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A Computational Inverse Technique to Determine the
Dynamic Constitutive Model Parameters of Concrete
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Abstract: In this paper, a computational inverse technique is presented to deter-
mine the constitutive parameters of concrete based on the penetration experiments.
In this method, the parameter identification problem is formulated as an inverse
problem, in which the parameters of the constitutive model can be characterized
through minimizing error functions of the penetration depth measured in exper-
iments and that computed by forward solver LS-DYNA. To reduce the time for
forward calculation during the inverse procedure, radial basis function approxi-
mate model is used to replace the actual computational model. In order to improve
the accuracy of approximation model, a local-densifying method combined with
RBF approximation model is adopted. The intergeneration projection genetic al-
gorithm is employed as the inverse solver. Through the application of this method,
the parameters of HJC constitutive model are determined. Results show that the
identified constitutive parameters’ computational penetration depth and projectile
deceleration-time curves are closely in accordance with experimental data. The
proposed inverse approach is a potentially useful tool to effectively help identify
material parameters.

Keywords: inverse problem; parameters identification; radial basis functions;
local-densifying.

1 Introduction

Concrete has been widely used as the fundamental building construction material
for civil and military purposes. Concrete is a composite material which consists of
aggregate particles dispersed in a porous cement paste. As the differences of the
properties of the aggregate particles and cement paste in the physics and mechanics,
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the irregular shape and distribution of aggregate particles, and a lot of air voids con-
tained, the dynamic behavior of concrete is very complex. To describe the dynamic
behavior of concrete, a number of dynamic constitutive models have been devel-
oped recently, such as HJC model [Holmquist, Johnson and Cook (1993)], RHT
model [Riedel, Thoma, Hiermaier and Schmolinske (1999)], TCK model [Taylor,
Chen and Kuszmaul (1986)]. In general, the constitutive model for concrete con-
tains a lot of material constants. The determination of material parameters is an
important step in modeling and the need for precise material parameters is crucial
in both simulations and experimental results.

The material constitutive parameters are usually determined by using physical and
mechanical tests with specimens. For example, unconfined compressive strength
can be identified by uniaxial compression test. However, several parameters cannot
be directly determined from these experiments. They are often identified implic-
itly by performing a fitting method through sets of different experimental data. In
fact there are not enough test data for concrete material due to the limitations of
testing machines and difficulty of specimen design. Such as it usually can obtain
the test data for the strain rates lower than 104s−1, while it is difficult to obtain the
data for higher strain rate. Additionally, it is difficult to obtain available triaxial
compression test data with different confining pressure levels. Even though these
parameters are determined, it is essential to validate their availability. Generally,
the validation should be carried out from two aspects. Firstly, the constitutive model
based on these parameters should fit the available test data well. Secondly, the re-
sults from numerical computation for penetration of concrete slab should be in good
agreement with the experimental data. Thus it is time-consuming and requiring ex-
pensive installations and equipments to determine accurately these parameters. To
overcome these difficulties, it is obviously valuable to seek a reliable method to
identify these parameters of the constitutive model. Among those proposed meth-
ods, the method by employing inverse techniques appears more promising.

The computational inverse technique for determination of material constitutive pa-
rameters utilizes the complex relationships between the material responses and ma-
terial parameters. The relationships are often represented by a known mathemat-
ical model, which defines the forward problem. So if a set of accurately mea-
sured experimental response data is available, the material constitutive parameters
may be identified by solving an inverse problem properly formulated. The mate-
rial constitutive parameters can be determined by minimizing a particular norm of
the difference between the calculated and the experimental response data. Many
studies have been performed to determine the material constitutive parameters by
the inverse method. Markiewicz et al. [Markiewicz, Ducrocq and Drazetic (1998)]
developed an inverse method based on quasi-static and dynamic experiments to
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determine the elastic-plastic and viscoplastic parameters of the power and Cowper-
Symonds’ constitutive model. Fairbairn et al. [Fairbairn, Ebecken, Paz and Ulm
(2000)] used the inverse method for determination of probabilistic parameters of
concrete. Forestier et al. [Forestier, Massoni and Chastel (2002)] proposed an
inverse approach coupled to a 3D finite element software to estimate the param-
eters of Norton-Hoff constitutive law. Husain et al. [Husain, Sehgal and Pandey
(2004)] presented an inverse finite element procedure for determination of consti-
tutive tensile behavior of materials based on small punch test. Qu et al. [Qu, Jin
and Xu (2008)] used GA-based global optimization method for identification of
superplastic constitutive model parameters. Sedighi et al. [Sedighi, Khandaei and
Shokrollahi (2010)] adopted an inverse approach to determine the parameters for
Johnson-Cook and Zerilli-Armstrong constitutive models based on split Hopkinson
pressure bar data.

In this paper, a computational inverse technique is presented to determine the pa-
rameters of HJC concrete constitutive model based on penetration experiments. In
this work, the input data used for inverse procedure is penetration depth, which
can be obtained from the penetration experiments. LS_DYNA solver is adopted for
forward analysis to obtain responses with given constitutive parameters. Consider-
ing the forward calculations may be called for too many times during the inverse
process, the approximation model is applied to replace the actual one. RBF method
is adopted to construct the approximation model because of its fine performance
on computational efficiency, numerical stability and capacity of capturing nonlin-
ear behavior. In order to improve the accuracy of approximation model, a local-
densifying method combined with RBF approximation model is adopted. The con-
stitutive parameters can be identified by minimizing an objective function, which is
chosen as the error function defined by the sum of the squares of the deviations be-
tween the numerical results and the experimental measurements. A computational
optimization technique, intergeneration projection genetic algorithm (IP-GA), is
employed as an inverse operator to determine the constitutive parameters. The re-
sults of this combined computational-experimental investigation are presented in
the current paper.

2 Parameters of HJC concrete model

HJC constitutive model [Holmquist, Johnson and Cook (1993)] is widely used to
numerical computations for prediction of penetration and impact problems [John-
son , Beissel, Holmquist and Frew (1998); Beissel and Johnson (2000); Dawson,
Bless, Levinsion, Pedersen and Satapathy (2008); Liu, Ma and Huang (2009); Lian,
Zhang , Zhou and Ma (2010)], because this model describes the compressive be-
havior of concrete under large strains, high strain rates and high pressure. It can be



138 Copyright © 2011 Tech Science Press CMC, vol.25, no.2, pp.135-157, 2011

expressed in the following form:

σ
∗ = [A(1−D)+BP∗N ][1+C lnε

′∗] (1)

in which σ∗, P∗ and ε ′∗= ε̇/ε̇0 are the normalized equivalent stress, the normalized
pressure and the dimensionless strain rate, respectively, where σ , P and ε̇ are the
actual equivalent stress, hydrostatic pressure and strain rate, respectively. The nor-
malizing parameters are the quasi-static uniaxial compressive strength f c and the
reference strain rate ε̇0. Further, A, B, N and C represent the normalized cohesive
strength, normalized pressure hardening coefficient, pressure hardening exponent
and the strain rate coefficient, respectively. Material degradation is described by the
damage variable D(0≤ D≤ 1.0), resulting in reduction of the cohesive strength.

As described in the literature [Holmquist, Johnson and Cook (1993)], the HJC con-
crete model contains 19 parameters which should be determined. Some parameters
can be determined by simple tests. Some can be identified by calculating classi-
cal formulations based on the basic experiments; while some parameters should
be determined indirectly from a great number of data, which are obtained through
different experiments. According to these methods for determination of these pa-
rameters above mentioned, these can be divided into three groups, as follow:

In the first group, the value of parameters can be directly determined through physi-
cal and mechanical tests (compression, tensile, torsion test, et al.). For example, the
value of f c can be identified by quasi-static uniaxial compressive test. These pa-
rameters include initial density ρ0, f c, T , Smax, where T and Smax are the maximum
tensile hydrostatic pressure and the normalized maximum strength, respectively.

For the second group, these parameters can be determined by calculating classical
formulations based on the tests or using recommended values from the literature
[Holmquist, Johnson and Cook (1993)]. They are as follows:

(a) Shear modulus G and elastic bulk modulus Kelastic are determined from elasticity
theory using Yong’s modulus and Poisson’s rate.

(b) As defined be the difference between the undamaged strength and the com-
pletely fractured strength at a given pressure, the cohesive strength A can be deter-
mined by Eq. (1) for quasi-static conditions combining with experiments.

(c) The literature [Holmquist, Johnson and Cook (1993)] assumed that the rate
effects were independent of initial strength and were constant for all concrete. So
the recommended value is used for C, which is 0.007.

(d) The damaged model constants, D2 and E f min, use the recommended values for
low sensitivity. Therefore, D2 is set to 1.0 and E f min is set to 0.01. The other
constant, D1, can be determined using equation ε

f
p +µ

f
p = D1(P∗+T ∗)D2 based on

the uniaxial compression test [Holmquist, Johnson and Cook (1993)].
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(e) The pressure constants, the crushing pressure Pcrush, the crushing volumet-
ric strain µcrush and the locking volumetric strain µlock can be calculated through
the computational formulations, pcrush = f c/3, µcrush = pcrush/Kelastic, µlock =
ρgrain/ρ0− 1, respectively [Holmquist, Johnson and Cook (1993)]. Where ρgrain

is the grain density.

(f) The constants, K1,K2,K3, which are represented the concrete in the full crushed
state, can also be obtained from shock Hugoniot data for granite and quartz [Marsh
(1980)].

For the third group, the parameters cannot be directly measured or determined by
the computational formulations. They can be identified implicitly from sets of data
obtained through different experiments. These parameters include B, N and the
locking pressure Plock, which will be identified by the inverse method in this study.

3 Statement of the problem

It is aimed to inversely determine the material constitutive parameters for concrete
from the measured penetration depths, which were measured from the penetration
experiments into concrete targets. In this study, the penetration into concrete targets
with 3.0 caliber-radius-head (CRH) steel penetrators are used as forward problem
and have been conducted by Forrestal et al.[Forrestal, Frew, Hickerson and Rohwe
(2003)] , as shown in Fig. 1. The projectiles were machined from 4340 Rc45 steel,
and had a nominal mass of 13 kg. Targets were cast in corrugated steel culverts
with a diameter of 1.83 m. In these experiments, the initial projectile velocity, the
projectile deceleration and the penetration depth were measured. These data are
very important for parameters identification by the inverse method.

Using the forward problem solver, the penetration depth of numerical calculation
can be obtained with the assumed constitutive parameters. In general, the obtained
results are different from the experimental data. The inverse procedure can then be
formulated by an optimization technique, which minimizes the sum of squares of
deviations between numerical calculated and experimental results. The optimiza-
tion problem can be stated as follow:

Minimize the objective function of error defined by

Err(r) =
N

∑
j=1

∥∥dm j−dc j(r)
∥∥2 (2)

where, r is a vector which collects the trial constitutive parameters, dm j indicates
penetration depth measured from experiments, dc j indicates computational pene-
tration depth, m denotes the “measured” value, c denotes the “calculated” value,
and N is the number of points of measured data.
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Figure 1: Projectile and target geometries. Dimensions in centimeter [Forrestal,
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In this paper, three Forrestal’s test (SNL-00-03/1, SNL-00-02/2, SNL-00-05/3) data
[Forrestal, Frew, Hickerson and Rohwe (2003)] are applied to determine the pa-
rameters in the inverse procedure. There are three group data including striking
velocity, penetration depth and projectile deceleration. So N is set to 3, and the Eq.
(2) can be rewritten as follow:

Err(r) =
3

∑
j=1

∥∥um j−uc j(r)
∥∥2 (3)

The constitutive parameters can be determined by solving the optimization problem
to minimize the objective function defined in Eq. (3).

4 Computational inverse technique for constitutive parameters identification

An inverse process for determination of the material constitutive parameters for
concrete is outlined in Fig. 2. Here LS-DYNA solver is used as the forward cal-
culation technique. Latin Hypercube design method is used to obtain a uniform
allocation inside the design domain of inversed parameters, and RBF method com-
bined with a local-densifying method is used to construct the response surface as
the input data for inverse approach. And the IP-GA is employed as the inverse
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operator to find the minimal Err by using the response surface. The detail of each
part will be given in the following sections.

  

 9
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4.1 FEM model

In a forward calculation, one needs to calculate penetration depth and the projec-
tile deceleration with trial constitutive parameters. Both efficiency and accuracy
are very important, as many times of forward computations may have to be carried
out in the later work and the process of the penetration of concrete is very com-
plex. LS-DYNA solver is used in this work as the forward calculator because of its
outstanding efficiency and accuracy for the penetration problem.

For forward computation, a 2D axisymmetric finite element model is established to
represent the penetration into concrete target, shown in Fig. 3. The projectile and
the concrete target were modeled as Lagrange meshes. A total of 208 square ele-
ments are used for the steel projectile. The projectile is modeled with a von Mises
material model (Mat_003 in LS-DYNA [Hallquist (2006)]) with linear isotropic
hardening. The main data used for the projectile are Young’s modulus , Poisson’s
ratio , yield stress , tangent modulus G = 15.0GPa. No strain rate effect is con-
sidered. The original density of the projectile (7830kg/m3) is slightly modified to
6730kg/m3 in order to obtain the total projectile mass of 13.0 kg. The concrete
target is modeled with HJC constitutive model. For parameters of HJC concrete
model, the first and second group parameters, which can be obtained based on Sec-
tion 2 and the reference papers [Forrestal, Frew, Hickerson and Rohwe (2003);
Bush (2010)], are shown in Tab. 1. While, the third group parameters will be
determined by the inverse method. For the concrete slab, the mesh size is very im-
portant as there is a problem of mesh size dependency of numerical results. In order
to reduce the mesh size dependency, the “Nonlocal” option is adopted. The model
bases on the concept of non-localization by Pijaudier-Cabot and Bazant [Cabot and
Bazant (1987)], and it depends on the state of the material within a radius of influ-
ence which surrounds the integration point.

Table 1: Material parameters for concrete

ρ0 (kg/m3)
2040

G (GPa)
7.917

A
0.79

C
0.007

T (GPa)
0.00255

Smax
30

f c (GPa)
0.023

Espo

10−6
D1
0.036

D2
1.0

E f min
0.01

Pcrush (GPa)
0.007667

µcrush
0.00128

µlock
0.299

K1 (GPa)
85

K2 (GPa)
-171

K3 (GPa)
208

In the present calculations, a reduced integration scheme with hourglass control is
adopted. The 2D_automatic_single_surface contact option of LS-DYNA is used
to define the contact behavior between projectile and target without friction. And
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Figure 3: 2D axisymmetric finite element model used in the penetration analysis

we adopt the element erosion option of LS-DYNA with a criterion based on the
equivalent plastic strain f s, which allows the integration time increment to remain
larger. The erosion strain is also sensitive to the computed results.

In order to make the finite element model available and reliable, it is important
to use the feasible mesh size and erosion strain value. Hence, the mesh size and
erosion strain are varied independently to analysis the sensitivity of the computed
results. First of all, it is necessary to set initial values for the inversed parameters,
B = 1.6, N = 0.8, Plock = 0.9GPa. And the initial striking velocity of projectile is
set to 336.6 m/s. Additionally, the range of erosion strain is recommended from 2
to 4 [Johnson, Beissel, Holmquist and Frew (1998)]. So three cases are discussed
of the effect of the erosion strain and mesh size, respectively. The analysis results
are shown in Fig. 4. It is found that the computed results converge gradually as
the mesh size decreases. And when the mesh size is bigger, the difference of the
calculated results for different erosion strain is larger. It also can be seen that when
the mesh size is small enough, the computed results converge gradually with the
increase of the erosion strain f s and the relative error of computed results is less
than 3%. Simultaneously, it is found that the cycle of integration and the CPU time
multiply as the mesh size decreases and the erosion strain increases. Thus, in order
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to obtain an available and reliable finite element model and fulfill the computation
efficiency, the concrete target was formed from 150×300 square elements with an
element size of 0.61 cm and the erosion strain of 3.0 was used.
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4.2 Sensitivity analysis

In order to reduce ill-posedness in the later stage of inverse analysis, the input
vector and output vector should have a strong causal-effect relationship. In other
word, it is necessary to evaluate the influence of the inversed parameters on the
response data. This is accomplished using a sensitivity analysis combined with
forward calculations.

At the beginning of sensitivity analysis, it is necessary to set initial values for the
inversed parameters as set in Section 4.1. Then the shot and projectile number
SNL-00-05/3 test [Forrestal, Frew, Hickerson and Rohwe (2003)] is applied to sen-
sitivity analysis, in which the initial striking velocity is 336.6 m/s and the penetra-
tion depth is 0.93 m. For the purpose of sensitivity analysis, five values are given
for each parameter, as listed in Tab. 2. And the three inversed parameter are varied
independently to do the sensitivity analysis. Hence, the forward calculation will
be carried out for 13 times, which are run on a personal computer ( eight 2.81GHz
Intel Core i7 processors with 4 GB of RAM running Windows XP).

The results of the sensitivity analysis for these parameters are shown in Figs. 5-
7. In every figure, the figure (a) depicts the penetration depth versus parameter
data. It is found that the penetration depth decreases gradually with the increase of
the value of parameter. Figure (b) shows the projectile deceleration-time data with
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Table 2: Five values of each parameter for sensitivity analysis

No. B N Plock (GPa)
1 0.8 0.1 0.08
2 1.0 0.3 0.2
3 1.2 0.6 0.5
4 1.6 0.87 0.9
5 2.0 1.0 1.5

different values of parameter. It is shown that the peak deceleration increases and
the penetration time decreases gradually as the value of parameter increases.
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Figure 5:  The sensitivity analysis for parameter B  at smVs /6.336= . (a) 

Penetration depth versus parameter B ; (b) Deceleration versus time data with 

different values for parameter B  

  

(a)                                    (b) 

Figure 5: The sensitivity analysis for parameter B at V s = 336.6m/s. (a) Pene-
tration depth versus parameter B; (b) Deceleration versus time data with different
values for parameter B

From the sensitivity analysis, it can be found that the inversed parameters are sen-
sitive to both penetration depth and projectile deceleration. Thus, these parameters
can be identified by inverse method for the next step. Simultaneously, we can ini-
tially design domains which cover the possible range of the inversed parameters
based on the sensitivity analysis and experimental data. The domains for parame-
ters are listed as follow: B[1.0, 2.0], N[0.1, 1.0], and Plock[0.08, 1.0]. These ranges
define a feasible domain of the parameters to be identified.

4.3 Local-densifying method based on RBF approximation model

A response surface identified through RBF method [Dyn, Levin and Rippa (1986)]
is proposed to find the optimal constitutive parameters by inverse operator. Consid-
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tration depth versus parameter N; (b) Deceleration versus time data with different
values for parameter N
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Figure 7: The sensitivity analysis for parameter lockP  at smVs /6.336= . (a) 

Penetration depth versus parameter lockP ; (b) Deceleration versus time data with 

different values for parameter lockP  
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tion depth versus parameter Plock; (b) Deceleration versus time data with different
values for parameter Plock

ering the large range of the inversed parameters to be investigated, it is necessary
to reduce the number of forward computations before constructing the RBF ap-
proximation model. To overcome the difficult, the Design of Experiments (DOE)
method is adopted. The DOE method, which is aimed at minimizing the number
of runs while simultaneously acquiring as much information as possible, generates
samples using uniform distributions in the entire sampled space. There are sev-
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eral DOE methods that have been proposed, such as the full factorial, D-optimal
and Latin Hypercube design. The Latin hypercube design (LHD) method [Mckay,
Beckman and Conover (1979)], which has been used extensively, is adopted in this
work. This technique is a space-filling design with constrainedly stratified sam-
pling method. The key advantage of this technique is that the number of samples
does not increase exponentially with the number of variables, and at the same time
it ensures that a small number of computer experiments with multiple levels will be
sufficient to investigate the potentially nonlinear relationships between input vari-
ables and output variables.

The number of simulations in LHD method is determined by the total number of
design variables involved. In this study, there are three design variables involved.
To construct a reasonably accurate approximation model, 30 sample points are con-
ducted initially within design space, as listed in Tab. 3.

After generating the LHD sample points, numerical computations are completed
by using LS-DYNA solver. The corresponding assessment indices, calculated from
these computations, are used as the response to construct the approximated model.
This approximation model can be constructed by RBF approximation technique, in
which the Gaussian radial function is adopted in the current study. The approxima-
tion model can be expressed as:

F(d) = f (B,N,Plock) (4)

where d represents the penetration depth.

Due to three measured data of penetration depth applied to parameters identifica-
tion, three RBF approximation models are constructed at three different striking
velocities.

While the accuracy of approximation is one of the most important issues in all
kinds of approximation assisted optimization methods. To improve the accuracy of
approximation model, it is necessary to increase sample size over some key local
regions.

Consequently, local-densifying method is an updating strategy of sampling method
focusing the limited sample resources on the concerned local regions. In the local-
densifying method, it usually adds one sample at the largest distance of specimen
on the basis of the second-order derivative of response surface. What’s more, the
current best combinations consisted of the current best design and its corresponding
boundary inversed parameters are sequentially added to the local regions where the
minimal and maximal responses of current approximation models take place.

Then the RBF approximation models are reconstructed using these densified sam-
ples for next step until the stop criteria are reached. The parameter, R, used as
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Table 3: Samples generated by LHD method

Number B N Plock(GPa)
1 1.8500 0.2647 0.25
2 1.0830 0.2953 0.65
3 1.8170 0.8947 0.28
4 1.0170 0.5050 0.40
5 1.8830 0.4753 0.86
6 1.5170 0.8353 0.16
7 1.2170 0.3547 0.95
8 1.1170 0.8650 0.52
9 1.2500 0.4447 0.13
10 1.3170 0.5653 0.68
11 1.7500 0.1747 0.80
12 1.3830 0.6247 0.37
13 1.7830 0.7750 0.92
14 1.9500 0.3250 0.56
15 1.2830 0.9253 0.77
16 1.6500 0.6850 0.59
17 1.9170 0.5950 0.31
18 1.6170 0.1153 0.46
19 1.6830 0.5347 0.10
20 1.5500 0.4150 0.89
21 1.4830 0.2350 0.19
22 1.1500 0.8047 0.22
23 1.7170 0.9847 0.71
24 1.3500 0.1450 0.74
25 1.0500 0.6553 0.83
26 1.1830 0.2053 0.34
27 1.5830 0.3853 0.49
28 1.9830 0.7453 0.62
29 1.4500 0.9550 0.43
30 1.4170 0.7147 0.98

an error indicator to gauge the accuracy of the RBF approximation model for stop
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criteria, is represented as follow:

R = 1−

n
∑

i=1
( fi− f̃ )2

n
∑

i=1
( fi− f̄ )2

(5)

Where fi is the actual value, f̃ is the value predicted by the RBF approximation
model, and f̄ is the average of all actual values. When R calculated from the RBF
approximation model is sufficiently close to one, the approximated model has high
accuracy.

In this work, this procedure is continued until the parameter R is greater than 0.9.
The parameters R are below 0.9 when the initial response surfaces are constructed
with initial 30 specimens. Then the local-densifying method is used. All of the
parameters R are greater than 0.9 until 35 specimens are used. It indicates that the
response surfaces are accurate enough to determine the inversed parameters.

4.4 Intergeneration projection genetic algorithm

The error function is given as the sum of nonlinear squares, as presented in Eq. (3).
The constitutive parameters identification problem can be solved as an optimization
problem. IP-GA [Xu, Liu and Wu (2001)] is adopted as the optimization strategy
to minimize the objective function in this paper. This method is one of the most
powerful nonlinear programming algorithms for solving differentiable nonlinear
programming problems in an efficient and reliable way.

In the IP-GA, the child generation is produced using information from the parent
and grandparent generations. IP-GA is a modification based on micro GA (µGA)
[Krishnakumar (1989)], to make use of its feature of small population size per
generation so as to maximize the efficiency. The intergeneration projection (IP)
operator aims to find a better individual by jumping along the move direction of the
best individuals at two consecutive generations so as to improve the convergence
rate [Xu, Liu and Wu (2001)]. The IP-GA combines the µGA with IP operator and
whereby has a better global convergence performance.

The search space of the three inversed variables have been given, which are dis-
cretized and translated into a chromosome of 16 bits length according to the binary
coding procedure in IP-GA. Thus there are a total of 216 possible combinations of
individuals. The population size and the probability of crossover for IP-GA are set
to 4 and 0.6, respectively. During this optimization algorithm, the stopping crite-
rion is imposed to limit each IP-GA run to a maximum of 1000 generations. The
iterative process will be terminated until the stopping criterion is reached.
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At the end of the optimization, the optimal material constitutive parameters can be
obtained from this procedure. Then, it is essential to validate the availability and
reliability of these parameters. This should be considered from two aspects. For
one thing, the value of objective function should be less than 0.01. For another
thing, the relative errors of penetration depth between the experimental test and nu-
merical calculation based on these parameters are below 8%, and the curves of the
projectile deceleration-time between the experimental test and numerical calcula-
tion should be in good agreement. If these demands are fulfilled, these parameters
are available and reliable. Otherwise, these parameters are used as a new sampling
point, which is added to update the approximation model, as shown in Fig. 2.

5 Results and discussion

As an application of the above described computational inverse technique, the con-
stitutive parameters of concrete were determined and listed in Tab. 4. It was found
that the optimal values were achieved with the total number of 38 samples. And
the value of the objective function was just 0.00743, which satisfied the demand.

Table 4: Inversed parameters and results

Inversed parameters Search range Inversed results
B [1.0, 2.0] 1.3871
N [0.1, 1.0] 0.37625

Plock(GPa) [0.08, 1.0] 0.596

Numerical verifications are also performed with the identified parameters. Fig. 8
and Tab. 5 show penetration depth versus striking velocity data, compared with
experiment data. As shown in Fig. 8, the line with empty symbols represent the
experimental data from Forrestal et al. [Forrestal, Frew, Hickerson and Rohwe
(2003)], and the line with solid symbols are obtained from the numerical compu-
tations. It can be seen that the results from the identified parameters coincide with
the experiment results well. From Tab. 5, it can be found that the minimum rela-
tive error for the penetration depth is just 1.6483%, while the maximum is 4.352%,
which is in the acceptable error range. It is noted that the relative error of the last
test (SNL-00-04/4) is 2.3135%. This test is not applied to identify the parameters.

Figures 9∼12 present the projectile deceleration-time data at the four different ve-
locities, compared with the experimental data. In these figures, the real lines rep-
resent the experimental data from Forrestal et al. [Forrestal, Frew, Hickerson and
Rohwe (2003)], and the lines with solid symbols are obtained through numerical
calculations. Form these figures, it is found that the projectile deceleration-time
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Figure 8: Penetration depth versus striking velocity for the concrete, 0.3=ψ  

 

 

 

Figure 8: Penetration depth versus striking velocity for the concrete, ψ = 3.0

Table 5: Penetration data with 3.0 CRH projectile at different initial velocity

Shot and pro-
jectile number

Striking
velocity
(m/s)

Penetration
depth of experi-
ment (m)

Penetration depth
of numerical com-
putation (m)

Relative
error
(%)

SNL-00-03/1 200.0 0.42 0.43828 4.352
SNL-00-02/2 250.0 0.62 0.598524 3.4638
SNL-00-05/3 336.6 0.93 0.94533 1.6483
SNL-00-04/4 378.6 1.18 1.1527 2.3135

data from numerical computations are in good agreement with experimental mea-
surements for the rise times, peak plateau responses and the declined times. Espe-
cially, it can be seen that the curve of deceleration-time is the best fitting at 336.6
m/s from Fig. 11.

In order to validate these inversed parameters available and reliable deeply, we per-
form the numerical computations for the penetration into the same concrete targets
with 6.0 CRH steel projectile, which were conducted by Forrestal et al. [Forrestal,
Frew, Hickerson and Rohwe (2003)]. The finite element model is established as
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Figure 9: Deceleration versus time data. Shot Number SNL-00-03/1, 0.3=ψ , 

smVs /200=  

Figure 9: Deceleration versus time data. Shot Number SNL-00-03/1, ψ = 3.0,
Vs = 200m/s

Section 4.1. The computed results are shown in Tab. 6. It can be found that the
computed results are in good agreement with experimental data. The relative er-
rors are less than 4%. Fig. 13 presents the projectile deceleration-time data at the
velocity of 378.6 m/s, compared with the experimental data. It is found that the de-
celeration is in very good agreement with measurement. It is very important for the
coincidence between the computed deceleration data and measured data. The de-
celeration data indicate the resisting force which the target exerts on the projectile,
and the dynamical behavior of the target.

With regard to these results, it is noted that the constitutive parameters identified
through the inverse method based on a set of experiment data are available and
reliable.

The presented inverse method is a helpful tool to efficiently and reliably identify
material constitutive parameters, providing scientific basis for FE model develop-
ment. Before the inverse computation, it is essential to analysis the sensitivity of
parameters of material constitutive model in order to make sure the inversed pa-
rameters. During the analysis, some parameters are not determined directly by
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Figure 10: Deceleration versus time data. Shot Number SNL-00-02/2, 0.3=ψ , 

smVs /250=  

 

Figure 11: Deceleration versus time data. Shot Number SNL-00-05/3, 0.3=ψ , 

smVs /6.336=  

Figure 10: Deceleration versus time data. Shot Number SNL-00-02/2, ψ = 3.0,
Vs = 250m/s

Table 6: Penetration data with 6.0 CRH projectile at different initial velocity

Shot and pro-
jectile number

Striking
velocity
(m/s)

Penetration
depth of experi-
ment (m)

Penetration depth
of numerical com-
putation (m)

Relative
error
(%)

SNL-00-08/2 238.4 0.58 0.59058 1.824
SNL-00-07/1 378.6 1.25 1.2004 3.968

experiment, but set recommended value derived from the literature, because these
parameters are not sensitive to the experimental data. In other words, the inversed
parameters must be sensitive to the response data. Then considering the number and
varying range of the inversed parameters, the DOE method is adopted to generate
the sample points in order to reduce the number of forward calculations. While
the distribution of sample points affects the accuracy of the approximation model.
Therefore, a more feasible DOE method will be considered in future work.
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Figure 11: Deceleration versus time data. Shot Number SNL-00-05/3, 0.3=ψ , 
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Figure 11: Deceleration versus time data. Shot Number SNL-00-05/3, ψ = 3.0,
Vs = 336.6m/s

6 Conclusions

This paper presents a computational inverse technique to determine the constitutive
model parameters of concrete based on the penetration experiments. LS-DYNA
solver is employed as the forward solver to calculate the response data for given
constitutive parameters. Using RBF method with the local-densifying method to
construct the response surface model, the relationships between the constitutive
parameters and penetration depth can be mapped accurately, simultaneously, re-
ducing the total computational time and improving accuracy of the constitutive
parameters. IP-GA is used as the inverse operator to determine the constitutive pa-
rameters. Through this work, the parameters of HJC concrete model were obtained.
The numerical computations of penetration of concrete target with the identified
constitutive parameters, give good results compared with experimental data. This
demonstrates the availability of this inverse technique.The presented method can
be adapted to other material constitutive model to obtain accurate parameters.
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Figure 12: Deceleration versus time data. Shot Number SNL-00-04/4, 0.3=ψ , 

smVs /6.378=  
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Table 6: Penetration data with 6.0 CRH projectile at different initial velocity 
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Figure 13: Deceleration versus time data. Shot Number SNL-00-07, 0.6=ψ , 

smVs /6.378=  
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Figure 13: Deceleration versus time data. Shot Number SNL-00-07, ψ = 6.0,
Vs = 378.6m/s
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