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Nearest Particle Distance and the Statistical Distribution
of Agglomerates from a Model of a Finite Set of Particles

J. Zidek1,2, J. Kucera1 and J. Jancar1,2

Abstract: The structural analysis of a particulate composite with randomly dis-
tributed hard spheres is presented based on a model proposed earlier. The structural
factors considered include the distribution of interparticle distances and the condi-
tions for particle agglomeration. The interparticle distance was characterized by
the nearest particle distance (NPD) and the distance derived from Delaunay trian-
gulation (DT). The distances were calculated for every particle in the particle set
and analyzed in the form of a cumulative distribution function (CDF). The CDF
provides two parameters: the representation of particles which are in very close
proximity to their neighbors and the most frequent distance between particles.

In the next step, the analysis of agglomerates was performed. The agglomerate
was defined as a continuous unperturbed cluster of particles and interphase shells,
which is divided from other clusters by a prescribed layer of matrix. The agglom-
erates were investigated from the point of view of their shape and size. Each set
of agglomerates was analyzed by a histogram of agglomerate size and the average
volume of agglomerates.

Finally, the agglomerate percolation was investigated. The percolation threshold
was characterized by the size of agglomerate which can be considered the largest
but still isolated, and the probability of percolation.

Keywords: particle distance, composite, percolation, agglomeration, Monte Carlo,
effective volume.

List of symbols

Lower case

cred Reduction coefficient for calculation of exact volume fraction of
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agglomerate (defined by the Eq. 4)
cred,∞ Reduction coefficient for infinite agglomerate
np Number of particles in agglomerate = Size of agglomerate
l Nearest particle distance (synonym NPD)
p Percolation probability (Fraction of particles present in percolated network)
rp Radius of particle
t Thickness of interphase layer; relative to particle radius in this paper
t thickness of interphase/rpart

Upper case

A,B,C Partial radii of spherical subsets extracted from reference set (see Vre f )
DT Delaunay Triangulation
R Radius of spherical reference set (see Vre f )
F Histogram of particle populations; F(np,ϕp,t) is population of particles

in one data-set assigned to all agglomerates with size np.

NPD Nearest particle distance; the value in this paper is related to average
particle radius: NPD = Nearest particle distance/rpart

Vagl Volume of agglomerate
Vagl,0 Volume of agglomerate obtained by simple summation of volume of

all particles and interphase shells without considering intersection of
interphases.

Vi Volume of interphase shell
Vp Volume of particle
Vre f Volume of reference set, which contains all particles

Greek symbols

ϕp Volume fraction of particles (without interphase) in the set
ϕe f f Effective volume fraction of particles with interphase in the set
ν parameter steepness from equation 5

Phrases with numerical meaning

Aspect ratio ratio of longest and shortest half axis of
ellipsoid fitted to agglomerate

Cumulative distribution function probability that a given property is less or
equal than value on x-axis
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Effective volume (fraction) volume (fraction) of spheres in agglomerate
including merged interphase layer

Nearest particle distance distance between two surfaces of two
nearest particles

Percolation coefficient fraction of particles participating in
infinite network

Size of agglomerate number of particles in the agglomerate

1 Introduction

The distribution of particles in space is an important factor related to macroscopic
properties of various materials. It can be investigated experimentally or by nu-
merical models of hard spheres. The actual particle spatial distribution can be de-
termined by various methods [Palik, (1975), Dietsch, (2006)]. The most current
techniques, however, provide only 2D spatial distributions. By contrast, computer
modeling enables the description of 3D distributions [Torquato (1995)].

The distance between particles and their distribution are important structural fac-
tors affecting macroscopic properties of particulate composites and strongly af-
fect the relaxation behavior of glassy nanocomposites. For example, in the case
of nanocomposites, the interparticle distances begin to be comparable to the radii
of gyration of chains, and the chains may become constrained between nanopar-
ticles at very low filler volume fractions. This effect is, in addition to the dis-
tribution of interparticle distances, strongly dependent on the nature of particle-
chain interactions. Even in the case of weak interfacial interaction, the chain
adsorption-desorption onto the particle surface is characterized by long relaxation
times. Therefore, it seems useful to know the statistical and spatial distribution
of the nearest particle distances, which can be used as input in models investigat-
ing the chain dynamics of polymer nanocomposites [Kalfus, Jancar, and Kucera
(2008)].

The nearest particle distance between interpenetrable spheres spatially distributed
according to an equilibrium ensemble was analyzed in a numerical simulation by
Torquato and Lee (1990). They analyzed nearest particle distance in two limiting
cases of interpenetrability: fully penetrable spheres and completely impenetrable
(hard) spheres. Torquato (1995) compared the results with analytical equations.
The derivation of an alternative numerical model generating a random distribution
of hard monodisperse spheres of a given volume fraction in a reference sphere was
presented by Zidek et al [Zidek, Kucera, and Jancar (2010)].

Agglomeration is a special case of the random spatial distribution of particles. The
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agglomerates are formed by groups of particles close enough to act as an ensemble.
In the space distribution of particles, the agglomeration can be described by the
local fluctuation of particle density and introduced into the numerical model.

The effect of agglomeration on the macroscopic properties of particulate filled
polymers was observed by Yanagioka and Frank (2008), and by Jancar, Kucera
and Vesely (1988).

Yanagioka et al [Yanagioka and Frank (2008)] investigated two particle arrange-
ments, namely the FCC lattice and the random spatial distribution. The elastic mod-
ulus of ordered nanocomposite was two times higher than the elastic modulus of
random nanocomposite of the same concentration of filler. According to Bittmann,
Haupert, and Schlarb (2011), the toughness and elastic modulus of a nano-filled
epoxy resin increased when the filler was dispersed by ultrasound during prepa-
ration. This effect can be ascribed to the breakage of nanoparticle agglomerates,
which thus enhances the chain-particle interface area, resulting in an increase in the
extent of chain stiffening.

However, agglomeration in microcomposites increases the stiffness of composites.
This is interpreted as a result of the effective volume of agglomerates being higher
than the sum of the volumes of all particles due to a portion of the soft polymer
being trapped inside the agglomerate. This effect was observed experimentally and
led to the modification of the Kerner-Nielsen theory, in which a simple geometrical
constant is replaced by a function of agglomeration [Wu, Lin, Zheng, and Zhang.
(2006)].

A model describing conditions for particle agglomeration was presented in litera-
ture as the penetrable concentric shell model by Lee and Torquato (1984, pp. 3258,
pp. 6427). The model is composed of core particles which are completely imper-
meable and shells which are fully permeable. Two limiting cases were presented:
totally impermeable spheres, and fully permeable spheres. Lee and Torquato (1984
pp. 3258) calculated the porosity by the Monte Carlo Method. They proposed an
efficient method for calculating the total volume of particles with different grades
of penetrability. Next, Lee and Torquato (1984 pp. 6427) derived a specific func-
tion detecting the isles of particles connected by intersecting interphase regions.
The number of particles in one set was 512. The analysis of such a small particle
set cannot distinguish individual numbers or representations of different agglomer-
ates. In our model, we increased the number of particles to 100 000. Thus, statisti-
cal analysis could be performed also for agglomerate size and shape distributions.
We could also calculate the thickness of the matrix interphase layer separating two
agglomerates.

Particle agglomeration can be viewed as the first step towards particle percolation
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observed at a certain volume fraction of conductive particles in conductive poly-
mer composites. In general, the percolation is a state when randomly distributed
elements in a given finite space form a continuous network [Grimmett (1999)]. It
is supposed that each

particle has short connections to its neighbors. In the case of a small number of
connections, only isolated clusters of particles are observed. When the number of
short connections grows above a certain critical threshold, the interaction behaves
as a long range one.

The percolation can be described mathematically by the percolation probability
θ (p) of a certain state, p. It is the probability that the given element belongs to an
infinite cluster. It is fundamental to the percolation theory that there exists some
critical threshold value. It is assumed that below the critical value the percolation
probability is zero, and that above the critical value the probability is a continuously
growing function with a function value in the interval (0,1>:

θ (p)

{
= 0 p≤ pc

= f (p) ∈ (0,1〉 p > pc
. (1)

The percolation is not only a mathematical description of the structure. It has con-
sequences for the macroscopic properties of materials. In many cases [see Garai1,
Chatterjee, and Nandi (2010); Bauhofer and Kovacs (2009); Kotsilkova (2007)],
the transition between non-percolated and percolated states is accompanied by a
steep change in properties (i.e. viscosity, elastic modulus, conductivity, etc.). This
is why it is necessary to study parameters controlling percolation behavior in het-
erogeneous systems.

Many thermomechanical and physical properties of polymer nanocomposites sud-
denly change after reaching a critical filler concentration. In rheology, two critical
concentrations, ϕ* and ϕ**, are proposed, called the first and the second percola-
tion thresholds. These rheological parameters determine the qualitative structural
transitions of nanocomposites with increasing filler content related to local and
global percolation. The first percolation threshold (flocculation) expresses the crit-
ical concentration of local percolation and the formation of fractal flocks. The
second rheological threshold (percolation) represents the formation of a continu-
ous structural network of fractal flocks. The hard spheres model presented here
also shows two transitions. The first percolation transition is observed when the
network is created. However, only isolated clusters are present. The second per-
colation is observed when these clusters form a continuous network in at least one
dimension.

The polydispersity of particle size and disorder of particles with respect to regular
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space positions are structural factors which should be taken into consideration in
the analysis. Polydispersity will be investigated in a follow up paper. Here, the
particle spatial disorder is investigated in two limiting cases. The first is a set of
particles which are maximally spatially disordered. The second is a set ordered in
a cubic lattice.

The functions of the nearest particle distance and percolation ratio for a cubic net-
work can be calculated analytically. Concerning the agglomerate, the situation is
also relatively simple. The transition from isolated to percolated state is sharp;
the particles will be either all isolated or all assigned to one agglomerate when the
nearest particle distance becomes shorter than the critical percolation distance. The
limit thickness, t, of the interphase for the isolated/percolated state is numerically
equal to half of the nearest particle distance at the percolation threshold (Tab. 1).

Table 1: imensionless nearest particle distance, NPD, and thickness limit of inter-
phase, t, relative to the particle radius for a cubic lattice as a function of the volume
fraction of particles

ϕp % NPD t
1 5.48 2.74
2 3.94 1.97
5 2.38 1.19
10 1.47 0.74
20 0.76 0.38
30 0.41 0.21

The situation for randomly distributed particles is more complicated. The nearest
particle distance and agglomerate analysis give, in this case, different information.
The nearest particle distance gives information about the short-range particle dis-
tribution, whereas the agglomerate analysis gives information about longer range
distribution.

The characteristics have to be calculated from a statistically significant set of parti-
cles and the result for the nearest particle distance can be described by a cumulative
distribution function. Further, the frequency of agglomerates, aspect ratios of ag-
glomerates, volumes of agglomerates and percolation transition can be calculated.

The percolation of a finite set of particles was investigated in a similar way by Rin-
toul and Torquato (1997). The percolation was investigated on a set of overlapping
spheres. The spheres expanded from random points until reaching a certain volume
fraction. The clusters were formed around their intersections. Two cases of perco-
lation were defined: wrapping and spanning. In the wrapping case, the system has
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to form the cluster from one side of the system to the other. In the case of spanning,
the cluster must overlap with itself, when periodic boundary conditions are set.

Sanyal, Goldina, Zhub, and Kee (2010) presented the prediction of effective con-
ductivity within porous composite electrodes. The conductivity was predicted by
models of randomly packed spheres in a cubic box. They also defined percolation
as a cluster spanning the box.

A common approach is the combination of the random packing of spheres with
the Finite Element Method [Gurrum Zhao, and Edwards (2010)]. They modeled
the Young modulus, Poisson’s ratio and the coefficient of thermal expansion of
heterogenous materials. Such simulations represent significant improvements on
the results obtained for models considering spatially ordered particles.

2 Method

In this contribution, sets of 100 000 randomly generated spheres with a uniform
size of particles and a prescribed volume fraction were generated. All the particles
were packed in the space of a large reference sphere. The generated model data
were:

• coordinates of particle centers and

• particle radii.

The generated model data were used as input data for the analytical phase, which
is described in this paper.

Several structural factors were analyzed: nearest particle distance and agglomerate
shape and size.

The random sets of particles were generated with volume fractions: 3×10−4, 1.0,
2.0, 5.0, 7.5, 10.0, 12.5, 15.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5 and 30 % of
volume respectively.

Each volume fraction was generated in five modifications: with interphase layer t
= 0.01×rp,0.05×rp, 0.1×rp, 0.2×rp, 0.5×rp, where rp is the radius of particles.

For each combination [volume fraction× interphase layer] 10 independent particle
sets were generated.

2.1 Generation of a spherical set

The set of particles was generated by in house software based on the Tovmasjan
(1986) method. The first step was the generation of a given number of randomly
distributed particle centers in a given reference sphere. The two following oper-
ations were then performed. First, an inflation of particles was undertaken. The
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inflation of particles led to an increase in the particles’ volume. This was possi-
ble at low volume fractions. When the volume fraction grew, the intersections of
particles occurred. The second operation then consisted in the elimination of par-
ticle intersections by pushing out the particles. The procedure progressed from the
center of the sphere to its boundary. In the case that intersecting particles were de-
tected, the outer particle (of greater distance R to the mass center of the particle set)
was pushed out by the inner particle. The macroscopic homogeneity was verified
by radial distribution functions. The radial distribution function of the generated
spherical set was inside theoretical boundaries.

The particle sets were investigated from the points of view of nearest particle dis-
tance and Delaunay triangulation (DT). The nearest particle distance is the distance
to the nearest particle.

The Delaunay triangulation of particle centers was performed by a Qhull algorithm
[Barber, Dobkin, and Huhdanpaa (1996)].

2.2 Concept of agglomerates

The basic model of an agglomerate is based on particles with an interphase layer.
It was presented in the literature as the penetrable concentric shells (PCS) model
(cherry-pit model) [Lee and Torquato 1988. pp. 3528].

The model presented in this paper extends the possibilities of the PCS model. It is
composed of a large number of particles, with accelerated algorithm. An agglom-
erate is an unperturbed continuous object inside the model composed of particles
and interphase shells. The number of agglomerates in the model was lower than
the number of spheres. However, it was still large enough for the statistical analy-
sis of agglomerates. Data about the size and shape of agglomerates and the nearest
distance between agglomerates were taken from the statistical set of agglomerates.

The agglomerates were constructed using the following algorithm. The interpen-
etrable layer has a thickness t. When the interphase layers of two particles are
intersecting or touching, they are agglomerated. Two agglomerated particles create
a volume delimited by the volume of selected particles and the volume of their in-
terphase layers, see Fig. 1. In the case of the intersection of the interphase of a third
particle with one or two agglomerated particles, the third particle is included into
the agglomerate. The fourth, fifth, . . . , nth particle are added when their interphase
intersects the interphase of one particle just present in the agglomerate. Fig. 1d
shows the union of volumes.

Such a concept of an agglomerate has several limitations. One of the major limita-
tions is shown in Fig. 1. Some volume segments (gray A in Fig1 d.) are, in reality,
in the agglomerate, but in the model the volume is outside the agglomerate.
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Figure 1: oncept of agglomerate; Particle -black solid line and interphase (gray
line); Basic condition a - separated particles (not agglomerated); b,c possible ag-
glomerates - (b-contact ; c-intersection); d - addition of next particle to existing
agglomerate. A - volume existing in a real agglomerate but not detected by the
model.

In our study, the particles sorted to the agglomerate had a flag – “classified to cer-
tain of agglomerate”. (If it happened that a particle did not have any close neighbor
particle, the particle was considered a “one-particle” agglomerate.) Then, the first
non-classified particle nearest to the center of gravity was found again. The proce-
dure was repeated until non-classified particles were present in the set. The primary
results of this process were tables of particles (centers and radii) in each agglomer-
ate.

2.3 Calculation of volume fraction by the Monte Carlo method

The agglomerate has an irregular shape. It is composed of particles and intersecting
interphases of particles of the agglomerate. The volume of such a system cannot be
meaningfully calculated analytically. The volume of agglomerates was calculated
by the Monte Carlo (MC) method (Eq. 2).

D =
′∫

D

f (x)dV = D′
N
N′

(2)

where [∀x ∈V, f (x) = 1; ∀x /∈V, f (x) = 0].
The calculation of the volume is an application of the Monte Carlo [Dimov (2008)]
integration method. In order to integrate a function over a complicated domain D,
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Monte Carlo integration picks random points over some simple domain D’ which
is a superset of D. The method estimates the volume of D as the volume of D’
multiplied by the fraction of points falling within D’.

Picking N randomly distributed points x = (x1, x2 , ...,xn) in a multidimensional
volume to determine the integral of a function in this volume gives a result.

In short, the calculation of volume by the MC method is provided by the generation
of random points in a box. The investigated object is inside the box. The number
of points in the investigated object, the number of all points, and the volume of
the box are used to calculate the investigated volume. The law of large numbers
ensures that the Monte Carlo estimate converges to the true value of the integral.
The error estimate of a Monte Carlo integration is of the order of 1/

√
N.

The calculation of the model volume fraction of a cherry model is described in
papers by Lee and Torquato (1988).

Our procedure is adapted to models with a large number of particles. The objects of
particles were sorted by treesort algorithm to one segment of random access mem-
ory (RAM). The sorting criterion was distance from mass center. Then, the random
points were sorted to a linked list data structure. The criterion was also the distance
from mass center. Each random point delimited certain sub-segment of memory,
where all possible intersecting particles are. The sub-segment was bounded by two
pointers to the segment of memory. One pointed to a lower boundary stop and the
second one to an upper boundary stop of the block. Then, the presence of a point
inside the particle was tested only for selected particles in the sub-segment. It was
significantly smaller than the all-particle segment.

The investigation of the next random point was performed by data structures created
by its predecessor. The following random point was found in the linked list as the
next one to the actual random point.. Then, the sub-segment of memory, in which
were written the corresponding particles, was shifted. (All particles were placed in
the same segment of memory. Only the pointers which marked the lower and upper
boundary of the sub-segment were shifted. Next, the presence of new random point
in any particle was tested.

2.4 Aspect ratio of agglomerates

The aspect ratio is a property which characterizes divergence from a spherical
shape. It was calculated by MATLAB script. It was calculated by the ellipsoid
inscribed into the agglomerate, where the volume of the ellipsoid was equivalent to
the volume of particles with interphase layers. The ellipsoid prescribed the same
volume as the agglomerate. The optimum set of ellipsoid axes was found by maxi-
mizing the intersections of two volumes: 1. of the agglomerate and 2. of the fitted
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ellipsoid. The results of optimization were three semi-axes as parameters. Then,
the ratio of the longest and the shortest semi-axis was considered as the aspect ratio.

The local maxima of volume were found searched by the function fsearch
min utilizing

MATLAB. This function uses a simplex search method for the numerical searching
of local extremes.

3 Results and Discussion

Ten particle sets were generated for each particle volume fraction. The sets were
analyzed from the viewpoints of particle distances and agglomeration. The volume
fraction of agglomerates in the randomly spatially distributed particles generated in
the simulation sphere is given by Eq. (2).

3.1 Nearest particle distance

The nearest particle distance was calculated as the distance between the spherical
surfaces of the nearest particles. The result of the calculation was processed as a
cumulative distribution function for each volume fraction (Fig. 2). One cumulative
distribution function was calculated for each volume fraction.

The curves from Fig. 2 can be described by two parameters: the inflection point
and the limiting CDF obtained for l/rp →0. Both parameters have real physical
meaning. The inflection point means the distance between particle surfaces (related
to particle radius) which is the most frequently represented in the model. The
limiting value means the portion of nearest particles which are in close proximity
to their neighbors.

Simultaneously, the distances from Delaunay triangulation (DT) were calculated.
The curves from DT have the same shape as the cumulative distribution function of
NPD. The functions from DT are shifted from the curves for NPD. The inflection
point is shifted to longer distances and the lim CDF l/rp→0 is lower for DT. The
results are compared in Table 2.

There is a difference between distances calculated from DT and NPD. The distances
from DT are the set of distances between a certain central particle and particles in
its proximity. The NPD is formally a selection distance between a given particle
and its nearest neighbor. This means that the most frequent distance (inflection
point) must be lower for NPD. Also, the representation of spheres in close contact
is lower. The absolute number of very narrow distances is similar in both NPD and
DT. However, the complementary number of greater than nearest distances is much
higher in DT than in NPD. This is why the relative representation of close distances
in DT must be lower than in NPD.

For example, at a 2% volume fraction of particles, the representation of close parti-
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Figure 2: Cumulative distribution function of nearest particle distances; l/rp - the
nearest particle relative to the particle radius; numbers on lines represent the vol-
ume percentage of particles.

cles in NPD was approximately 14 times higher than in DT. Yet, at 30% of volume,
the representation of close particles from NPD was only 5.5 times higher than in
DT. This is because at high volume fractions, one particle can be surrounded by two
or more particles in close proximity. In the case of the closest spatial arrangement
of monodisperse spherical particles (74.05 % by volume), both the representations
of very close particles (from NPD and DT) should be equal to 1.

The results were compared with the boundaries presented by Torquato (1995). He
presented a theorem valid for any ergodic and isotropic packing of identical D-
dimensional hard spheres (D=3):

l/rP ≤
2

D 2D ϕ
, (3)

where l is the mean interparticle distance. If the particles do not satisfy this condi-
tion, they cannot be ergodic and isotropic. All the particle sets in our simulations
satisfied this condition. The mean distances were calculated directly from the sets
of all distances. However, they are not presented in this paper. The mean distance
can be calculated approximately as an average of the number of “zero distances”,
the number of non-zero distances, and the most frequent non-zero distance:

l/rP ≈
[
1−CDF(l→0)

]
In f lection p. (4)
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Table 2: Parameters of cumulative distribution functions CDF (from Fig. 2); Com-
parison of Nearest Particle Distance and Delaunay Triangulation

Nearest Particle Dist. Delaunay Triang.
ϕp Inflection point CDF (l/rp→0) Inflection point CDF (l/rp→0)

3 10−4 129.978 0.00 295.400 0.00
0.010 2.489 0.08 7.668 0.01
0.020 1.758 0.14 6.252 0.01
0.050 0.891 0.33 4.169 0.03
0.075 0.834 0.45 3.436 0.04
0.100 0.656 0.56 2.897 0.06
0.125 0.531 0.65 2.582 0.08
0.150 0.460 0.72 2.291 0.09
0.175 0.398 0.77 2.133 0.11
0.200 0.331 0.83 1.871 0.12
0.225 0.316 0.85 1.714 0.14
0.250 0.297 0.89 1.567 0.15
0.275 0.252 0.92 1.466 0.16
0.300 0.214 0.95 1.358 0.17

It more or less corresponds to the mean distance, which was calculated directly
from the set of distances.

Next, the mean values were compared to the analytical equation for hard spheres
in equilibrium presented by Torquato (1995). Our mean NPD was significantly
lower than the distance presented by Torquato. This means that we generated a
model different from the hard spheres equilibrium model. However, the model also
passed the criteria of ergodicity and isotropicity. We also found [Zidek, Kucera and
Jancar (2010)] that the radial distribution functions of our models were inside the
boundaries valid for the random distribution of spheres. Such models can also be
considered as random, even if they are significantly different from random systems
presented in the literature. Therefore, for one volume concentration of spheres,
further different random models can be generated with the model we derived.

3.2 Histograms of agglomerates

A histogram of agglomerates gives information about the number of agglomerates
in the model. The agglomerate was constructed by the method from Section 2.1.
Agglomeration was investigated for sets of 100,000 particles of different volume
fractions and with different thicknesses of interphase. Examples of such a his-
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togram are shown in Figs. 3 and 4. Fig. 3 shows the influence of volume fraction
on the histograms with t/rp = 0.01. Fig. 4 shows the histograms for the same
volume fractions as in Fig. 3 with an interphase of t/rp = 0.1.

It is clear that the higher the volume fraction of particles and the thickness of inter-
phase, the larger the agglomerates that will be observed. The question is whether
the same effect can be achieved simply by increasing the effective volume. It is not
important whether it is reached by increasing the interphase thickness or increasing
the volume fraction of particles.

 

Figure 3: Histogram of agglomerates
sizes (number of particles in agglom-
erates) for two different volume frac-
tions and constant thickness of inter-
phase 0.01 r

 

Figure 4: Histogram of agglomerates
sizes for two different volume fractions
(the same fractions as in Fig. 3) and
constant thickness of interphase 0.1 r

It must be highlighted that the histograms are meaningful only for the non-percolated
state. The percolation will be analyzed in Section 3.5. In the percolated state, the
histogram will be replaced by a single parameter: the coefficient of percolation (see
Appendix).

3.3 Calculation of volume fraction by the Monte Carlo method

As mentioned above, the thickness of interphase and volume fraction of particles
can be replaced by a single parameter – effective volume. It is the volume created
by uniting the volume of the particles and the volume of the interphase layers. The
volume of agglomerates is irregular; therefore, in our study, it was calculated by the
method Monte Carlo. 1010 random points were generated in the reference sphere.
The volume was calculated from the number of random points which were detected
inside the particles or interphases. Then it was possible to estimate a coefficient
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describing the intersection of interphase layers. The coefficient can be evaluated
in following way. First, we calculate the unintersected volume of agglomerates
simply as the sum of volumes of particles and spherical interphase shells (as they
are not intersected):

Vagl,0 = ∑(Vp +Vi) = 4/3π (rp + t)3. (5)

The volume reducing coefficient is then defined as the ratio of the real volume of a
given agglomerate and the unintersected volume.

cred = Vagl/Vagl,0. (6)

The reduction coefficients for different thicknesses of interphase layers are shown
in Fig. 5. The graph also shows a relatively high standard deviation for agglomerate
volume. It is caused by different degrees of interpenetration of interphase layers.

As shown in the construction of agglomerates in Fig. 1b, the agglomerate can be
relatively sparse, because several particles can form the agglomerate even if their
interphases only touch. This has the consequence that many of the interparticle
spaces which are, in reality, inside the agglomerate are not counted in the agglom-
erate model. This is why the complex interphase was defined, i.e. the interphase
layers overlap significantly and internal free volumes in agglomerates are reduced.
The function of the reduction coefficient on agglomerate size in this case is shown
in Fig. 6. The interphase used for the calculation of volume has twice the thickness
of the interphase layer used for construction.

This shows that every function of the reduction coefficient on the size of an ag-
glomerate can be approximated by an exponential function:

cred (np, t) = cred,∞ (t)+ [1− cred,∞ (t)] · exp
{

1−np

v

}
(7)

where cred,∞ is the reduction coefficient for an infinite agglomerate and ν is the
parameter of steepness of the function.

The coefficient of steepness is independent of thickness of interphase and is similar
for every data series with a given thickness and interphase type ν = 2.76±0.21.

Differences in individual data sets are only in the value of the single parameter:
cred,∞. This parameter represents the reduction coefficient which must be applied to
an infinite agglomerate. It will be used for the calculation of the effective volume of
percolated agglomerates. The function of infinite reduction coefficient depending
on thickness of interphase is shown in Fig. 7.

The combination of two functions, the histogram and the reduction coefficient,
enables us to calculate the effective volume of an arbitrary particle system which
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Figure 5: Reduction coefficient (cred)
for calculation of volume of agglomer-
ate from Eq. 6; Dependence on size of
agglomerates for different thicknesses
of interphase layers (t- number at lines).
The interphases are considered only as
in simple contact

 

Figure 6: Reduction coefficient (cred)
for calculation of volume of agglomer-
ate from Eq. 6; Dependence on size of
agglomerates for different thicknesses
of interphase layers (t- number at lines).
The case when interphases are signifi-
cantly overlapping

is not percolated. Examples of histograms are shown in Figs. 3 and 4, and the
result is a discrete function of the frequency of particles depending on the number
of particles in an agglomerate. The frequency has the following two parameters:
the volume fraction of particles and the thickness of interphase: F(np, ϕp, t).

The reduction coefficient from Figs. 5 and 6 depends on the number of particles in
the agglomerate and the thickness of interphase cred(np, t).

The parameters ϕp and t are, together, two parts of such an effective volume of
filled polymer. The aim is to find whether it is possible to reduce the parameter
set of histograms only to the effective volume fraction of particles: F(np, ϕp , t) =
F(np, ϕe f ).

The effective volume of all particles in a certain reference volume is calculated
from the volume of particles, their frequency, and thickness of interphase:

ϕe f f (ϕp, t) =

np,max
∑

np=1
[cred (np, t) ·F (np,ϕp, t) ·Vp]

Vre f
(8)

After processing, this equation becomes:

ϕe f f (ϕp, t) = (1+ t)3
ϕp

np,max

∑
np=1

[cred (np, t) ·F (np,ϕp, t)] (9)
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The calculation of effective volume can help with the question of whether it is
possible to reduce the parameter set from a two parameter set [ϕp, t] to a single
parameter - ϕe f f . From all the calculated data sets, the data sets which have differ-
ent volume fractions of particles (ϕp), but a similar effective volume fraction (ϕe f f )
was selected. Their histograms are compared in Fig. 8 and they are similar.

 

Figure 7: Reduction coefficient for
calculation of volume of agglomerate
cred,∞, whose size is approaching infin-
ity - function of interphase thickness t.
Values were calculated (by Eq. 7) from
exponential extrapolation of data from
Figs. 5 and 6.

 

Figure 8: Histograms of size of agglom-
erates for three different particle sets
with similar effective volumes of ag-
glomerates.

3.4 Aspect ratio of agglomerates

The aspect ratio is a geometrical factor of an agglomerate. It gives information
about the agglomerate shape. The aspect ratio can theoretically be in the range
from 1 (an ideal sphere) to ∞ for a long infinite fiber. In several systems, parti-
cle agglomerates are formed with a shape of chain of large aspect ratio. In our
case, agglomerates of grape shape were observed. It was presumed that the shape
was slightly elongated and that the shape could be approximated to an ellipsoid as
shown in Fig. 9.

The aspect ratio was calculated as the ratio of the longest axis to the shortest axis
and was investigated as a function of agglomerate size (see Fig. 10). It was found
that the aspect ratio does not depend on the volume fraction and interphase thick-
ness(Fig. 11).
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Figure 9: Substitution of an agglomerate by an ellipsoid; the semi-axis lengths were
derived from the combined volume of the ellipsoid and the particles; the surface
color of particles (or degree of gray) was used only to increase the 3D impression.

 

Figure 10: Aspect ratio as a function of
agglomerate size for one generated set
of particles with a volume fraction of
0.05 and interphase thickness of 0.1.

 

Figure 11: Mean aspect ratio for gen-
erations with different volume fractions
of particles and interphase layers t

The result of this analysis is that all the agglomerates are approximately slightly
elongated ellipsoids and the shape is independent of other structural properties.

3.5 Percolation

During the analysis, it was found that the boundary of a particle set distorts the
analysis of agglomerates. This is the case with agglomerates whose size is unascer-
tainable. The accuracy can be increased when the boundary particles constitute a
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Figure 12: Definition of percolated state; Particle set divided into 3 layers A, B and
C; 3 possible types of agglomerates detected by analysis: A - isolated agglomerate;
A-B - partly isolated agglomerate; A-B-C - percolated agglomerate not analyzed
by the histogram; particles in set; R- boundary of generated particle set.

very small fraction of all particles. This is in the case of a large number of particles
in combination with small agglomerates. However, in our generated sets large ag-
glomerates were also present. A function which determined whether the agglom-
erate was large and still isolated, or infinite and just percolated was needed. As
stated in Section 1, the percolation is the transition when the isolated agglomerates
intergrow into one percolated network. The limitation of our numerical model was
that the model (reference sphere) is always finite. Due to the generation procedure,
it was not possible to build a periodic box. All the particles were found in a large
reference sphere of radius R. As the particle distribution was homogenous, some
subset could be extracted from the reference set. The particles outside the subset
boundary have to have the same spatial distribution as the particles inside the se-
lected set. A small inner sphere of radius 0.3R was selected from the all-particle
set with a reference radius R (Fig. 12 sphere A). The agglomeration was checked
in each new case from the particles inside subset A. The particles outside subset
A could join the agglomerate started in subset A, if they satisfied the condition for
agglomeration (Fig.1). The evaluation of the analysis was simple until agglomer-
ates were formed exclusively from particles inside A. When some particles from
outside A participated, a next step in the analysis was performed.

The outside space was divided into the following two subsets B and C. Subset B
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Figure 13: Percolation coefficient of ag-
glomerates in percolated state; depen-
dence on maximum isolated agglomer-
ate in the set; different volume fractions
of naked particles (φp) are highlighted
in the graph.

 

Figure 14: Percolation coefficient as a
function of effective volume fraction of
agglomerates; different volume repre-
sentations of naked particles (φp) are
highlighted in the graph.

was defined from radius 0.3R to radius 0.9R and subset C was from 0.9R until the
absolute boundary of the set of all particles (1.0R).

As stated above, the agglomerates analysis always started in subset A. The cross-
boundary agglomerates either stopped in B or grew into C. If they stopped in B,
they were considered isolated. The agglomerate was recorded in the histogram in
a special way. The size of agglomerate (x-axis) was the number of particles in
A and B together. However, the count of particles (y-axis) was increased only by
the number of particles in A. It was the same situation as if the binary decision
about the agglomerate (present/absent in the range A) was replaced by the decision
“partly present” in the range of A.

When the agglomerates grew into layer C, the state was considered percolated. The
representation of such an object was again counted using the particles only present
in A, as in the previous case. However, the number of particles in the agglomerate
was set to infinity. In addition, if several such (A-B-C) objects in one set were
detected, they were taken as one object with a representation equal to the sum of
all partial representations. The representation of percolated particles related to all
particles in subset A was used for the calculation of the percolation coefficient p.
The percolation coefficient p is, in fact, the fraction of particles from all particles
which participate in the infinite percolated network of particles.

The percolation was investigated for different volume concentrations of particles in
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the range from 0% to 30% of naked particles. Each concentration was investigated
with an interphase layer thickness equal to 0.01, 0.05, 0.1, 0.2, and 0.5 respectively.
Each combination of volume fraction and thickness of interphase was analyzed by
10 independently generated particle sets of 100,000 particles. The mean values and
standard deviations of size of the largest agglomerate and the percolation coefficient
were calculated.

 

Figure 15: Cumulative distribution functions of nearest agglomerate distances;
compare to Fig. 2.

Two properties related to the percolation were analyzed: the size of the largest
detected isolated agglomerate in the subset A and B (Fig. 13 – x axis) and the
percolation coefficient (Fig. 13 - y axis). Of course, both the properties are related
to the given model of spheres and the settings of boundaries of subsets A, B and C
from Fig. 12. A change of model settings will lead to different numerical values,
but their functions should be similar.

The limiting size of the largest isolated agglomerate (≈ 400 particles) is a property
which detects the starting point of percolation transition. Larger agglomerates are
indistinguishable from percolated agglomerates. It is a transition in which an iso-
lated agglomerate grows out of the investigated part (A and B) of the model. This
state was considered to be near the first percolation threshold. Outside the investi-
gated region (A and B) we can imagine some copies of our investigated systems. If
the agglomerates of copied systems grow out of the boundary, they have to meet to-
gether with agglomerates of the investigated system and form a continuous network
of particles. However, there is still a significant portion of isolated agglomerates.
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The growing out and collisions of agglomerates are observed until a percolation
ratio of 0.5 is achieved.

Above this value (p>0.5), the capacity of a model to create large isolated clusters
is exhausted. The character of the percolation changes. Let us consider particle by
particle addition to a system in which some sparse percolated network of particles
exists. The coalescence of large agglomerates starts in the investigated system. This
is why the large agglomerates disappear. In the projection to the infinite system
(the investigated system and its copies around), this corresponds to the creation
of new connections in the existing network. The density of the particle network
will increase until the second transition. At the second percolation threshold, the
isolated clusters disappear completely and all particles start to be in one percolated
network.

Numbers beside symbols are thicknesses of interphase layers (relative to particle
radius- t/rp). Np,max ≈ 400 is the capacity of the model to form isolated agglom-
erates; its value depends on the number of particles in the generated set and the
settings of the model boundaries A and B from Fig. 12.

The path of the arrow in Fig. 13 represents a warped axis of the effective volume
fraction. It also has a deformed shape and scale. The projection of data onto the
effective volume fraction axis is shown in Fig. 14. The effective volume fraction
is derived as in Eq. 9. In contrast to the equation, in the percolated state, a single
infinite agglomerate is present:

ϕe f f (ϕp, t) = (1+ t)3
ϕp cred,∞ (t) (10)

The reduction coefficients cred,∞ for infinite agglomerates can be found in Fig. 7.

The percolation is zero at low effective concentrations, then increases steeply be-
tween effective fractions of 0.2 and 0.3 until full percolation is achieved. Above a
concentration of 50%, the percolation of all-particles is observed.

3.6 Combination of nearest particle distance and agglomerates

It is evident that in the case when the effect of the particle agglomeration in the
material is observed, it is necessary to revise the expression of the function of par-
ticle distance (Section 3.1, Fig. 2). If the particles are too close, the particles whose
critical distance is lower than a critical distance form an agglomerate. Such an ag-
glomerate behaves in the system like an independent structural object. This is why
it is better to consider the minimum “free” distance in a composite as the small-
est distance between particles which are not in the same agglomerate. That is, for
each particle, a nearest particle was calculated, which was assigned to a different
agglomerate and the distribution of such distances was recalculated. An example
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is shown in Fig. 15, where the distribution was calculated for volume fractions of
particles up to 20% and a very thin interphase layer (10−4rp). This was the thick-
ness of layer which was thick enough to filter out small distances in small closely
grouped agglomerates. However, it was thin enough so that percolation under 20%
of volume was not achieved. In Fig. 2, the lowest fraction of nearest neighbor dis-
tances (l/rp = 10−4) is highly populated. It can be deduced that the lowest fraction
of nearest neighbor distances has a lower population and that a significant popu-
lation is observed at higher distances. However, in this case, also, the distances
between agglomerates are very small. Above a concentration of 17.5%, the cumu-
lative distribution functions of agglomerates are deformed. This is because there
are a significant number of inner particles which are closely surrounded only by
particles from the same agglomerate. The nearest particles from neighboring ag-
glomerates are then relatively far away.

4 Conclusions

The paper describes the analysis of a numerical model of 100,000 spheres, which
occupy a volume cell of defined volume fraction. The volume fraction of spheres
was from 0 to 30%. Non-intersecting hard monodisperse spheres were randomly
distributed in space. An interphase layer of defined thickness was projected around
each particle. The agglomerate was composed of locally grouped particles whose
interphase layers were merged. The shape and size of agglomerates were investi-
gated.

Concerning the shape, the aspect ratio was found to be 2 with a large degree of
variance. This value was observed independently of agglomerate size. This means
that the agglomerates usually have the shape of slightly elongated ellipsoids, but
their shapes can vary from a sphere to a jet-shape. They did not form any chainlet
or fiber structures.

The distribution of agglomerate size depended on the effective volume (the volume
of all particles and the merged interphase layer). The histograms of agglomerate
size were similar for sets with similar effective volumes of agglomerates, even if
the volume fractions of core particles were different.

If the volume fraction of particles increased, percolation was observed. This was
the state in which isolated agglomerates grew out to the continuous network of par-
ticles. The histograms were replaced by a single constant: the percolation coeffi-
cient. It is the fraction of spheres (from all spheres) participating in the independent
continuous network. In the first stage of percolation, the network of particles was
just formed, but there were still isolated agglomerates. In the next stage, the re-
maining isolated agglomerates merged with the existing continuous network. They
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joined the network. The final stage was the stage in which all particles form a con-
tinuous network. The fraction of isolated/percolated particles depends only on the
effective volume fraction of agglomerates.

Concerning the nearest particle distance, the particles are relatively close to their
nearest neighbors. This is observed even with low volume fractions of particles. If
the agglomeration is introduced, the gaps between particles from two neighboring
agglomerates are much larger. The analysis is meaningful for volume fractions
lower than 20%. Above this value, the applied simple analysis is distorted.

The paper also presents a set of parametrical equations valid for such types of mod-
els (models in which the particles have a tendency to form clusters). The paramet-
rical equations enable the numerical expression of mean distance between particles
(Eq.4), the volume of agglomerates (Eq.7), and the effective volume fraction of a
percolated network of particles (Eq.10).

All the conclusions were tested for systems with monodisperse spheres. The effect
of polydispersity will be investigated in further papers.
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