef-
fective length L = 215mm, a thickness h = 0.2mm and a width b = 3.75mm. The
geometrical parameters of the spiral shell can be represented as

A1 = 1, A2 =
√

a2 + r2, k1 = 0, k2 =
1

A3
2

(
2a2 + r2) ,

r = rmin +aθ2, θ2 ∈ [0, 8π] , (50)

where r is the polar radius; a is the parameter, which controls the distance between
successive turnings.

8.3.1 Geometrically linear actuator response

A spiral actuator is polarized in the thickness direction and subjected to a constant
voltage ∆ϕ = 100V. The shell is modeled by uniform meshes of EG9P4 elements.
Table 3 lists the results of the convergence study due to mesh refinement consider-
ing the tangential and transverse midsurface displacements at the tip and a compar-
ison with two finite element solutions [Zouari, Ben Zineb and Benjeddou (2009)].
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Figure 7: Cantilever plate: (a) deformed configuration at applied voltage ϕ̂ =
1576V and (b) non-linear voltage-displacement curve

The reference solution is provided by the Abaqus solid element C3D8E with a fine
mesh, that is, two elements across the thickness and 20 elements across the width
but the number of elements across the length is not documented. As can be seen,
the EG9P4 element allows us to utilize coarse meshes because the 1× 16 mesh
yields already a good answer for the tangential displacement. It should be noted
that the 9-parameter shell model overestimates the tangential tip displacement by
40 %. This can be explained by the fact that the layer-wise description with fic-
titious interfaces inside the shell body has to be employed. A comparison with
the degenerated-shell element Q4TSF [Zouari, Ben Zineb and Benjeddou (2009)]
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Figure 8: Spiral actuator: (a) geometry and (b) dependence of midsurface displace-
ments on the circumferential coordinate under electric potential ∆ϕ = 2000V

shows additionally that the d33-effect is of great importance for the analysis of deep
actuators.

8.3.2 Geometrically non-linear actuator response

For the non-linear shell analysis, the actuator is loaded statically by the extremely
high electric potential ∆ϕ = 2000V and modeled by the uniform mesh 1×128 of
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Table 3: Midsurface displacements at points A and C of the pinched three-layer
hyperbolic shell with piezoelectric patches under purely mechanical loading using
uniform meshes of EG9P4 elements and criterion (49) with tolerance of 10−4

Mesh 4×4 8×8 16×16 32×32 64×64
−uy (A) 1.9237 2.3317 2.4190 2.4451 2.4526
uy (C) 1.7993 1.9551 1.9615 1.9628 1.9631

NStep/NIter 1/6 1/5 1/6 1/6 1/6

EG solid-shell elements developed. Figure 8 displays the distribution of tangential
and transverse midsurface displacements in the θ2-direction. It is of interest to
notice that a geometrically linear 9-parameter shell model provides very reliable
results for the most important tangential displacement at the tip. Note that again
the EG9P4 element requires only one load step to find a converged solution.

8.4 Laminated hyperbolic shell with piezoelectric patches

Consider a three-layer cross-ply hyperbolic shell under two pairs of opposite forces.
This problem was studied by Basar, Ding and Schultz (1993) for testing the finite
rotation shell formulations, while we employ a hyperbolic shell example to assess
the possibility of controlling the shape of laminated shells with segmented piezo-
electric patches subjected to arbitrarily large actuation. Such an example is also an
excellent test to verify the proper representation of inextensional bending and the
ability of the element to model large rigid-body motions.

The shell core is composed of three composite layers with ply thicknesses of [h1/h2/h3],
where hn = hC/3, and ply orientations of [90/0/90], that is, fiber directions coincide
with the θ2-direction in outer layers. The shape control of the three-layer hyper-
bolic shell is achieved with the help of eight piezoelectric patches of the thickness
hPZT = 0.01cm attached at inner and outer surfaces and located at the force point as
depicted in Figure 9. The geometrical data of the shell and the material properties of
the composite are taken to be typical in the finite element literature: r = 7.5cm, R =
15cm, L = 20cm, hC = 0.04cm and E1 = 4×107 N / cm2, E2 = E3 = 106 N / cm2,
G12 = G13 = G23 = 6× 105 N / cm2, ν12 = ν13 = ν23 = 0.25. The non-vanishing
material parameters of piezoceramic layers are E = 20GPa, G = 7.7GPa, ν = 0.3,
d31 = d32 = 2nm / V. The piezoceramic patches are polarized in opposite direc-
tions parallel to the thickness direction and subjected to a constant voltage ϕ̂ to
induce the bending actuation. As usual the electrodes on interfaces are grounded.

Due to symmetry of the problem, only one octant of the shell is discretized with the
16× 16 mesh of EG9P4 elements. Figure 10 displays undeformed and deformed
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Figure 9: One octant of the three-layer hyperbolic shell with segmented actuators:
geometry and mesh configuration

configurations of the shell under mechanical loading F = 200N and electrical load-
ing ϕ̂ = 1000V and 1960V as well. It is seen that the electric potential of 1960V
applied to outer patches surfaces returns a shell to its initial configuration. To in-
vestigate a problem of the shape control more carefully, we represent in Figure
11 the midsurface displacements at points A, B, C and D, where ux and uy denote
displacements in x- and y-directions. Additionally, Table 3 lists the results of the
convergence study due to mesh refinement.

9 Conclusions

A new finite rotation piezoelectric laminated solid-shell model has been developed.
This model is based on the objective strain-displacement relationships of the 9-
parameter ESL shell theory, which are invariant under arbitrarily large rigid-body
shell motions. The simple and efficient hybrid stress-strain piezoelectric EG four-
node solid-shell element is based on the original approach in which displacement
vectors of outer and middle surfaces are introduced but resolved, in contrast with
the isoparametric solid-shell element formulation, in the reference surface frame.
This model is robust because permits one, first, to employ much larger load steps
than existing piezoelectric shell element models and, second, to utilize the com-
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Figure 10: Three-layer hyperbolic shell at applied loads: (a) F = 0 and ϕ̂ = 0,
(b) F = 200N and ϕ̂ = 0, (c) F = 200N and ϕ̂ = 1000V, and (d) F = 200N and
ϕ̂ = 1960V
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Figure 11: Three-layer hyperbolic shell. Midsurface displacements at points A, B,
C and D versus: (a) force F for ϕ̂ = 0 and (b) voltage ϕ̂ for F = 200N

plete 3D constitutive equations. It is remarkable that the tangent stiffness matrix
requires only direct substitutions and is evaluated by employing the 3D analytical
integration. It is necessary to note also that the EG9P4 element allows the use of
very coarse meshes even in shell problems with extremely large displacements and
rotations.
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Appendix A

The mechanical, piezoelectric and dielectric constitutive matrices introduced in
section 5 are given by

DIJ
uu =



DIJ
11 DIJ

12 DIJ
13 DIJ

16 0 0
DIJ

22 DIJ
23 DIJ

26 0 0
DIJ

33 DIJ
36 0 0

DIJ
66 0 0

DIJ
55 DIJ

54
sym. DIJ

44

 ,
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D(`)I
uϕ =



0 0 0 0 η I
`e(`)

31

0 0 0 0 η I
`e(`)

32

0 0 0 0 η I
`e(`)

33

0 0 0 0 η I
`e(`)

36

η0I
` e(`)

15 η1I
` e(`)

15 η0I
` e(`)

25 η1I
` e(`)

25 0
η0I

` e(`)
14 η1I

` e(`)
14 η0I

` e(`)
24 η1I

` e(`)
24 0


,

D(`)
ϕϕ =


κ00

` ∈
(`)
11 κ01

` ∈
(`)
11 κ00

` ∈
(`)
12 κ01

` ∈
(`)
12 0

κ11
` ∈

(`)
11 κ01

` ∈
(`)
12 κ11

` ∈
(`)
12 0

κ00
` ∈

(`)
22 κ01

` ∈
(`)
22 0

κ11
` ∈

(`)
22 0

sym. h` ∈
(`)
33

 .

Here,

DIJ
ab = ∑

n
µ

IJ
n C(n)

ab , µ
IJ
n =

zn∫
zn−1

LILJdθ3,

η
I
` =

z`∫
z`−1

LIdθ3, η
pI
` =

z`∫
z`−1

(
N−`
)1−p (N+

`

) p LIdθ3,

κ
pq
` =

z`∫
z`−1

(
N−`
)2−p−q (N+

`

) p+q dθ3,

where the indices used take the following values: a, b = 1, 2, . . . , 6 and p, q = 0, 1.

Appendix B

The column matrices ΛΛΛ
I
i jr of order 36× 1 introduced in section 6 are evaluated as

follows:(
ΛΛΛ

I
ααr
)

α+3K+9(s−1),1 = dαrs,(
ΛΛΛ

I
ααr
)

β+3K+9(s−1),1 = δrsBβ s for β 6= α,(
ΛΛΛ

I
ααr
)

3+3K+9(s−1),1 = δrskαs,(
ΛΛΛ

I
βαr

)
β+3K+9(s−1),1

= dαrs,
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ΛΛΛ

I
βαr

)
α+3K+9(s−1),1

=−δrsBβ s for β 6= α,(
ΛΛΛ

I
3αr
)

3+3K+9(s−1),1 = dαrs,(
ΛΛΛ

I
3αr
)

α+3K+9(s−1),1 =−δrskαs,(
ΛΛΛ

I
i3r
)

i+9(s−1),1 = δrs (2K−3)/h,(
ΛΛΛ

I
i3r
)

3+i+9(s−1),1 = 4δrs (1−K)/h,(
ΛΛΛ

I
i3r
)

6+i+9(s−1),1 = δrs (2K−1)/h,

dαrs =
1

4`αAαr
nαs
(
1+nβ rnβ s

)
for β 6= α,

where Aαr, kαr and Bαr are the nodal values of the geometrical parameters of the
reference surface; δrs is the Kronecker delta; K = 0, 1 and 2 for I = −, M and +,
respectively; parameters nαs are defined by Eq. 21 and, as we remember, the indices
r, s run from 1 to 4. The remaining components of column matrices not written out
explicitly are zero.
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