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Frequency Shift Curve Based Damage Detection Method
for Beam Structures

Y. Zhang1,2 and Z.H. Xiang1,3

Abstract: Vibration based damage detection methods play an important role in
the maintenance of beam structures such as bridges. However, most of them require
the accurate measurement of structural mode shapes, which may not be easily sat-
isfied in practice. Since the measurement of frequencies is more accurate than that
of mode shapes, this paper proposes a frequency shift curve (FSC) method, based
on the equivalence between the FSC due to auxiliary mass and the mode shape
square, which has been demonstrated to be effective in structural damage detec-
tion. Two damage indices based on the FSC are developed, which are called the
local outlier detection index and the global outlier detection index, respectively.
The efficiency and reliability of the proposed method are demonstrated by numeri-
cal simulations and experimental results. Compared with traditional methods, this
method can provide reliable results without the requirement of fixing many sensors
on the structure.
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1 Introduction

Vibration based damage detection methods have been widely studied for decades
as global damage detection techniques [Carden and Fanning (2004); Alvandi and
Cremona (2006); Doebling et al. (1998); Farrar (2001); Fan and Qiao (2011);
Hu, Wang, Fukunaga et al. (2001)]. Almost all these methods are based on the
structural dynamic properties, such as natural frequencies, mode shapes and damp-
ing. Pandey et al. proposed the mode shape curvature (MSC) method [Pandey et
al. (1991)], and the flexibility matrix (FM) method [Pandey and Biswas (1994)].
The MSC method was used for the identification of delamination [Hu, Fukunaga,
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Kameyama et al. (2002)], which is a well-known damage in laminated materials,
such as CFRP laminates [Hu, Sekine, Fukunaga et al. (1999)]. Stubbs et al. (1992)
proved that the strain energy method is effective on locating damages. Wang et
al. proposed a combination method using the test data of static deformation and
natural frequencies [Wang et al. (2001)]. Fukunaga et al. proposed a method only
using the data in frequency domain to locate the damage and evaluate the dam-
age extent, which, however, preliminarily needs an additional database relating the
change of the data in frequency domain to the damage position [Fukunaga et al.
(2002)]. Based on the MSC and the FM, Zhang and Aktan (1995) defined another
damage index based on the flexibility curvature.

Although the validities of aforementioned methods have been demonstrated by nu-
merical simulations and laboratory experiments in many literatures, it seems that
they all require high quality mode shapes. However, with the existing modal testing
methods, no matter using the forced vibration or the ambient vibration, the mea-
surement accuracy of mode shapes is not as ideal as that of natural frequencies.
In addition, many sensors have to be fixed on the structure during the testing and
a certain eigenvalue or singular value problem has to be solved. These could be
troublesome for onsite measurement. To solve this problem, Zhong et al. (2008)
used the derivative of highly accurate natural frequencies due to auxiliary mass to
detect damage. However, only numerical simulations were presented in that paper.
And the numerical error of derivatives calculated by the difference method could
seriously affect its performance in practice.

Another inconvenience of many traditional damage detection methods is the re-
quirement of comparing the dynamic properties of the damaged structure with those
of its intact status, which may not be always available in practice. To circumvent
this problem, Ratcliffe (1997) proposed a gapped smoothing method (GSM) using
modified Laplacian operator on the mode shape curvature. Then, Yoon et al. (2009)
extended the GSM and suggested a global fitting method (GFM).

Inspired by the method proposed by Zhong et al. (2008), we still want to use the
natural frequencies due to auxiliary mass to detect damage, because these frequen-
cies can be accurately measured without requiring densely fixing sensors on the
structure. For this purpose, this paper firstly obtains the analytical formulation of
the distribution of natural frequencies due to auxiliary mass over the beam, which
is called the frequency shift curve (FSC). Based on this formulation, we can easily
identify the equivalence between the FSC and the mode shape square, which has
been proven to be very effective on structural damage detection [Fang and Perera
(2009)]. Then two damage indices based on the FSC and the modified GSM and
GFM are proposed, which use neither the information of intact structures nor the
difference method to get the derivative. Finally, both numerical simulations and
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experiments have been conducted to demonstrate the effectiveness of this method.

The following text is organized as: Section 2 presents the theoretical explanation
of the equivalence between the mode shape square and the FSC by an interaction
model of an Euler-Bernoulli beam and a spring-mass system. Based on this analy-
sis, a local and a global index are proposed for damage detection. Section 3 gives
some numerical examples to validate this explanation and shows the potential of
these indices for damage detection. Section 4 gives experimental results for further
demonstration. Finally, conclusions and discussions are presented in Section 5.

2 Theoretical analysis

The auxiliary mass fixed on a beam structure will change the natural frequencies of
the system and the frequency shift curve could be illustrated to be equivalent to the
mode shape square. Based on this, two damage indices can be proposed.

2.1 The interaction between an Euler-Bernoulli beam and a spring-mass sys-
tem

A model of Euler-Bernoulli beam with a spring-mass system is shown in Fig.1.
In this model, the mass M is supported on a spring of large stiffness k at position
x0. This beam has bending stiffness EI and mass m̄ in unit length. For simplicity,
some practical factors such as damping are temporarily ignored here. However, we
can show later by experiments that these factors do not have crucial influence on
damage detection results.

The governing equations of the beam and the spring-mass system can be written
as:

m̄ü(x, t)+EIu′′′′ (x, t) = f (t)δ (x− x0) (1)

Figure 1: The interaction between an Euler-Bernoulli beam and a spring-mass sys-
tem
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Mq̈(t)+ kq(t) = ku(x0, t) (2)

where q(t) and u(x, t) are the vertical displacements of the mass and the beam
measured from the static equilibrium position, respectively; u′′′′= ∂ 4u

∂x4 , ü = ∂ 2u
∂ t2 , q̈ =

∂ 2u
∂ t2 ; δ is the Dirac delta function and f (t)δ (x− x0) is the contact force between
the mass and the beam; and

f (t) =−M (g+ q̈) (3)

Using the modal superposition method, the beam displacement can be represented
as:

u(x, t) = ∑
n

φn (x)qn (t) (4)

where φn (x) is the nth mode shape of the beam and qn (t) is the corresponding
modal coordinate.

Substituting Eq. (4) into Eq. (1), multiplying φm (x) on both sides and integrating
over the whole beam, obtains:∫ l

0
m̄φm ∑

n
φnq̈n (t) dx+

∫ l

0
EIφm ∑

n
φ
′′′′

n qn (t)dx =
∫ l

0
φm f (t)δ (x− x0)dx (5)

When the stiffness of the spring k is large enough, the displacement of the mass
could be approximately represented as:

q(t)≈ u(x0, t) = ∑
n

φn (x0)qn (t) (6)

Substituting Eqs. (3) and (6) into Eq. (5), and noting the orthogonal property of
mode shapes, Eq. (5) becomes:[

1+
M
Φ

φ
2
n (x0)

]
q̈n +ω

2
bnqn =−M

g+ ∑
i6=n

q̈iφi (x0)

Φ
φn (x0) (7)

where ωbn is the nth natural frequency of the beam; and Φn is an integration con-
stant:

Φn =
∫ l

0
ϕ

2
n (x)dx (8)

Thus, the natural frequencies of the whole system, including the beam and the
spring-mass system, can be approximately written as:

ω
2
n (x0) =

ω2
bn

1+ M
Φn

ϕ2
n (x0)

(9)
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From the above relation, one can define the nth FSC as:

Ωn (x) =
1

ω2
bn

+
M
Φn

ϕ2
n (x0)

ω2
bn

(10)

According to Eq. (10), it is easy to find that the nth FSC could contain all dynamic
information in the mode shape square φ 2

n (x).

2.2 Two new damage indices

Similar to the power mode shape curvature [Fang and Perera (2009)], the curvature
of the nth FSC (CFSC) of the damaged beam structure at each measurement point
xi could be calculated by using the central difference method:

κ
d
i,n =

(
Ω

d
n (xi)

)
≈ Ωd

n (xi−1)−2Ωd
n (xi)+Ωd

n (xi+1)
l2
i

(11)

where li is the distance between two measurement points and superscript ddenotes
the damaged state. For intact structures, the κd

i,n should be smoothly changed along
the beam length. While for damaged structures, the κd

i,n will have an abrupt change
at the damaged location. Therefore, the curve of κd

i,n could be used to locate the
damage theoretically. However, owing to the numerical errors introduced by the
central difference method, the identified damage information could not be very
reliable. To solve this problem, this paper proposes two indices similar to the GSM
[Ratcliffe (1997)] and the GFM [Yoon et al. (2009)] for damage detection. These
indices can be constructed by the local or global information of the κd

i,n curve, as
explained in following.

2.2.1 Local outlier detection index

Instead of directly taking the central difference result in (11), we can get a better
interpolation of the curvature of the nth CFSC at position xi, denoted as Cκn (xi),
according to its adjacent values as:

Cκn (xi) = c0,κn + c1,κnxi + c2,κnx2
i + c3,κnx3

i (12)

where the coefficients c0,κn, c1,κn, c2,κn and c3,κn are determined by κd
i−2,n, κd

i−1,n,
κd

i+1,n and κd
i+2,n. For boundary points, i.e. x1 and x2, the coefficients are determined

by κd
2,n, κd

3,n, κd
4,n, κd

5,n as well as κd
1,n, κd

3,n, κd
4,n, κd

5,n respectively. In fact, the cubic
polynomial in (12) is the Lagrange interpolating polynomial determined by the four
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Figure 2: The CFSC and calculated cubic polynomial at point xi

nearest CFSC points. Fig. 2 shows the CFSC and the calculated cubic polynomial
at point xi.

Based on the CFSC and its cubic interpolation, the nth local outlier detection index
(LODI) is defined as:

δLn (xi) =

(
Cκn (xi)−κd

i,n

)2

max
i

[(
Cκn (xi)−κd

i,n

)2
] (13)

When N (N > 1) modes are considered, we can use the combined LODI

δL =
1
N

N

∑
n=1

δLn (14)

and normalize it by its maximum value.

2.2.2 Global outlier detection index

The CFSC can also be fitted globally by using a polynomial pn (x) of degree Sn:

pn (x) =
Sn

∑
i=0

pi,nxi (15)

The optimum Sn can be iteratively determined as follows:

Let Sn = 3 at the beginning;
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Construct a Vandermonde matrix based on the location coordinates x = [xi]
T:

Vn =


xSn

1 xSn−1
1 · · · 1

xSn
2 xSn−1

2 · · · 1
· · · · · ·
xSn

T xSn
T · · · 1

 (16)

where T denotes the number of measurement points.

Decompose the Vandermonde matrix Vn into an upper triangular matrix Rn and an
orthogonal matrix Qn:

Vn = Qn ·Rn (17)

If the condition number of Rn is less than a pre-specified threshold, say 1×1010 in
this paper, let Sn = Sn +1 and go to step (2). Otherwise, stop.

With the optimumSn, the coefficients pi,n can be easily obtained:

[pSn,n, pSn−1,n, · · · , p0,n]
T = V−1

n ·Ωd
n (x) = R−1

n ·QT ·Ωd
n (x) (18)

Fig. 3 shows the nth CFSC and globally fitted polynomial pn (x), from which the
global outlier detection index (GODI) can be defined as:

δGn (xi) =

[
pn (xi)−κd

i,n

]2

max
i

{[
pn (xi)−κd

i,n

]2
} (19)

2.2.2 Global outlier detection index 

The CFSC can also be fitted globally by using a polynomial ( )xpn  of degree nS : 
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where T  denotes the number of measurement points. 
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Fig 3: The nth CFSC and calculated polynomial ( )xpn  
 

Figure 3: The nth CFSC and calculated polynomial pn (x)
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When N (N > 1) modes are considered, we can use the combined GODI

δG =
1
N

N

∑
n=1

δGn (20)

and normalize it by its maximum value.

3 Numerical examples

In this section, numerical examples of a simply supported beam are presented to
firstly check the validity of Eq. (10), and then to demonstrate the potential of the
damage indices proposed in Section 2. All these simulations are conducted by the
Linear Perturbation Frequency Package in the ABAQUS finite element software.

3.1 The equivalence between the FSC and the mode shape square

An interaction system with a simply-support beam and a spring-mass system with
M = 500kg and k = 1×1011N / m is adopted to verify the equivalence between the
FSC and the mode shape square. The beam has the cross-sectional area A = 0.5m2,
the moment of inertia I = 0.014m4, the length l = 10m, the elastic modulus E =
70GPa, and the density ρ = 2700kg / m3.

Figure 4: The FEM model of the interaction of a beam and a spring-mass system

As Fig. 4 shows, during the simulation, the beam is equally divided into 40 two-
dimensional beam elements; and the spring-mass system moves along the beam
node by node. At each node, the natural frequencies of the whole system can be
easily calculated. Thus, obtains the FSCs numerically. Then, as Fig. 5 shows,
we can compare the numerical FSCs with the ones calculated by Eq. (10). It
observes that the maximum relative error between the numerical and the analytical
FSCs is less than 1%. This proves the validity of Eq. (10). In addition, since the
FSC is a linear function of ϕ2

n (x) (refer to Eq. (10)), the normalized FSC should
be equivalent to ϕ2

n (x), which has been proved to be very effective on structural
damage detection [Fang and Perera (2009)].

3.2 Damage detection based on two indices

Both single and multiple damage scenarios are considered to study the effectiveness
of the proposed damage indices. In single damage scenario, elements 13 and 14
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(a) The first mode 

 

(b) The second mode 
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(c) The third mode 

Figure 5: The first three FSCs 

3.2 Damage detection based on two indices 

Both single and multiple damage scenarios are considered to study the effectiveness of 
the proposed damage indices. In single damage scenario, elements 13 and 14 (3m-3.5m 
away from the left end of the beam) are regarded as the damaged region with 20% 
reduction in height. In multiple damage scenario, elements 13, 14 and element 23 
(5.5m-5.75m away from the left end of the beam) are regarded as the damaged regions 
with 20% reduction in height. 

 
Figure 6: Single damage detected by the LODI 

Figure 5: The first three FSCs

(3m-3.5m away from the left end of the beam) are regarded as the damaged region
with 20% reduction in height. In multiple damage scenario, elements 13, 14 and
element 23 (5.5m-5.75m away from the left end of the beam) are regarded as the
damaged regions with 20% reduction in height.

Fig. 6 plots the LODIs of the first two modes for the single damage scenario. From
this plot, one can clearly identify the peak value at the damaged region, although
there are some noises nearby. However, these noises can be greatly suppressed if
we use the combined LODI.

Fig. 7 plots the GODIs of the first two modes for the single damage scenario.
Compared with Fig. 6, we can easily conclude that the GODIs can clearly identify
the damage with fewer noises.

Fig. 8 plots the LODIs of the first two modes for the multiple damages scenario. It
observes that the first damage (elements 13 and 14) can be successfully identified
by a clear peak at that position no matter using only mode 1, mode 2 or their
combination; while there are two peaks near the second damage (element 23) if
only use mode 1. All in all, it seems that the combined LODI can give more reliable
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Figure 6: Single damage detected by the LODI

Figure 7: Single damage detected by the global outlier detection operator
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Figure 8: Multiple damages detected by the LODI

Figure 9: Multiple damages detected by the GODI
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damage information.

Fig. 9 plots the GODIs of the first two modes for the multiple damages scenario. It
observes that although the GODI using mode 2 fails to identify the second damage,
the GODI using mode 1 shows better performance than the LODI: both two dam-
ages are indicated by clear peaks and the amplitude at the first damage is as twice
high as that at the second damage. In addition, similar to the LODI, the GODI
using the combination of mode 1 and mode 2 looks more reliable.

4 Experimental verification

With the confidence obtained in numerical simulations, a simple experiment was
carried out to give further verification for these proposed indices.

Figure 10: The photograph of the tested beam

4.1 The experiment setup

The photograph of a thin steel beam in dimension of 1200mm×30mm×4.5mm is
shown in Fig 10. This beam was clamped with the span of 1000mm and 19 nodes
were marked on the beam at the uniform interval of 50mm. A single damage of
20mm in width produced by reducing the height to 4mm was located at 350mm
away from the left end. A 500g auxiliary mass could be clamped at different posi-
tions of the beam (shown in Fig 11).

During the experiment, the auxiliary mass moved node by node from the left end to
the right end. At each node, the free vibration response of the beam was recorded
by an accelerometer fixed on the auxiliary mass. From these signals, the natural
frequencies of the whole system were calculated by the FFT method.
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Figure 11: The photograph of the damage and additional mass

4.2 Experimental results

The first two natural frequencies of the mass-beam system were measured when
the mass moved on the beam node by node. Then the two damage indices were
used to detect the single damage, which are plotted in Fig. 12 and Fig. 13.

Figure 12: The damage detected by the LODI
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Figure 13: The damage detected by the GODI

From Fig. 12 and Fig. 13, it observes that both indices could detect the damage with
a clear peak at the damaged position. However, similar to the conclusion drawn in
numerical simulations, the GODI shows better performance than the LODI, be-
cause the amplitudes of the LODIs are exceptionally high at the boundary nodes,
which are false indications of damage. This is probably because the cubic polyno-
mial values at boundary nodes are determined by only one side of κd

i,n. In addition,
contrary to the observations in numerical simulations, the indices using mode 1
can give better result than those using mode 2 or the combination of mode 1 and
mode 2. This is probably because the lower frequency could be measured more
accurately in the experiment.

5 Discussion and conclusion

Based on a simple theoretical model, this paper firstly demonstrates the equivalence
between the FSC and the mode shape square. This is the foundation that ensures
the success of damage detection from the change of the FSC. In addition, Eq. (10)
implies that the FSC could be more sensitive to the mode shape square (contains the
damage information) if the mass M is heavier. However, since the theoretical anal-
ysis is based on linear equations, the mass M should not be too heavy to produce
large deformations.
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To avoid the adverse influence of the numerical errors produced by the central dif-
ference method, two damage indices are proposed based on the change of locally
interpolated or globally fitted CFSC. Both numerical simulations and experimental
results demonstrate the validity of these two indices. However, it seems that the
boundary effect would affect the detection accuracy of the LODI, while the GODI
usually gives better results.

All in all, the proposed damage detection method can be easily implemented in
practice, because it uses only the frequency due to auxiliary mass, which can be
accurately measured with a single accelerator.
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