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Transient Analysis of Elastic Wave Propagation in
Multilayered Structures

Yi-Hsien Lin1 and Chien-Ching Ma1,2

Abstract: In this article, explicit transient solutions for one-dimensional wave
propagation behavior in multi-layered structures are presented. One of the objec-
tives of this study is to develop an effective analytical method for constructing solu-
tions in multilayered media. Numerical calculations are performed by three meth-
ods: the generalized ray method, numerical Laplace inversion method (Durbin’s
formula), and finite element method (FEM). The analytical result of the generalized
ray solution for multilayered structures is composed of a matrix-form Bromwich
expansion in the transform domain. Every term represents a group of waves, which
are transmitted or reflected through the interface. The matrix representation of the
solution can be used to calculate the transient response, without tracing the ray
path manually. Numerical inversion of the Laplace transform by Durbin’s formula
is also used to construct transient responses. This numerical Laplace inversion
technique has the advantage of calculating long-time transient responses for com-
plicated multilayered structures. FEM results agree well with calculations obtained
by the generalized ray method and numerical Laplace inversion.

Keywords: Multilayered structure; Transient wave; Laplace transform; General-
ized ray; Durbin; FEM

1 Introduction

Wave propagation in multilayered media has long been an interesting subject due
to its significance in a large number of applications in aerospace, electronic engi-
neering, mechanical engineering, oceanography, and earthquake engineering. For
example, coated-layer materials are very important in electronic engineering, where
the prevention of delamination is desirable. Many studies in earthquake engineer-
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ing focus on calculating the response of a multilayered medium subject to a sudden
disturbance, located either on the surface or inside the medium.

The transient response induced by a dynamic load applied to the surface of a uni-
form half space was studied by Lamb (1904) using integral transform technique
followed by the analytical evaluation of the inversion integrals. The theory and
analysis of elastic waves in a stratified medium were studied in some detail in books
by Ewing et al. (1957) and Brekhovskikh (1980). A transfer matrix formalism
to determine the unknown coefficients from continuity conditions at interfaces of
multilayered media was introduced by Thomson (1950) and improved by Haskell
(1953). In earth geophysics and earthquake engineering, this matrix method was
widely used to determine the dispersion relation of surface waves in a layered half-
space case.

Generalized ray theory was developed in 1939, when Cagniard studied transient
waves in two homogeneous half spaces in contact. In this monumental work, he
showed that by going through a sequence of contour deformations and changes of
integration variables, it is possible to find the inverse Laplace transforms of the ex-
pressions for each ray. A review of this theory is given by Pao and Gajewski (1977).
Pekeris et al. (1965) proposed a transient wave solution for one layer overlaying the
half space. The propagation of transient waves was represented by a series, with
each term indicating a wave propagating through the medium. The series expan-
sion required evaluation of a 4×4 determinant for a plate and a 6×6 determinant
for a two-layered medium. Spencer (1960) used the generalized ray method to
investigate the surface response of a stratified half space to radiation from a local-
ized source. This method related an infinite series of the generalized ray integral,
constructed in the Laplace transform domain, by collecting the source function, re-
flection and transmission coefficients, receiver function, and phase function. Ma
and Huang (1996) derived the transfer relation as a general representation of the
responses between each layer, instead of the displacement-traction vector, to de-
termine the transient wave propagating in a multilayered medium. Theoretical,
numerical, and experimental results for transient responses of a layered medium
subject to in-plane loads were presented by Ma and Lee (2000). The dynamic re-
sponse of a layered medium subject to anti-plane loads was investigated by Ma et
al. (2001).

In addition to the analytical treatment, two different computational approaches
exist: one based on the numerical inversion of Laplace transforms and the other
on the finite element method (FEM). Idesman (2011) applied the two-stage time-
integration procedure to one dimensional and two dimensional wave propagation
and structural dynamics problems. Sladek et al. (2006) used the Laplace trans-
form technique and the meshless local Petrov-Galerkin method to analyze the linear
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transient coupled thermoelastic problem. Narayanan and Beskos (1982) systemat-
ically proposed eight algorithms for the numerical inversion of Laplace transforms
and compared them against each other with respect to their accuracy and compu-
tational efficiency. They found that the most accurate algorithm was the method
proposed by Durbin (1974), although it required more computational time. Mano-
lis and Beskos (1981) compared the algorithms proposed by Durbin (1974) and
Papoulis (1957) for the numerical Laplace inversion. They found that Durbin’s al-
gorithm was more time consuming than Papoulis’ but that the accuracy was very
high, even for long-time calculations. More details regarding Durbin’s method and
its applications to beam dynamic responses are presented by Manolis, and Beskos
(1980).

Finite element methods (FEMs) offer purely numerical computations for analyz-
ing elastodynamic problems. For example, the three-dimensional finite element
method has been used to perform dynamic analysis of laminated plates under im-
pact loads (Lee et al., 1984; Sun and Chen, 1985). In the 1960s, the rapid devel-
opment of finite element methods coupled with large-scale digital computers led
to the domination of such computational methods in studies of the mechanics of
solids and structures, but research into analytical methods (i.e., the transfer matrix,
Fourier transform, Laplace transform) has been revived in recent years due to their
accuracy.

Many analytical solutions for transient wave propagation in multilayered media
appear in the literature for 1-D, 2-D, and 3-D (Ma and Lee, 2006) problems. For
the one-dimensional problem of plane wave propagation in the direction normal
to the layering medium, Sun et al. (1968a, 1968b) present continuum theory in-
stead of “effective modulus theory” for determining dispersion relation. Black et
al. (1960) propose a chracteristics method for wave propagation in a two-layered
medium. Lundergan and Drumheller (1971) numerically simulated the response
in a multilayered system with varying thickness, and their results were in excellent
agreement with experimental results. Harmonic waves in composites with isotropic
layers were studied by Stern et al. (1971) and Hegemier and Nayfeh (1973). Tran-
sient plane waves propagating in a periodically layered elastic medium were ex-
amined by Ting and Mukunoki (1979, 1980) and Tang and Ting (1985). Recently,
Chen et al. (2004) developed an analytical solution, based on Floquet’s theory, for
the problem of plate impact in layered heterogeneous material systems, and the
agreement between analytical results and experimental data was very good.

However, all of the numerical calculations presented in these papers are limited to
the case of a layered half space, or to fewer layers and early-time responses. In
this article, transient responses of a multilayered structure subject to a uniformly
distributed load on the surface are investigated using analytical methods. Interface
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and boundary conditions are applied to obtain a system of equations for determining
the global field vector, which is a stack of the field vectors in each layer. By rear-
ranging the coefficient matrix in a special form, consisting of the diagonal, lower
triangle and upper triangle parts, and extracting the diagonal part from it, the ma-
trix Bromwich expansion is applied to obtain global phase-related reflections and
transmissions of the waves in every layer. This approach automatically lends itself
to ray interpretation. The closed-form solution in terms of rays, which includes
all transient waves propagating through the multilayered structure, is obtained. In
comparison to the generalized ray theory used in the literature, the proposed solu-
tion methodology does not require analysis of the generalized ray paths in advance.
When one attempts to take into account all of the waves that are multiply reflected,
the problem of wave degenerate events increases significantly as the number of re-
flections increases. The solution provided in this study eliminates the degeneration
problems that occur in generalized ray theory and can easily be used to calculate
long-time transient responses for multilayered structures, efficiently and accurately.
Taking accuracy and computing time into consideration, Durbin’s method for nu-
merical inversion is used to perform long-time calculations for complicated multi-
layered structures. The technique presented in this study, combining a multilayered
matrix-form solution and numerical Laplace inversion, will play an important role
in computation for more complicated problems.

2 Formulation of a Multilayered Medium

Consider an initially undisturbed, stratified medium consisting of n layers, as shown
in Fig. 1. Each layer is assumed to be elastic, homogeneous, isotropic, and per-
fectly bonded. The thickness of each layer is different. The stratified medium is
subject to uniform loads, applied to the top surface at t = 0. The quantities related
to the ith layer are denoted by a superscript (i), and n stratified layers contain n+2
media, including an upper and lower half space. In other words, (0) implies the
upper half-space, and (n+1) implies the lower half-space.

2.1 Governing equation

We will consider plane wave propagation in the x direction, in which the only non-
vanishing component of the displacement is in the x direction, and the 1-D longitu-
dinal wave equation can be expressed as follows:

∂ 2u
∂x2 = S2

L
∂ 2u
∂ t2 , (1)

where u(x, t) is the longitudinal displacement and SL is the slowness of the longi-
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Figure 1: Configuration and coordinate system of an n-layered medium subjected
to uniform loadings.

tudinal wave given by

SL = 1/CL =
√

ρ/(λ +2µ),

in which CL, ρ , λ , and µ are the longitudinal wave velocity, mass density, Lamé
constant and shear modulus, respectively. The boundary conditions on the top and
bottom layers of the multilayered medium can be written as

σ
(1)
x (0, t) =−σ0 ·H(t), (2)

σ
(n)
x

(
−

n

∑
k=1

hk, t

)
= 0. (3)

The displacement and traction continuity conditions at the ith layered interface, and
between two adjacent layers, are expressed as follows:

u(i)

(
−

i

∑
k=1

hk, t

)
= u(i+1)

(
−

i

∑
k=1

hk, t

)
for i = 1,2,3, ...,n−1, (4)

σ
(i)
x

(
−

i

∑
k=1

hk, t

)
= σ

(i+1)
x

(
−

i

∑
k=1

hk, t

)
for i = 1,2,3, ...,n−1, (5)
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where the superscripts i in parentheses indicate the field quantities in the ith layer.
For instance, ·(i)and ·(i+1) denote the displacement or stress fields in the ith layer
and the (i+1)th layer, respectively. The boundary value problem and continuity
conditions described above are solved by applying the Laplace transform over time
t with transform parameter p. The transform pair of the Laplace transformation of
a function f (x, t) is given by

f̂ (x; p) =
∫

∞

0
f (x, t)e−ptdt, (6)

f (x, t) =
1

2πi

∫ c+i∞

c−i∞
f̂ (x; p)eptd p. (7)

By applying the Laplace transform, the general solution of the displacement field
can be obtained from the governing equation (1),

û(x; p) = u−(p)e+pSLx +u+(p)e−pSLx, (8)

and the stress field follows Hooke’s law,

σ̂x (x; p) = ρCL pu−(p)e+pSLx−ρCL pu+(p)e−pSLx. (9)

Hence, we can rewrite these field quantities in transform domain as the displacement-
traction matrix[

û(x; p)
σ̂x (x; p)

]
=
[

M11 (x; p) M12 (x; p)
M21 (x; p) M22 (x; p)

][
u− (p)
u+ (p)

]
, (10)

where

M11(x; p) = e+pSLx, (11)

M12(x; p) = e−pSLx, (12)

M21(x; p) = ρCL pe+pSLx, (13)

M22(x; p) =−ρCL pe−pSLx, (14)

are phase-related receiver elements. In order to avoid complicated mathematical
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expressions, the boundary and interface conditions can be represented as follows:



M(1)
21 (0) M(1)

22 (0) 0 0
M(1)

11 (−h1) M(1)
12 (−h1) −M(2)

11 (−h1) −M(2)
12 (−h1)

M(1)
21 (−h1) M(1)

22 (−h1) −M(2)
21 (−h1) −M(2)

22 (−h1)
...

...
. . . . . .

...
...

. . . . . .

0 · · · M(n−1)
11

(
−

n−1
∑

k=1
hk

)
M(n−1)

12

(
−

n−1
∑

k=1
hk

)
0 · · · M(n−1)

21

(
−

n−1
∑

k=1
hk

)
M(n−1)

22

(
−

n−1
∑

k=1
hk

)
0 · · · · · · · · ·

0 · · · · · · 0
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... · · · · · ·

...
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...
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...

0 0 −M(n)
11

(
−

n−1
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k=1
hk

)
−M(n)

12

(
−

n−1
∑

k=1
hk

)
0 0 −M(n)

21

(
−

n−1
∑

k=1
hk

)
−M(n)

22

(
−

n−1
∑

k=1
hk

)
· · · 0 M(n)

21

(
−

n
∑

k=1
hk

)
M(n)

22

(
−

n
∑

k=1
hk

)



·



u(1)
−

u(1)
+

u(2)
−

u(2)
+
...
...

u(n)
−

u(n)
+


=



−σ0
p

0
0
...
...
...
0
0


(15)

In compact notation, the previous equation is written as

Mc = t̂, (16)
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where

c =
(

u(1)
− u(1)

+ u(2)
− u(2)

+ · · · u(n)
− u(n)

+

)T
, (17)

and

t̂ =
(
−σ0

p 0 · · · · · · 0
)T

, (18)

and the coefficient matrix M is a 2n×2n matrix given by

M = D+L+U =



D0 U0
L1 D1 U1 0

L2 D2
. . .
. . .
. . . Dn−2 Un−2

0 Ln−1 Dn−1 Un−1
Ln Dn


. (19)

In Eq. (19), the components of diagonal matrix D are given by

D0 = M(1)
21 (0), (20)

Di =

M(i)
12 (−

i
∑

k=1
hk) −M(i+1)

11 (−
i

∑
k=1

hk)

M(i)
22 (−

i
∑

k=1
hk) −M(i+1)

21 (−
i

∑
k=1

hk)

 for i = 1,2,3, ...,n−1, (21)

Dn = M(n)
22 (−

n

∑
k=1

hk). (22)

Note that the diagonal block matrix D is a nonsingular matrix. The nonzero block
elements of upper triangular matrix U are expressed by

U0 =
[
M(1)

22 (0) 0
]
, (23)

Ui =

−M(i+1)
12 (−

i
∑

k=1
hk) 0

−M(i+1)
22 (−

i
∑

k=1
hk) 0

 , for i = 1,2,3, ...,n−1, (24)
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Un−1 =

−M(n)
12 (−

n−1
∑

k=1
hk)

−M(n)
22 (−

n−1
∑

k=1
hk)

 , (25)

and the nonzero block elements of lower triangular matrix L are

L1 =

[
M(1)

11 (−h1)
M(1)

21 (−h1)

]
, (26)

Li =

0 M(i)
11 (−

i
∑

k=1
hk)

0 M(i)
21 (−

i
∑

k=1
hk)

 for i = 2,3, ...,n−1, (27)

Ln =
[

0 M(n)
21 (−

n
∑

k=1
hk)
]
. (28)

Eq. (16) can be solved directly by

c = M−1t̂. (29)

Once the global field vector c is obtained, the response functions in each layer can
be determined. In Eq. (19), the coefficient matrix M can be written in an alternative
form by extracting block-diagonal matrix D out of the expression as (Lee and Ma,
2000)

M = D(I−R) , (30)

where the matrix R is given by

R =−D−1 (L+U) , (31)

or alternatively,

R =

0 −D−1
0 U0

−D−1
1 L1 02×2 −D−1

1 U1 0

−D−1
2 L2 02×2

. . .
. . . . . . . . .

. . . 02×2 −D−1
n−2Un−2

0 −D−1
n−1Ln−1 02×2 −D−1

n−1Un−1
−D−1

n Ln 0


(32)
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It can be shown that the elements of R shown in Eq. (32) are related to the phase-
related reflection and transmission coefficients. First, the general waves propagat-
ing from the upper medium (i) to the lower medium (i+1) are considered. With the
application of continuity conditions at the interface, the phase-related reflection co-
efficient Ri/i+1 at the interface between medium (i) and medium (i+1) is expressed
as follows:

Ri/i+1 = ri/i+1e
−2pS(i)

L

i
∑

k=1
hk

, ri/i+1 =
ρ(i)C(i)

L −ρ(i+1)C(i+1)
L

ρ(i)C(i)
L +ρ(i+1)C(i+1)

L

. (33)

The phase-related transmission coefficient Ti/i+1 is

Ti/i+1 = ti/i+1e
−p
(

S(i)
L −S(i+1)

L

) i
∑

k=1
hk

, ti/i+1 =
2ρ(i+1)C(i+1)

L

ρ(i)C(i)
L +ρ(i+1)C(i+1)

L

. (34)

Note that ri/i+1 and ti/i+1 are the reflection and transmission coefficients for plane
waves, respectively. Next, consider the incident waves traveling upward from the
lower medium (i+1) to the upper medium (i). Similarly, the phase-related reflected
coefficient Ri+1/i is

Ri+1/i = ri+1/ie
+2pS(i+1)

L

i
∑

k=1
hk

, ri+1/i =
ρ(i+1)C(i+1)

L −ρ(i)C(i)
L

ρ(i)C(i)
L +ρ(i+1)C(i+1)

L

, (35)

and the phase-related transmission coefficient Ti+1/i is

Ti+1/i = ti+1/ie
−p
(

S(i)
L −S(i+1)

L

) i
∑

k=1
hk

, ti+1/i =
2ρ(i)C(i)

L

ρ(i)C(i)
L +ρ(i+1)C(i+1)

L

. (36)

The global phase-related reflection and transmission matrix R, given in Eq. (32),
can be rewritten in terms of the local reflection and transmission coefficients as
follows:

R =



0 R1/0
R1/2 0 0 T1/2 0
T2/1 0 0 R2/1

R2/3 0 0 T2/3
T3/2 0 0 R3/2

. . . . . . . . . . . .

. . . . . . . . . . . .
Rn−1/n 0 0 Tn−1/n

0 Tn/n−1 0 0 Rn/n−1
0 0 Rn/n+1 0


. (37)
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From Eq. (29) and Eq. (30), the global field vector c is then obtained by

c = (I−R)−1 s, (38)

where the source vector s is given by

s = D−1t̂, (39)

or in a component form,

s =
(
−D−1

0
σ0
p 0 · · · 0 0

)T
. (40)

Furthermore, we can relate the response vector b to the global field vector c with a
phase-related receiver matrix Rcv by arranging the response functions in each layer
into this response vector:

b(x; p) = Rcv(x; p)(I−R)−1 s, (41)

where the phase-related receiver matrix is given by

Rcv(x; p) =

M(1)
11 (x; p) M(1)

12 (x; p)
M(1)

21 (x; p) M(1)
22 (x; p)

M(2)
11 (x; p) M(2)

12 (x; p)
M(2)

21 (x; p) M(2)
22 (x; p)

. . .

M(n)
11 (x; p) M(n)

12 (x; p)
M(n)

21 (x; p) M(n)
22 (x; p)


.

(42)

It is noted that b is the response vector of multilayered structures in transform
domain. With the transformed solution at hand, the inverse transform is performed
to obtain the transient solution in time domain.

However, for the Laplace inversion, we will use two different methods to obtain the
time domain response, the generalized ray method and numerical inverse method.
In the generalized ray method, the transient response of the layered medium is de-
composed into an infinite number of rays, which arrive at the receiver along a ray
path in sequence. For the numerical inversion method, the well-known numerical
method (Durbin’s method), a combination of finite Fourier sine and cosine trans-
forms, will be used in this study.
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2.2 Generalized ray solution

As an alternative way to solve Eq. (41), generalized ray theory was used to calcu-
late the transient response of the multilayered structure by expanding the inversion
matrix of (I−R) in a Neumann series:

(I−R)−1 =
∞

∑
i=0

Ri. (43)

Substitute Eq. (43) into Eq. (38), and the global field vector c is obtained as

c =
∞

∑
i=0

Ris. (44)

Thus, the response vector b in Eq. (41) can be rewritten as

b(x) = Rcv

∞

∑
i=0

Ris, (45)

or in the component form as follows:

bl =
∞

∑
i=0

2n

∑
r=1

2n

∑
q=1

(Rcv)lr

(
Ri)

rq sq, (46)

where the subscript l varies from 1 to 2n and represents the displacement and stress
components in each layer (i.e., b1, b2, and b3 represent the displacement field in
the 1st layer, the stress field in the 1st layer, and the displacement field in the 2nd
layer, respectively). The symbol

(
Ri
)

rq in Eq. (46) denotes the (r,q) entry of
power matrix Ri, and the number i in the summation sign is not unlimited but is
a fixed number in transient response for a finite time, meaning that we have to
know how many rays are reflected by or transmitted through the interface during
the observation time at a receiver.

Using a simple, two-layered structure as an illustrative example, the response vector
b in Eq. (45) is a 4×1 vector, and the phase-related receiver matrix Rcv is a 4×4
matrix. Moreover, the global phase-related reflection and transmission matrix R is a
4×4 matrix, and source vector s is a 4×1 vector. The matrix-form formulation Eq.
(45) can be worked out, and the stress field in transform domain can be expressed
as follows:

σ̂
(1)
x (x, p) =

∞

∑
i=0

(−σ0) ·
(
r1/2
)m1
(
r1/0
)m2
(
r2/1
)m3
(
r2/3
)m4
(
t1/2
)m5
(
t2/1
)m6

· 1
p

e
(
−S(1)

L h1(m1+m2+m5+rem(i,2))−S(2)
L h2(m3+m4+m6)+(−1)iS(1)

L x
)
·p

.

(47)
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Furthermore, the Laplace inversion of the function involving p in Eq. (47) is

L −1
{

e−pa

p

}
= H (t−a) . (48)

The transient solution for the normal stress in time domain is explicitly expressed
as

σ
(1)
x (x, t) =

∞

∑
i=0

(−σ0) ·
(
r1/2
)m1
(
r1/0
)m2
(
r2/1
)m3
(
r2/3
)m4
(
t1/2
)m5
(
t2/1
)m6

·H
(

t−S(1)
L h1 (m1 +m2 +m5 + rem(i,2))−S(2)

L h2 (m3 +m4 +m6)+(−1)i S(1)
L x
)

,

(49)

where i = m1 +m2 +m3 +m4 +m5 +m6.

The transient stress field in the first layer of a two-layered medium is represented
in Eq. (49), and ri/i+1, ri+1/i, ti/i+1, and ti+1/i are the transmission and reflection
coefficients as presented in Eqs. (33)-(36). The values m1 ∼ m6 indicate a ray
path containing different numbers of transmissions and reflections in each layer;
for example, m1 ∼ m4 represents the reflections from medium (1) to (2), medium
(1) to (0), medium (2) to (1), and medium (2) to (3), respectively. The transmis-
sions from medium (1) to (2) and medium (2) to (1) are represented by m5 and m6,
respectively. In other words, we have to know how many transmissions and reflec-
tions are present in a ray path. If these ray paths are summed up in Eq. (49), the
transient response during the observation time can be obtained. Note that there is a
particularly interesting term in Eq. (49), indicated as rem(i,2) to represent the re-
mainder after i divided by 2, which is one or zero. This is a statistical result in order
to construct a relationship between traveling time and the number of transmissions
or reflections from the source to a receiver.

Table 1: Material constants used in this paper

ρ(kg/m3) CL(m/s)
Brass 8600 4437
Steel 7850 5878

Aluminum 2700 6197

Now consider two homogeneous, isotropic layers with the same thickness as that
shown in Fig. 2. This medium consists of two different materials, 10 cm of brass
and 10 cm of aluminum. The material constants for these two materials are listed



28 Copyright © 2011 Tech Science Press CMC, vol.24, no.1, pp.15-42, 2011

 

Fig. 2  A uniformly distributed load applies at the top surface of a two-layered medium. 

 

Figure 2: A uniformly distributed load applies at the top surface of a two-layered
medium.
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Figure 3: Transient response of stress at x = −5cm in a two-layerd medium by
generalized ray method.

in Table 1. A uniformly distributed load is applied at the top surface, x = 0, and
the receiver is set at the midpoint of first layer, i.e., x = −5cm. In Fig. 3, the
transient response, based on the generalized ray method, is presented at this posi-
tion. Note that the horizontal axis is expressed as normalized time t/S(1)

L h1, and
the vertical axis as normalized stress σ/σ0. One can see that the source ray arrives
at time t/S(1)

L h1 = 0.5, and the first reflecting ray from the interface arrives at time
t/S(1)

L h1 = 1.5 (the ray path is shown in Fig. 4(a)). The third ray arrives at time
t/S(1)

L h1 = 2.5 (shown in Fig. 4(b)). The fourth ray arrives at time t/S(1)
L h1 = 2.932
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Figure 4: (a)∼(f) All possible ray paths from i= 1 to i= 6.

(shown in the right part of Fig. 4(c)).
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Figure 5: (a)∼(f) Decomposing the response into six groups R0 ∼ R5 within nor-
malized time t/S(1)

L h1 = 6.

To gain a better understanding of transient behavior based on the analytical method-
ology presented in this paper, we decomposed the response into six groups R0 ∼R5

within normalized time t/S(1)
L h1 = 6, represented in Fig. 5. These groups are sorted

by the exponents of Ri, and the exponents i imply the numbers of transmissions and
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Figure 6: The number of rays and groups for multiple reflections in a two-layered
medium.

reflections at interfaces or surfaces. For example, R0 indicates the source ray and
also implies that the number of reflections or transmissions through the interfaces
is zero. Similarly, R1 represents the wave reflected by the interface or transmitted
through the interface only once. If we take the sum of R0 ∼ R5 at the midpoint of
first layer, the early-time response within t/S(1)

L h1 = 6 is the same as that presented
in Fig. 3.

In the subsequent discussion, we sort all rays with the same number i according to
travel time and set as a group those rays having the same travel time. In Fig. 6, the
fastest group is represented by red solid dot, and the slowest group is represented
by blue solid triangle. When i = 1 or 2, there is only one ray path, as indicated in
Fig. 4(a) and 4(b); thus we set it into a group (or expressed as (groups, rays)=(1,1)).
When i = 3 or 4, there are two possible ray paths from source to the receiver, as
indicated in Fig. 4(c) and 4(d); however, the travel times for the two rays are
different. The ray paths can be divided into two groups according to travel time,
such that each group contains one ray path (or expressed as (groups, rays)=(2,2)).
When i = 5 or 6, rays have four possible paths, seen for example in Fig. 4(e)-
(f), and three groups of individual rays can be set by travel time (or expressed as
(groups, rays)=(3,4)). Subsequently, in Fig. 4(e)-(f), we should note that there are
two paths (i.e., the second and third ray path) with the same arrival time among four
paths, and we therefore set both of them to be one group. This process is referred
to as the “degeneration of rays”. As the number i increases, the degeneration of
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rays becomes more and more serious. For example, 512 total rays are degenerated
into 26 groups when i = 19, and 524288 rays are degenerated into 101 groups when
i = 40.

It is worth noting from Fig. 6 that the travel times of the fastest and slowest groups
are t/S(1)

L h1 = 5.34 and 6.5 when i = 6, the travel times of the fastest and slowest
groups are t/S(1)

L h1 = 9.6 and 12.5 when i = 12, and the travel times of fastest and
slowest groups are t/S(1)

L h1 = 13.86 and 18.5 when i = 18. This is an important
phenomenon, indicating that the time interval between the fastest group and the
slowest one grows with increasing i. The figure also shows that total 32 rays are
divided into 10 groups when i = 12, and the travel time of the fastest group is
t/S(1)

L h1 = 9.6. When i = 13, however, the travel time of the fastest group is larger
than 10, i.e., t/S(1)

L h1 = 10.02. Hence, the transient response should be evaluated
with t/S(1)

L h1 = 10 only for i = 0 ∼ 12 in Eq. (45) to avoid missing any possible
rays. In order to understand the relationship between rays and groups, we plot the
rays-groups graph in Fig. 7. This figure shows that the number of rays will increase
exponentially as the number of groups gradually becomes larger. Due to this trend,
the generalized ray method becomes too complex for calculation of the long-time
response in complicated, multilayered media. However, the computational time can
be significantly reduced if the concept of degeneration of rays is taken into account.
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Figure 7: Relationship between rays and groups in a two-layered medium.

It is noted that different types of waves in a generalized ray can have the same
expression, and this phenomenon is referred to as degeneration of waves. When
we attempt to take into account all of the waves that are multiply reflected and
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Figure 8: A 10-layered medium is composed of A, B, C materials, and the receivers
are located at the midpoints of 1st, 2nd, 5th, and 9th layer.
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Figure 9: Transient response at the midpoint of 1st layer of a 10-layered medium
obtained by generalized ray method, Durbin’s inversion method and FEM.
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Figure 10: Transient response at the midpoint of 2nd layer of a 10-layered medium
obtained by generalized ray method, Durbin’s inversion method and FEM.

transmitted along the interfaces, we encounter the problem of wave degeneration
immediately. Because degenerate rays are identical, only composite events have
physical significance. Furthermore, the number of degenerate events increases sig-
nificantly as the number of layers increases. This study introduces a better method
for removing the degeneration, as otherwise the ray-tracing technique becomes ex-
tremely inefficient from a computational standpoint. The problem of degeneration
can be eliminated by collecting the terms with the same coefficients in the power
matrix series of the phase-related reflection and transmission matrix R. The power
matrix of R can be worked out in symbolic form beforehand by a program to facil-
itate numerical calculation.

The major advantage of the generalized ray method is that if one can evaluate all the
rays passing through the receiver, the transient result is exact and accurate. Hence,
it is important to describe all the possible rays propagating from the source to the
receiver and to group and sort them systematically. According to the power of Ri,
the number i indicates the number of transmissions and reflections at interfaces
in the layered solid, and it is very helpful for establishing the numerical program.
Every term in the generalized ray solution possesses its own physical significance.

Although the presentation of summation in the generalized ray method avoids solv-
ing the boundary-value problem, it becomes impossible to handle long-time calcu-
lations. In the next section, we use a numerical Laplace inversion directly before
applying series expansion to Eq. (41) and obtain the transient response in the time
domain.
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2.3 Numerical Laplace inversion

Transient behavior can be obtained via the Laplace transform and numerical inver-
sion proposed by different researchers in the literature, including Durbin (1974),
Papoulis (1957), Narayanan and Beskos (1982). In this paper, we use the method
proposed by Durbin, which is an accurate and efficient method for numerically in-
verting Laplace-transformed functions, in a combination of finite Fourier sine and
cosine transforms.

In Durbin’s method, the inverse Laplace transformation of a function f̂ (p) is ex-
pressed as the following series:

f (t) =
1

2πi

∫ c+i∞

c−i∞
f̂ (p) eptd p

=
2eαt

T

{
−1

2
Re
[

f̂ (α)
]
+

N

∑
k=0

Re
[

f̂
(

α + i
2kπ

T

)]
cos
(

2kπt
T

)
−Im

[
f̂
(

α + i
2kπ

T

)]
sin
(

2kπt
T

)}
.

(50)

Note that the infinite series involved can only be summed up to N terms, and the
transform parameter p is composed of real part α and imaginary part 2kπ

T :

p = α + ik 2π

T for k=0, 1, 2, 3, . . . , N,

in which T is the total time interval of interest, and the number of equidistant points,
N, is a finite positive integer for computing f (t). It is suggested that αT = 5 to 10
can be used for good results.

We substitute the matrix-form solution, Eq. (41), into Durbin’s formula, Eq. (50),
and obtain the transient response in time domain by numerical calculation. The
computational result and comparison of the two methods will be discussed in detail
in the next section.

In the procedure for executing the traditional inversion of Laplace, branch cuts or
residues are usually needed to analyze the complex plane of p. Once boundary con-
ditions become complicated, traditional analytical Laplace inversion is too difficult
to use. Moreover, Durbin’s method has high accuracy for long-time calculations.
The technique of numerical Laplace inversion is very important for analyzing elas-
todynamic problems in multilayered media and is used in this study for comparison
with the results obtained by the ray method and FEM.

3 Numerical Results and Verification

ABAQUS, a widely used software package for finite element analysis, is used to
analyze the elastodynamic problems in this section. An 8-node three-dimensional
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element (C3D8R) with reduced integration is used to analyze transient wave be-
havior in a multilayered medium. Generally, reduced integration provides more ac-
curate results and significantly reduces computational time. For Durbin’s method,
the computational condition αT = 10 and summation term N=100000 are chosen
to perform the numerical calculation in Eq. (50). The generalized ray solution
and Durbin’s Laplace inversion method for predicting the transient response in a
10-layered structure will be discussed and compared with FEM. Finally, we will
analyze a 20-layered structure to investigate long-time transient responses with
Durbin’s inversion method and FEM.

3.1 Transient response in a 10-layered medium

First, the transient responses of a 10-layered structure subject to uniformly dis-
tributed loads with a Heaviside function are investigated in detail. This 10-layered
structure shown in Fig. 8 is composed of layers A-B-C-A-B-C-A-B-C-A (A, B, C
materials are A: brass, 10 cm, B: steel, 20 cm, C: aluminum, 5 cm, and material
constants are listed in Table 1). The dynamic load σ0H(t) is applied at the upper
surface x = 0 (where H(t) is the Heaviside step time function). The generalized ray
method, Durbin’s numerical inversion method, and FEM are used to construct the
transient responses in the 1st, 2nd, 5th, and 9th layers, and the results are compared.
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Figure 11: Transient response at the midpoint of 5th layer of a 10-layered medium
obtained by generalized ray method, Durbin’s inversion method and FEM.

Figs. 9-12 show the transient response of a 10-layered medium when receivers are
located at the midpoints of the 1st, 2nd, 5th, and 9th layers. Wave-propagating
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Figure 12: Transient response at the midpoint of 9th layer of a 10-layered medium
obtained by generalized ray method, Durbin’s inversion method and FEM.
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Figure 13: Long-time response at midpoint of 1st layer in a 20-layered medium
obtained by Durbin’s method and FEM.

behavior of the transient response for stress is evaluated by three methods: the gen-
eralized ray method (red line), Durbin’s method (blue line), and FEM (green line).
The results for the generalized ray method and numerical inversion method are ex-
cellently consistent. However, truncation errors known as “Gibbs phenomenon”
are observed in the FEM results. This phenomenon appears only in the vicinity
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Figure 14: Long-time response at midpoint of 10th layer in a 20-layered medium
obtained by Durbin’s method and FEM.
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Figure 15: Long-time response at the 15-16 interface in a 20-layered medium ob-
tained by Durbin’s method and FEM.

of the discontinuity and shows up as non-physical oscillations. As shown in Figs.
9-12, the source wave arrives at the normalized times t/S(1)

L h1 = 0.5, 1.77, 4.57,
and 8.43 for receivers located at the midpoints of the 1st , 2nd, 5th, and 9th layers,
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Figure 16: Long-time response at the 19-20 interface in a 20-layered medium ob-
tained by Durbin’s method and FEM.

respectively. In Fig. 9, 2252 rays are used to construct the transient response at the
normalized time t/S(1)

L h1 = 16, and i = 14 is used to ensure that all ray paths are
taken into account.

As shown in Fig. 9, the source wave arrives at the midpoint of the 1st layer at
t/S(1)

L h1 = 0.5, one reflection r1/2 arrives at t/S(1)
L h1 = 1.5 with magnitude σ/σ0 =

−1.09, and two reflections, r1/2 and r1/0, arrive at t/S(1)
L h1 = 2.5 with magnitude

σ/σ0 = −1. The contribution of stress waves by multiple reflections or transmis-
sions should be considered at a later time.

The transient response in Fig. 10 is constructed from 2054 rays when i = 14. The
source wave from the upper surface transmits directly to the receiver at the midpoint
of the 2nd layer, and the magnitude of the stress jumps to σ/σ0 = −1.09. The
second wave, σ/σ0 =−0.58, arriving at the midpoint of the 2nd layer at t/S(1)

L h1 =
3.25, is a reflection from the interface between the 2nd and 3rd layers, and its ray
path contains one transmission, t1/2, and one reflection, r2/3. Transient responses
at the 5th and 9th layers are expressed in Fig. 11 and Fig. 12, respectively. When
i = 14, 1950 rays are used to obtain the response in Fig. 11, and in Fig. 12, only 12
rays and 5 groups are established when i = 11.

Because the number of induced waves keeps increasing with time, the generalized
ray method becomes too complex to calculate the transient response in multilay-
ered structures. For this reason, only Durbin’s inversion and FEM will be used to
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evaluate long-time responses in the 20-layered medium described in section 3.2.

3.2 Long-time response in a 20-layered medium

Next, a 20-layered medium containing three different materials with the sequence
A-B-C-A-B-C-A-B-C-A-B-C-A-B-C-A-B-C-A-B and subject to uniform loads with
a Heaviside function is considered. In Fig. 13, the long-time response of a 20-
layered medium at position x =−0.05m (the midpoint of the first layer) is presented
using Durbin’s numerical inversion method and FEM. The FEM solution (red line)
agreed quite well with Durbin’s solution (blue line) during the normalized time
40, and the number of rays induced by reflections or transmissions through the in-
terfaces increased rapidly as the observation time gradually extended to 100. A
slight difference was found between these two results for large time durations. It
is indicated in Fig. 13 that the normalized stress oscillates at σ/σ0 = −1 and is
compressive over the whole time period.

For 10-layered and 20-layered structures, both of which are composed of three
kinds of material, A, B, and C. When the receiver is set at the midpoint of the
1st layer, the transient response expressed in Fig. 9 is the same as the early-time
response (within t/S(1)

L h1 = 16) in Fig. 13. This phenomenon indicates that waves
coming from the latter ten layers had not arrived at the 1st layer.

The long-time responses at the midpoint of the 10th layer are also evaluated by
Durbin’s numerical inversion method and FEM, and the results are shown in Fig.
14. Both numerical results show that source waves from the upper surface arrive
near the normalized time t/S(1)

L h1 = 10, and stress magnitude begins oscillating
near σ/σ0 =−1 until reflecting waves from the bottom surface arrive at the normal-
ized time t/S(1)

L h1 = 30. Then, stress oscillates near σ/σ0 = 0 until the reflection
from the upper surface arrives at the receiver. The trend of the long-time response
indicates the oscillation of wave packets between σ/σ0 = 0 and σ/σ0 =−1. This
also implies that we can consider a 20-layered, periodic structure to be one effective
layer if the receiver is set at the midpoint of the effective layer.

In Figs. 15 and 16, long-time responses for 15-16 and 19-20 interfaces are con-
structed by Durbin’s method and FEM, respectively. The wave-propagation phe-
nomenon in Fig. 15 is similar to that in Fig. 14. In Fig. 16, it is worth noting that
the long-time response is always oscillating near σ/σ0 = 0, due to the traction-free
boundary condition of the bottom surface. Although the source wave is compres-
sive, Fig. 16 shows that large tensile stresses are generated at the last interface of
the multilayered medium, resulting in the delamination of the interface.
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4 Conclusions

In this article, we combine the advantages of multilayered matrix-form solutions for
the generalized ray method and numerical Laplace inverse to perform the compu-
tation of transient responses in multilayered structures. Long-time transient wave
propagation in 10-layered and 20-layered structures are evaluated by three meth-
ods: the generalized ray method, Durbin’s Laplace inverse method, and FEM. The
numerical calculations of transient responses from the three methods are in good
agreement. The generalized ray solution is an exact solution without numerical
error, but the computational time increases rapidly for long-time responses. How-
ever, the numerical efficiency is significantly improved if the concept of degener-
ate waves (or wave groups) is used. A purely numerical solution by FEM using
ABAQUS is capable of analyzing multilayered structures, and for long-time re-
sponses. However, numerical errors are induced during long-time calculations,
and oscillations occur at abrupt changes in the response. The numerical Laplace
inversion method (Durbin’s method) can be considered a semi-analytic solution.
Although the numerical results obtained by Durbin’s inversion method do not con-
stitute an exact solution like that of generalized ray theory, they are much more
accurate than FEM and can be used for long-time calculations.
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