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Modeling of Moisture Diffusion in Permeable
Fiber-Reinforced Polymer Composites Using

Heterogeneous Hybrid Moisture Element Method
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Abstract: This study proposes a two-dimensional heterogeneous hybrid mois-
ture element method (HHMEM) for modeling transient moisture diffusion in per-
meable fiber-reinforced polymer composites.

The HHMEM scheme is based on a heterogeneous hybrid moisture element (HHME),
with properties determined through an equivalent hybrid moisture capacitance/con-
ductance matrix. This matrix was calculated using the conventional finite element
formulation in space discretization as well as the θ -method in time discretization
with similar mass/stiffness properties and matrix condensing operations. A coupled
HHME-FE scheme was developed and implemented in computer code MATLAB in
order to analyze the transient moisture diffusion characteristics of composite mate-
rials containing multiple permeable fibers. The analysis commenced by comparing
the performance of the proposed scheme with that of conventional FEM to model
the moisture diffusion process. Both hexagonal and square fiber arrangements were
studied. Having validated its performance, the scheme was then employed to inves-
tigate the relationship between the volume fraction of the permeable fibers in the
resin composite and the rate of moisture diffusion. It was found that the moisture
diffusion was significantly retarded as the volume fraction of the fibers increased.

The HHMEM approach proposed in this study provides a straightforward and effi-
cient means of modeling transient moisture diffusion in composite materials con-
taining multiple permeable fibers. This is because only one HHME moisture char-
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acteristic matrix of fibers requires calculation for all HHMEs sharing the same
characteristics. Furthermore, varying volume fractions can be modeled without
modifying the original model simply by controlling the size of the inter-phase re-
gion within the HHME domain.

Keywords: Modeling multiple permeable fibers, Transient moisture diffusion,
Heterogeneous hybrid moisture element method.

1 Introduction

Fiber-reinforced polymer composites absorb moisture during their service life, prin-
cipally through their resin matrix, as well as through their fibers when they are per-
meable [Tsai and Hahn (1980)]. The moisture impacts the mechanical properties
of composites, binding capacities and interfaces. Because of these effects, it is of
interest to determine how quickly moisture will diffuse into the composite.

The moisture diffusion characteristics of composites have attracted considerable
attention [Shen and Springer (1977); Browning, Husman and Whitney (1977)].
Typically, transient moisture diffusion under normal environmental conditions is
approximated as a Fickian process. Thus, the analytical models designed to ex-
plore the moisture diffusion characteristics are drawn from a homogenized model.
In homogeneous materials, the transport of moisture is governed by (1) the maxi-
mum moisture content (which generally varies as a strong function of the relative
humidity) and (2) the effective diffusivity (which typically varies as a strong func-
tion of temperature and the volume fraction of the fibers). However, the effective
or average properties ignore the micro-structural heterogeneity. Hence, the homog-
enized rule-of-mixtures approach may not effectively describe the time-dependent
moisture content field under transient conditions [Vaddadi, Nakamura and Singh
(2003)].

Researchers have expended an enormous amount of effort on developing various
numerical techniques for modeling and calculating heterogeneous materials with
imbedded inclusions and surrounding interphase. A numerical model, called rep-
resentative volume element (RVE), was proposed to represent unidirectional fiber-
reinforced composites. Several studies [Yang, Yang, Ma and Liu (2010); Gueribiz,
Rahmani, Jacquemin, Frèour, Guillèn and Loucif (2009)] exist in which the RVE
was analyzed to determine the effective moisture diffusivity of composite material.
The RVE was chosen as the basic cell of the composite medium. However, some
issues need to be carefully addressed when carrying out such analyses. First, the
correct RVE corresponding to the assumed fiber distribution must be isolated. Sec-
ond, the correct boundary conditions must be applied to the chosen RVE in order
to model the various load situations.
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The conventional finite element method (FEM) is commonly employed in such
situations as it provides a convenient means of understanding the mechanical be-
haviors of fiber-reinforced composites [e.g., Aditya and Sinha (1996); Vaddadi,
Nakamura and Singh (2003); Pahr and Böhm (2008); Takashima, Nakagaki and
Miyazaki (2007)]. However, a large number of fine finite elements are required,
and mesh modeling is generally a tedious and complicated task, particularly when
the aim is to clarify the relationship between the volume fraction of the fibers and
the specific property of the materials.

In a series of related studies, Liu and Chiou (2003-2005) discussed the recent de-
velopments in 2-D and 3-D infinite element methods (IEM). The conventional IEM
approach was implemented through computer codes to deal with the various types
of classical elasticity and singularity problems. Liu, Chiou and Chen (2004-2005)
also extended the IEM to address elastostatic problems in which the constituent ma-
terial properties were heterogeneous. The related background and knowledge of the
earlier work is summarized in the literature [Guo (1979); Ying (1995)]. However,
to date, IEM analysis has been limited to the solution of solid mechanics problems.

This study develops a novel, efficient and convenient numerical technique, known
as the heterogeneous hybrid moisture element method (HHMEM), to characterize
transient moisture diffusion in composite materials with permeable fibers. Both
hexagonal and square fiber arrays are considered in the matrix. The proposed
numerical method is used to study the transient moisture diffusion process; this
includes the effects brought about by varying the volume fraction on the rate of
moisture diffusion.

2 Heterogeneous hybrid moisture element method

In this section, a heterogeneous hybrid moisture element formulation is derived for
modeling the 2-D transient moisture diffusion problem. The basis of the proposed
method is a heterogeneous hybrid moisture element (HHME) in which exists an
elastic inclusion or a void of arbitrary geometry (for example, circle), as shown in
Fig. 1(a). The element domain is decomposed into two separate sub-domains, as
shown in Fig. 1(b) and (c), each with dissimilar material characteristics. The two
domains represent, respectively: (I) the inter-phase sub-domain with boundaries Γ0
and Γs; and (II) the inclusion sub-domain with a boundary Γs. Γ0 and Γs comprise,
respectively, the element’s outer boundary accompanied by neighboring elements
as well as the inner interface boundary between the inter-phase and the inclusion
sub-domains. The derivations below initiate by establishing the element matrix
equation.
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2.1 Governing equation of moisture diffusion

In the existing modeling method, the transient moisture diffusion equation is anal-
ogous to that of heat conduction. The analogous technique for a homogeneous
material system [Crank and Park (1956)] has recently been extended to include a
multi-material system [Wong, Teo and Lim (1998); Wong, Rajoo, Koh and Lim
(2002)], and hence it is suitable for the analysis of moisture diffusion in a hetero-
geneous composite material filled with permeable fibers.

To enforce continuity across a bi-material interface for modeling of moisture diffu-
sion in a multi-material system, a moisture wetness variable, W, is introduced. W
is defined as

W =
C

Csat
, 1≥W≥ 0. (1)

where C and Csat are, respectively, the moisture concentration and the maximum
moisture concentration that can be absorbed by the material. The lower limit of W,
i.e. W = 0, indicates that the material is completely dry, while the upper limit, i.e.
W = 1, indicates that the material is fully saturated with moisture. The “wetness”
thermal-moisture analogy scheme for the current finite element implementation is
presented in Tab. 1.

Consider a 2-D plane region with a boundary s. The differential equation for the

 4

moisture analogy scheme for the current finite element implementation is presented in 1 
Tab. 1. 2 

Consider a 2-D plane region with a boundary s . The differential equation for the 2-D 3 
moisture diffusion problem is given by 4 

 5 

Figure 1: Element decomposition: (a) heterogeneous hybrid moisture element; 6 
(b) inter-phase sub-domain; and (c) inclusion sub-domain 7 

 8 

Table 1: FEA thermal-moisture analogy for moisture diffusion modeling 9 

Properties Thermal Moisture 

Field variable Temperature, T  Wetness, W  

Density ρ  ( 3kg/m ) 1 

Conductivity K  ( oW/m C⋅ ) satD C∗  ( kg/s m⋅ ) 

Specific capacity c  ( oJ/kg C⋅ ) satC  ( 3kg/m ) 

 10 

Figure 1: Element decomposition: (a) heterogeneous hybrid moisture element; (b)
inter-phase sub-domain; and (c) inclusion sub-domain
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Table 1: FEA thermal-moisture analogy for moisture diffusion modeling

Properties Thermal Moisture
Field variable Temperature, T Wetness, W

Density ρ(kg / m3) 1
Conductivity K(W / m · oC) D∗Csat(kg / s ·m)

Specific capacity c(J / kg · oC) Csat(kg / m3)

2-D moisture diffusion problem is given by

∂W
∂x

(
Dx

∂W
∂x

)
+

∂W
∂y

(
Dy

∂W
∂y

)
=

∂W
∂ t

. (2)

and has boundary conditions of

W = W0 |s=sD and Dxnx
∂W
∂x

+Dyny
∂W
∂y

= fB |s=sN . (3)

where Dx and Dy are the moisture diffusion coefficients for the x- and y-directions,
respectively, nx and ny are directional cosines, and fB is the boundary flux, which
has a positive value when directed into the body of interest. Let sD and sN respec-
tively denote the parts of s where the Dirichlet and Neumann boundary conditions
are specified, where s = sD∪ sN and sD∩ sN =6 0.

The unit element matrix equation can be obtained from the governing differential
equation, Eq. (2), by applying Galerkin’s weighted residual approach. The result-
ing element matrix equation has the form

[Me]{Ẇe}+[Ke]{We}= {Pe}, (4)

in which the element moisture capacitance matrix is given by

[Me] =
∫

[N]T [N] dxdy, (5)

the element moisture conductance matrix has the form

[Ke] =
∫

[B]T [D][B] dxdy, (6)

and finally

{Pe}=
∫

[N]T fB dsN . (7)
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Note that in the equations above, [B] and [N] denote the shape function derivative
matrix and the shape function matrix, respectively.

The diffusivity matrix is given by

[D] =
[

Dx 0
0 Dy

]
. (8)

For the time discretization of the system of ordinary differential equation, Eq.
(4), we apply the well-know θ -method [Lewis, Morgan, Thomas and Seetharamu
(1996)], which results in the equation

(Me +θ ·∆t ·Ke) ·W n+1
e = [Me− (1−θ) ·∆t ·Ke] ·W n

e +∆t ·Pe. (9)

Let φ = θ −1 and substitute it into Eq. (9), get

(Me +θ ·∆t ·Ke) ·W n+1
e = [Me +φ ·∆t ·Ke] ·W n

e +∆t ·Pe, (10)

where W n
e denotes the known moisture wetness at the current time tn, the time step

increment ∆t is defined as ∆t = tn+1− tn and (Me +θ ·∆t ·Ke) denotes the com-
bined moisture capacitance/conductance matrix. Clearly, this is a system of linear
algebraic equations with respect to the unknown vector W n+1

e as the approximation
of the moisture wetness at the new time-level tn+1. Here the parameter θ is related
to the applied numerical method and is an arbitrary parameter on the interval [0,
1]. It is worth emphasizing that in θ = 0.5, the method yields the Crank-Nicolson
implicit method which produces a higher accuracy for time discretization [Crank
and Nicolson (1947)]. Therefore, the parameter θ in the current numerical analysis
is set as 0.5.

Another practical consideration was a proper time increment. If the time increment
is not selected properly, the results can exhibit spurious numerical oscillation (if the
time increment is too short). The guideline in Ref. [Hibbitt, Karlsson and Sorensen
(2004)] suggests that the time step increment (∆t) should be slightly greater than
∆l2/(6 ·θ ·D), where D is the diffusivity and ∆l is a typical element dimension.

2.2 2-D hybrid moisture element formulation

In the formulation, the material properties are assumed to be linearly elastic and
isotropic, but are heterogeneous from each sub-domain. As shown in Fig. 2, the
radius of the inclusion sub-domain, rinc, and the radius of the element domain,
r, have the following relationship: rinc = r× cs where c is a specific compatible
proportionality constant and s is a specific number of chosen element-layers in
the inter-phase sub-domain. Then, the thickness of the inter-phase sub-domain is
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r− rinc. The separate formulations for the two sub-domains are derived (index
notation is used) as follows:

(I) Formulation in the inter-phase sub-domain:

The similar partition concept [Guo (1979)] is applied to the inter-phase sub-domain,
as shown in Fig. 2(a). The meshing steps are described as follows: First, the outer
boundary (element domain boundary), Γ0, is properly discretized with the total
number of 2m master nodes (represented by symbol “o”), ordered in a counter-
clockwise direction. Second, when the global origin O located in the inclusion
region is chosen as a similar partition center, and when a certain number of chosen
element-layers s and a certain compatible proportionality constant c ∈ (0,1) are
taken, similar polygons Γ1, Γ2, · · ·, Γs of Γ0 are constructed with center O accord-
ing to the proportionality constants c1, c2, · · ·, cs, respectively. The region bounded
between Γi−1 and Γi is called the i-th element-layer (i= 1, 2, · · ·, s). Third, straight
lines are drawn from the origin to the master nodes, and each individual Γi is reg-
ularly discretized, similar to Γ0. The nodal number and coordinates of the nodes
on each individual Γi can be determined from the master node coordinates under
geometrically similar conditions. Fourth, each element-layer is auto-meshed into
several four-node quadrilateral elements that are similar to one another from the
element-layers in a radial direction.

Both the element moisture capacitance matrix [Me] and the element moisture con-
ductance matrix [Ke] for each quadrilateral element in the element layer of the inter-
phase sub-domain (i.e. the region between boundaries Γ0 and Γ1) can be calculated
and assembled into global matrices, i.e. [M] and [K], using the conventional finite
element formulation. The assembled matrices of the outermost element-layer (1st
element-layer) are therefore expressed as

[M] =
[

Ma −BT

−B Mb

]
2m×2m

(11)

and

[K] =
[

Ka −AT

−A Kb

]
2m×2m

, (12)

where Ma, Mb, and B are sub-matrices of the assembled matrix [M] with identical
dimensions m×m, Ka, Kb, and A are sub-matrices of the assembled matrix [K]
with identical dimensions m×m, and BT and AT are the transposes of B and A,
respectively. Since the element layer matrices [M] and [K] are globally symmetrical
and banded, matricesMa, Mb, Ka, and Kb are also symmetrical and banded.

The nodal moisture wetness vector W n
i of the nodes on Γi at the time tn is defined



118 Copyright © 2011 Tech Science Press CMC, vol.26, no.2, pp.111-136, 2011

 7

Both the element moisture capacitance matrix [ ]eM  and the element moisture 1 

conductance matrix [ ]eK  for each quadrilateral element in the element layer of the inter-2 
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Figure 2: Heterogeneous hybrid moisture element mesh: (a) inter-phase sub-8 
domain; and (b) inclusion sub-domain 9 

Figure 2: Heterogeneous hybrid moisture element mesh: (a) inter-phase sub-
domain; and (b) inclusion sub-domain

as

W n
i ≡

[
W i,n

1 W i,n
2 · · · W i,n

2m

]T
. (13)

The nodal loading vector Pi of the nodes on Γi is defined as

Pi ≡
[
Pi

1 Pi
2 · · · Pi

2m

]T
. (14)

According to the similarity principle, it is obvious that the element moisture capac-
itance matrices of all of the element-layers are in dimensional dependence on the
ratio c2 and the element moisture conductance matrices of all of the element-layers
are identical. Hence, in accordance with Eq. (10), we can express the element ma-
trices of the s element-layers (from the 1st element-layer to the s-th element-layer)
as s sets of algebraic equations, namely,

for layer 1[
Ma +θ ·∆t ·Ka −BT −θ ·∆t ·AT

−B−θ ·∆t ·A Mb +θ ·∆t ·Kb

]
·
[
W n+1

0
W n+1

1

]
=
[

Ma +φ ·∆t ·Ka −BT −φ ·∆t ·AT

−B−φ ·∆t ·A Mb +φ ·∆t ·Kb

]
·
[
W n

0
W n

1

]
+∆t ·

[
P0
P1

] (15)
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for layer 2[
c2Ma +θ ·∆t ·Ka −c2BT −θ ·∆t ·AT

−c2B−θ ·∆t ·A c2Mb +θ ·∆t ·Kb

]
·
[
W n+1

1
W n+1

2

]
=
[

c2Ma +φ ·∆t ·Ka −c2BT −φ ·∆t ·AT

−c2B−φ ·∆t ·A c2Mb +φ ·∆t ·Kb

]
·
[
W n

1
W n

2

]
+∆t ·

[
−P1
P2

] (16)

for layer 3[
c4Ma +θ ·∆t ·Ka −c4BT −θ ·∆t ·AT

−c4B−θ ·∆t ·A c4Mb +θ ·∆t ·Kb

]
·
[
W n+1

2
W n+1

3

]
=
[

c4Ma +φ ·∆t ·Ka −c4BT −φ ·∆t ·AT

−c4B−φ ·∆t ·A c4Mb +φ ·∆t ·Kb

]
·
[
W n

2
W n

3

]
+∆t ·

[
−P2
P3

] (17)

for layer s[
c2(s−1)Ma +θ ·∆t ·Ka −c2(s−1)BT −θ ·∆t ·AT

−c2(s−1)B−θ ·∆t ·A c2(s−1)Mb +θ ·∆t ·Kb

]
·
[
W n+1

s−1
W n+1

s

]
=
[

c2(s−1)Ma +φ ·∆t ·Ka −c2(s−1)BT −φ ·∆t ·AT

−c2(s−1)B−φ ·∆t ·A c2(s−1)Mb +φ ·∆t ·Kb

]
·
[
W n

s−1
W n

s

]
+∆t ·

[
−Ps−1

Ps

]
(18)

Extracting each algebraic equation, combining the second equation for the i-th
element-layer, and the first equation for the (i+1)-th element-layer, and letting
X = Mb + c2Ma and Y = Kb +Ka, we have

(Ma +θ ·∆t ·Ka) ·W n+1
0 +

(
−BT −θ ·∆t ·AT

)
·W n+1

1
= (Ma +φ ·∆t ·Ka) ·W n

0 +
(
−BT −φ ·∆t ·AT

)
·W n

1 +∆t ·P0
(19)

(−B−θ ·∆t ·A) ·W n+1
0 +(X +θ ·∆t ·Y ) ·W n+1

1 +
(
−c2BT −θ ·∆t ·AT

)
·W n+1

2
= (−B−φ ·∆t ·A) ·W n

0 +(X +φ ·∆t ·Y ) ·W n
1 +

(
−c2BT −φ ·∆t ·AT

)
·W n

2

(20)

... (
−c2(i−1)B−θ ·∆t ·A

)
·W n+1

i−1 +
(
c2(i−1)X +θ ·∆t ·Y

)
·W n+1

i
+
(
−c2iBT −θ ·∆t ·AT

)
·W n+1

i+1 =
(
−c2(i−1)B−φ ·∆t ·A

)
·W n

i−1
+
(
c2(i−1)X +φ ·∆t ·Y

)
·W n

i +
(
−c2iBT −φ ·∆t ·AT

)
·W n

i+1

(21)

... (
−c2(s−2)B−θ ·∆t ·A

)
·W n+1

s−2 +
(
c2(s−2)X +φ ·∆t ·Y

)
·W n+1

s−1
+
(
−c2(s−1)BT −θ ·∆t ·AT

)
·W n+1

s =
(
−c2(s−2)B−φ ·∆t ·A

)
·W n

s−2
+
(
c2(s−2)X +φ ·∆t ·Y

)
·W n

s−1 +
(
−c2(s−1)BT −φ ·∆t ·AT

)
·W n

s

(22)
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(
−c2(s−1)B−θ ·∆t ·A

)
·W n+1

s−1 +
(
c2(s−1)Mb +θ ·∆t ·Kb

)
·W n+1

s
=
(
−c2(s−1)B−φ ·∆t ·A

)
·W n

s−1 +
(
c2(s−1)Mb +φ ·∆t ·Kb

)
·W n

s +∆t ·Ps
(23)

(II) Formulation in the inclusion sub-domain:

The partition processes for the inclusion sub-domain, as shown in Fig. 2(b), are
similar to the processes for the inter-phase sub-domain. The inner boundary Γs of
the inter-phase region is exactly the outer boundary of the inclusion region. Also,
when the global origin O is chosen as the similar partition center and when another
proportionality constant λ and element-layers p are taken, similar polygons Γs+1,
Γs+2, · · ·, Γs+p of Γs are generated with center O, according to the relative propor-
tionality constants λ 1, λ 2, · · ·, λ p. The region bounded between Γ j−1 and Γ j is
called the j-th element-layer ( j= s+1, s+2, · · ·, s + p). The assembled matrices of
the p element-layers (from the s+1-th element-layer to the s+p-th element-layer)
can be expressed as p sets of algebraic equations, namely,

for layer s+1[
M∆a +θ ·∆t ·K∆a −BT

∆
−θ ·∆t ·AT

∆

−B∆−θ ·∆t ·A∆ M∆b +θ ·∆t ·K∆b

]
·
[
W n+1

s
W n+1

s+1

]
=
[

M∆a +φ ·∆t ·K∆a −BT
∆
−φ ·∆t ·AT

∆

−B∆−φ ·∆t ·A∆ M∆b +φ ·∆t ·K∆b

]
·
[

W n
s

W n
s+1

]
+∆t ·

[
−Ps

Ps+1

] (24)

for layer s+2[
λ 2M∆a +θ ·∆t ·K∆a −λ 2BT

∆
−θ ·∆t ·AT

∆

−λ 2B∆−θ ·∆t ·A∆ λ 2M∆b +θ ·∆t ·K∆b

]
·
[
W n+1

s+1
W n+1

s+2

]
=
[

λ 2M∆a +φ ·∆t ·K∆a −λ 2BT
∆
−φ ·∆t ·AT

∆

−λ 2B∆−φ ·∆t ·A∆ λ 2M∆b +φ ·∆t ·K∆b

]
·
[
W n

s+1
W n

s+2

]
+∆t ·

[
−Ps+1
Ps+2

] (25)

for layer s+3[
λ 4M∆a +θ ·∆t ·K∆a −λ 4BT

∆
−θ ·∆t ·AT

∆

−λ 4B∆−θ ·∆t ·A∆ λ 4M∆b +θ ·∆t ·K∆b

]
·
[
W n+1

s+2
W n+1

s+3

]
=
[

λ 4M∆a +φ ·∆t ·K∆a −λ 4BT
∆
−φ ·∆t ·AT

∆

−λ 4B∆−φ ·∆t ·A∆ λ 4M∆b +φ ·∆t ·K∆b

]
·
[
W n

s+2
W n

s+3

]
+∆t ·

[
−Ps+2
Ps+3

] (26)

... for layer s + p[
λ 2(p−1)M∆a +θ ·∆t ·K∆a −λ 2(p−1)BT

∆
−θ ·∆t ·AT

∆

−λ 2(p−1)B∆−θ ·∆t ·A∆ λ 2(p−1)M∆b +θ ·∆t ·K∆b

]
·
[
W n+1

s+p−1
W n+1

s+p

]
=
[

λ 2(p−1)M∆a +φ ·∆t ·K∆a −λ 2(p−1)BT
∆
−φ ·∆t ·AT

∆

−λ 2(p−1)B∆−φ ·∆t ·A∆ λ 2(p−1)M∆b +φ ·∆t ·K∆b

]
·
[
W n

s+p−1
W n

s+p

]
+∆t ·

[
−Ps+p−1

Ps+p

] (27)
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Extracting each algebraic equation, combining the second equation for the j-th
element-layer and the first equation for the (j+1)-th element-layer, and letting R =
M∆b +λ 2M∆a and Q = K∆b +K∆a, we have

(M∆a +θ ·∆t ·K∆a) ·W n+1
s +

(
−BT

∆
−θ ·∆t ·AT

∆

)
·W n+1

s+1
= (M∆a +φ ·∆t ·K∆a) ·W n

s +
(
−BT

∆
−φ ·∆t ·AT

∆

)
·W n

s+1−∆t ·Ps
(28)

(−B∆−θ ·∆t ·A∆) ·W n+1
s +(R+θ ·∆t ·Q) ·W n+1

s+1 +
(
−λ 2BT

∆
−θ ·∆t ·AT

∆

)
·W n+1

s+2
= (−B∆−φ ·∆t ·A∆) ·W n

s +(R+φ ·∆t ·Q) ·W n
s+1 +

(
−λ 2BT

∆
−φ ·∆t ·AT

∆

)
·W n

s+2

(29)
... (
−λ 2( j−(s+1))B∆−θ ·∆t ·A∆

)
·W n+1

j−1 +
(
λ 2( j−(s+1))R+θ ·∆t ·Q

)
·W n+1

j
+
(
−λ 2( j−s)BT

∆
−θ ·∆t ·AT

∆

)
·W n+1

j+1 =
(
−λ 2( j−(s+1))B∆−φ ·∆t ·A∆

)
·W n

j−1
+
(
λ 2( j−(s+1))R+φ ·∆t ·Q

)
·W n

j +
(
−λ 2( j−s)BT

∆
−φ ·∆t ·AT

∆

)
·W n

j+1

(30)
... (
−λ 2(p−2)B∆−θ ·∆t ·A∆

)
·W n+1

s+p−2 +
(
λ 2(p−2)R+θ ·∆t ·Q

)
·W n+1

s+p−1
+
(
−λ 2(p−1)BT

∆
−θ ·∆t ·AT

∆

)
·W n+1

s+p =
(
−λ 2(p−2)B∆−φ ·∆t ·A∆

)
·W n

s+p−2
+
(
λ 2(p−2)R+φ ·∆t ·Q

)
·W n

s+p−1 +
(
−λ 2(p−1)BT

∆
−φ ·∆t ·AT

∆

)
·W n

s+p

(31)

(
−λ 2(p−1)B∆−θ ·∆t ·A∆

)
·W n+1

s+p−1 +
(
λ 2(p−1)M∆b +θ ·∆t ·K∆b

)
·W n+1

s+p

=
(
−λ 2(p−1)B∆−φ ·∆t ·A∆

)
·W n

s+p−1 +
(
λ 2(p−1)M∆b +φ ·∆t ·K∆b

)
·W n

s+p
+∆t ·Ps+p

(32)

Let Ns+p = λ 2(p−1)M∆b +φ ·∆t ·K∆b, Vs+p = λ 2(p−1)M∆b +θ ·∆t ·K∆b and FFs+p =
∆t ·Ps+p. Substituting them into Eq. (32), we have

W n+1
s+p =−V−1

s+p ·
(
−λ 2(p−1)B∆−θ ·∆t ·A∆

)
·W n+1

s+p−1

+V−1
s+p ·

[(
−λ 2(p−1)B∆−φ ·∆t ·A∆

)
·W n

s+p−1 +Ns+p ·W n
s+p +FFs+p

] (33)

By substituting Eq. (33) into Eq. (31), we get(
−λ 2(p−2)B∆−θ ·∆t ·A∆

)
·W n+1

s+p−2

+
[ (

λ 2(p−2)R+θ ·∆t ·Q
)

−
(
−λ 2(p−1)BT

∆
−θ ·∆t ·AT

∆

)
·V−1

s+p ·
(
−λ 2(p−1)B∆−θ ·∆t ·A∆

) ] ·W n+1
s+p−1

=
(
−λ 2(p−2)B∆−φ ·∆t ·A∆

)
·W n

s+p−2 +
(
λ 2(p−2)R+φ ·∆t ·Q

)
·W n

s+p−1
+
(
−λ 2(p−1)BT

∆
−φ ·∆t ·AT

∆

)
·W n

s+p

−
(
−λ 2(p−1)BT

∆
−θ ·∆t ·AT

∆

)
·V−1

s+p ·
[ (
−λ 2(p−1)B∆−φ ·∆t ·A∆

)
·W n

s+p−1
+Ns+p ·W n

s+p +FFs+p

]
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(34)

When Eq. (34) is compared with Eq. (32), three iteration formulas can be inferred:

Ni = λ
2(i−(s+1))R+φ ·∆t ·Q (35)

Vi = λ 2(i−(s+1))R+θ ·∆t ·Q
−
(
−λ 2(i−s)BT

∆
−θ ·∆t ·AT

∆

)
· (Vi+1)

−1 ·
(
−λ 2(i−s)B∆−θ ·∆t ·A∆

) (36)

FFn
i =

(
−λ 2(i−s)BT

∆
−φ ·∆t ·AT

∆

)
·W n

i+1

−
(
−λ 2(i−s)BT

∆
−θ ·∆t ·AT

∆

)
· (Vi+1)

−1 ·
[ (
−λ 2(i−s)B∆−φ ·∆t ·A∆

)
·W n

i
+(Ni+1) ·W n

i+1 +FFi+1

]
(37)

where i= s+1, s+2, s+3,· · ·, s+ p-1.

By substituting the above three iteration formulas into Eq. (34), we get(
−λ 2(p−2)B∆−θ ·∆t ·A∆

)
·W n+1

s+p−2 +Vs+p−1 ·W n+1
s+p−1

=
(
−λ 2(p−2)B∆−φ ·∆t ·A∆

)
·W n

s+p−2 +Ns+p−1 ·W n
s+p−1 +FFs+p−1

(38)

Rearranging Eq. (38) and another iteration formula can be inferred as

W n+1
j =−V−1

j ·
(
−λ 2( j−(s+1))B∆−θ ·∆t ·A∆

)
·W n+1

j−1

+V−1
j ·

[(
−λ 2( j−(s+1))B∆−φ ·∆t ·A∆

)
·W n

j−1 +N j ·W n
j +FFj

] (39)

where j= s+1, s+2, s+3,· · ·, s+ p.

From Eq. (39), we have

W n+1
s+1 =−V−1

s+1 · (−B∆−θ ·∆t ·A∆) ·W n+1
s

+V−1
s+1 ·

[
(−B∆−φ ·∆t ·A∆) ·W n

s +Ns+1 ·W n
s+1 +FFs+1

] (40)

By substituting Eq. (40) into Eq. (28), we get

(M∆a +θ ·∆t ·K∆a) ·W n+1
s

+
(
−BT

∆
−θ ·∆t ·AT

∆

)
·
{
−V−1

s+1 · (−B∆−θ ·∆t ·A∆) ·W n+1
s

+V−1
s+1 ·

[
(−B∆−φ ·∆t ·A∆) ·W n

s +Ns+1 ·W n
s+1 +FFs+1

] }
= (M∆a +φ ·∆t ·K∆a) ·W n

s +
(
−BT

∆
−φ ·∆t ·AT

∆

)
·W n

s+1−∆t ·Ps

(41)
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Rearranging Eq. (41), we have[
(M∆a +θ ·∆t ·K∆a)−

(
−BT

∆
−θ ·∆t ·AT

∆

)
·V−1

s+1 · (−B∆−θ ·∆t ·A∆)
]
·W n+1

s
= (M∆a +φ ·∆t ·K∆a) ·W n

s +
(
−BT

∆
−φ ·∆t ·AT

∆

)
·W n

s+1−∆t ·Ps

−
(
−BT

∆
−θ ·∆t ·AT

∆

)
·V−1

s+1 ·
[
(−B∆−φ ·∆t ·A∆) ·W n

s +Ns+1 ·W n
s+1 +FFs+1

]
(42)

Equation (42) can be expressed in the concise form

H(inclusion) ·W n+1
s = F(inclusion) (43)

where H(inclusion) and F(inclusion) denote the equivalent hybrid moisture capacitance/-
conductance matrix and associated loading vector for the inclusion sub-domain,
respectively. Along the inclusion/inter-phase interface Γs, however, the moisture
wetness compatibility and force equilibrium must be satisfied. Therefore, equations
(23) and (43) are combined and we have(
−c2(s−1)B−θ ·∆t ·A

)
·W n+1

s−1 +
[(

c2(s−1)Mb +θ ·∆t ·Kb
)
+H(inclusion)

]
·W n+1

s
=
(
−c2(s−1)B−φ ·∆t ·A

)
·W n

s−1 +
[
c2(s−1)Mb +M∆a +φ ·∆t · (Kb +K∆a)

]
·W n

s
+
(
−BT

∆
−φ ·∆t ·AT

∆

)
·W n

s+1

−
(
−BT

∆
−θ ·∆t ·AT

∆

)
·V−1

s+1 ·
[

(−B∆−φ ·∆t ·A∆) ·W n
s

+Ns+1 ·W n
s+1 +FFs+1

]
(44)

Again, let

Ns = c2(s−1)Mb +M∆a +φ ·∆t · (Kb +K∆a) ,

Vs =
(

c2(s−1)Mb +θ ·∆t ·Kb

)
+H(inclusion)

and

FFs =
(
−BT

∆
−φ ·∆t ·AT

∆

)
·W n

s+1
−
(
−BT

∆
−θ ·∆t ·AT

∆

)
·V−1

s+1 ·
[
(−B∆−φ ·∆t ·A∆) ·W n

s +Ns+1 ·W n
s+1 +FFs+1

] .

Four parameters representing the inter-phase sub-domain can be inferred:

Ni = c2(i−1)X +φ ·∆t ·Y (45)

Vi = c2(i−1)X +θ ·∆t ·Y −
(
−c2iBT −θ ·∆t ·AT ) · (Vi+1)

−1 ·
(
−c2iB−θ ·∆t ·A

)
(46)
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FFi =
(
−c2iBT −φ ·∆t ·AT

)
·W n

i+1

−
(
−c2iBT −θ ·∆t ·AT

)
· (Vi+1)

−1 ·
[ (
−c2iB−φ ·∆t ·A

)
·W n

i
+(Ni+1) ·W n

i+1 +FFi+1

]
(47)

W n+1
j =−V−1

j ·
(
−c2(i−1)B−θ ·∆t ·A

)
·W n+1

j−1

+V−1
j ·

[(
−c2(i−1)B−φ ·∆t ·A

)
·W n

j−1 +N j ·W n
j +FFj

] (48)

where i= 1, 2, 3,· · ·, s-1; and j= 1, 2, 3,· · ·, s.

Since Ns, Vs and FFs are known, then Ns−1, Ns−2, · · · , N1; Vs−1, Vs−2, · · · , V1;
FFs−1, FFs−2, · · · , FF1 can be iterated out using equations (45), (46) and (47), re-
spectively. From Eq. (48), we have the unknown moisture wetness W n+1

1 =−V−1
1 ·

(−B−θ ·∆t ·A) ·W n+1
0 +V−1

1 · [(−B−φ ·∆t ·A) ·W n
0 +N1 ·W n

1 +FF1] at the new
time-level tn+1. By substituting W n+1

1 into Eq. (19), we obtain the most important
equation, that is,[

(Ma +θ ·∆t ·Ka)−
(
−BT −θ ·∆t ·AT

)
·V−1

1 · (−B−θ ·∆t ·A)
]
·W n+1

0
=
[
(Ma +φ ·∆t ·Ka) ·W n

0 +
(
−BT −φ ·∆t ·AT

)
·W n

1 +∆t ·P0
]

−
(
−BT −θ ·∆t ·AT

)
·V−1

1 · [(−B−φ ·∆t ·A) ·W n
0 +N1 ·W n

1 +FF1]
(49)

Equation (49) can be expressed in the concise form

HZ ·W n+1
0 = FZ (50)

where HZ and FZ denote the equivalent hybrid moisture capacitance/conductance
matrix and associated loading vector for the heterogeneous hybrid moisture ele-
ment, respectively. The HZ term preserves the symmetry characteristic of the global
hybrid moisture capacitance/conductance matrix in FE representation. The FZ term
contains both effects of the outer surface traction and the known moisture wetness
at the current time tn. Once FZ is determined, W n+1

0 can be obtained from Eq. (49).
Then W n+1

1 , W n+1
2 , · · · , W n+1

s , · · · , and W n+1
s+p can be obtained sequentially from

equations (48) and (39).

In the current analysis, it is assumed that the boundary flux is zero and that only the
Dirichlet boundary condition is applied, i.e. concentrations only are prescribed at
the boundaries. Therefore, the element matrix equation can be rewritten as:[

(Ma +θ ·∆t ·Ka)−
(
−BT −θ ·∆t ·AT

)
·V−1

1 · (−B−θ ·∆t ·A)
]
·W n+1

0
=
[
(Ma +φ ·∆t ·Ka) ·W n

0 +
(
−BT −φ ·∆t ·AT

)
·W n

1

]
−
(
−BT −θ ·∆t ·AT

)
·V−1

1 · [(−B−φ ·∆t ·A) ·W n
0 +N1 ·W n

1 +FF1]
(51)

where Pi = 0 (i = 1, 2,· · ·, s, s+1,· · ·, s+ p).
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2.3 Implementation of coupled HHME-FE scheme

The HHMEM is derived from the conventional FEM in space discretization as well
as the θ -method in time discretization. Then it uses the similarity characteristic
of element mass/stiffness and the matrix condensing procedures to solve transient
moisture diffusion problems in heterogeneous materials and structures. A series
of layer-wise elements with similar shapes are virtually generated within the prob-
lem domain. The numerous resultant degrees of freedom (DOFs) are condensed
and transformed to those on the boundary master nodes only by means of derived
recurrence formulas.

When the problem domain includes multiple sub-domains with repetitive geom-
etry (for example, fiber inclusions), it is not favorable to employ finite elements
to model an entire domain with a large number of elements. Therefore, we pro-
pose a coupled HHME-FE scheme that uses only HHMEs to subdivide the entire
domain into several sub-domains without the use of finite elements. To illustrate
the assembling scheme shown in Fig. 3, the global model is partitioned into two
separate domains which are separated from the coupling interface Γ0, namely Ω

and D, modeled using the HHME and FE, respectively. The master nodes on the
outer boundary of the HHMEs are taken from interface common nodes between
the HHME and FE sub-domains. Because each HHME equivalent hybrid moisture
capacitance/conductance matrix, HZ , is pre-determined (see Section 2.2), the ele-
ments can be treated as regular finite elements, and their HHME HZ matrices are
assembled into the global combined capacitance/conductance matrix.

The related HHMEM numerical procedures and the coupled HHME-FE scheme
were programmed and executed using self-written codes in MATLAB language
[Kwon and Bang (2000)]. In the proposed approach, the total number of DOFs is
remarkably reduced, and hence the modeling and computational effort are substan-
tially decreased.

 15
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3 Validation of HHME-FE model

This section presents two examples in order to validate the performance of the
proposed HHME-FE modeling approach.

Fig. 4 (right panel) shows the HHME-FE computational model with 3 inclusions
and length and width dimensions (that is, the length to width ratio is 3:2). In this
figure, D represents the HHME sub-domain and Ω represents the FE sub-domain.
The HHME domain is separated into two regions containing the inclusion region
(that is, the fibers) and the inter-phase region. The material properties of the inter-
phase region are identical to those in the FE sub-domain (that is, the resin matrix).
Therefore, the inter-phase is not explicitly modeled and it is assumed that a perfect
bonding exists between the fibers and the resin matrix. As shown, the inclusions
are circular, and have a radius 6.25 times smaller than the model length. A mois-
ture condition of 35oC/85% RH is applied at the left edge and hence the moisture
permeates from the exposed surface on the left of the model and diffuses toward
the right. Zero normal gradient conditions are used on the top, bottom and right
edges. The moisture related material properties of the resin matrix and permeable
fibers under the applied moisture conditions of 35oC/85% RH are presented in Tab.
2 [Laurenzi, Albrizio and Marchetti (2008)].

Table 2: Material properties

Property Fibers Resin matrix
Moisture diffusivity
(35oC/85% RH)

3.631×10−14 m2 / s 5.183×10−13 m2 / s

Saturated mois-
ture concentration
(35oC/85% RH)

2.375 kg / m3 9.386 kg / m3

The right panels of Fig. 4-6 show the coupled HHME-FE modeling results for
the moisture profiles at three different time steps. The HHMEM parameters of
the inclusion and inter-phase regions are, respectively: λ = 0.5 and c = 0.833;
and p = 5 and s = 1. In the HHME-FE model, a total of 108 master nodes are
used, with 36 nodes on each of the 3 HHME sub-domains, and 371 four-node
quadrilateral elements in the FE sub-domain. The corresponding results obtained
from the conventional FEM scheme are presented in the left panels for comparison
purposes. In the conventional FE model, the number of elements totaled 1019
and the total number of nodes equaled 1010. Tab. 3 shows the comparisons of
both methods by number of DOFs. Comparing the two sets of transient moisture
distributions, it is apparent that the HHME-FE results are in favorable agreement
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with the FEM results.
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Table 3: DOFs of the HHME-FE and FEM approaches

Numerical method Total nodes Total DOFs Equivalent DOFs
HHME-FE 467 467 1115

FEM (ABAQUS) 1010 1010 1010

In the second validation example, Fig. 7 plots the variation for the level of wetness
in the resin matrix after various time steps in an HHME-FE computational model
with a length to thickness ratio of 5:1 and a 27% volume fraction of fibers. The
time step increment is 180 s. The boundary conditions are the same as those of the
first validation example. The HHMEM parameters of the inclusion and inter-phase
regions are, respectively: λ = 0.5 and c = 0.777; and p = 3 and s = 1. In the
HHME-FE model, a total of 1056 master nodes are used, with 12 nodes on each of
the 88 HHME sub-domains, and 1136 four-node quadrilateral elements in the FE
sub-domain. In the conventional FE model, the number of elements totaled 6416
and the total number of nodes was 5994. Tab. 4 shows the comparisons between
both methods by number of DOFs. It can be seen that the results obtained from the
HHME-FE method are in very favorable agreement with those obtained from the
FEM approach and that the HHME-FE method contains many fewer DOFs than
does the full FEM.

As described previously, the proposed HHMEM provides a straightforward and
efficient means of modeling transient moisture diffusion in resin matrix filled with
multiple fibers. This is due to the fact that only one HHME equivalent hybrid
moisture capacitance/conductance matrix needs to be calculated for all HHMEs
with the same properties. Furthermore, all DOFs related to the HHME domain are
condensed and transformed to form a combined element with master node DOFs
only. Therefore, the coupled HHME-FE method significantly reduces the execution
time in the mesh modeling stage, the total number of DOFs, and the PC memory
storage requirements.

Table 4: DOFs of the HME-FE and FEM approaches

Numerical method Total nodes Total DOFs Equivalent DOFs
HHME-FE 1682 1682 6962

FEM (ABAQUS) 5994 5994 5994
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Figure 7: Moisture diffusion from 10th to 250th hours 15 Figure 7: Moisture diffusion from 10th to 250th hours

4 Numerical example

Let us consider a unidirectional fiber-reinforced composite. The fibers are assumed
to be straight, parallel and distributed periodically in the resin matrix. The par-
ticular geometry of the fiber permits consideration of only the cross section in the
perpendicular direction of the fiber direction, reducing the analysis to a two dimen-
sional problem as shown in Fig. 8. In examining the moisture diffusion properties
of a heterogeneous composite containing multiple permeable fibers, two patterns
of fiber distribution are considered in the resin matrix, square and hexagonal arrays
(as shown in Fig. 9).

The composite is assumed to be heterogeneous and to have a length and width of
500µ m and 100µ m, respectively (i.e. a thickness ratio of 5:1). A moisture condi-
tion of 35oC/85% RH is applied at the left side of the structure. Zero normal gradi-
ent conditions are used on the top, bottom and right sides of the structure. The time
step increment is 180 s. The moisture related material properties of the resin matrix
and permeable fibers under the applied moisture conditions of 35oC/85% RH are
presented in Tab. 2 [Laurenzi, Albrizio and Marchetti (2008)].
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Figure 8: Schematic of a unidirectional fiber-reinforced composite 17 
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4.1  Transient moisture diffusion process of Square and Hexagonal arrays 19 

The transient moisture diffusion process in the 2-D composite material with multiple 20 
fibers (inclusions) shown in Fig. 9 was analyzed using the proposed HHME-FE 21 
computational model. To represent a typical heterogeneous composite, the modeling 22 
considered two patterns of fiber distribution: square and hexagonal arrays, with a fiber 23 
volume fraction of 27 %  (vf = 0.27). The fibers were assumed to be circular with a radius 24 

Figure 8: Schematic of a unidirectional fiber-reinforced composite

4.1 Transient moisture diffusion process of Square and Hexagonal arrays

The transient moisture diffusion process in the 2-D composite material with multi-
ple fibers (inclusions) shown in Fig. 9 was analyzed using the proposed HHME-FE
computational model. To represent a typical heterogeneous composite, the mod-
eling considered two patterns of fiber distribution: square and hexagonal arrays,
with a fiber volume fraction of 27% (vf = 0.27). The fibers were assumed to be
circular with a radius of 7µ m. The radius of the HHME domain is 9µ m. Fi-
nally, the surface was exposed to a humidity of 85% RH. As previously described,
in the computational model, the regions of the resin matrix occupied by the fibers
were replaced by HHMEs such that only one HHME equivalent hybrid moisture
capacitance/conductance matrix required calculation for each of the same HHMEs.
Hence, the total number of DOFs and the PC memory storage requirements are
reduced. The HHMEM parameters of the inclusion and inter-phase regions are, re-
spectively: λ = 0.5 and c = 0.777; and p = 3 and s = 1. In the HHME-FE model,
a total of 1056 master nodes are used, with 12 nodes on each of the 88 HHME
sub-domains, and 1136 and 1126 four-node quadrilateral elements in the FE sub-
domain for square and hexagonal arrays, respectively.

Using a color-scale notation, Fig. 9 illustrates the moisture distribution profiles
within the fiber-reinforced composite structures at four moisture exposure times,
i.e. 10th, 50th, 100th and 150th hours, respectively. In the region close to the ex-
posed surface, it is apparent that the moisture content immediately becomes sat-
urated, i.e. the moisture wetness variable attains a value of W = 1. In fact, this
represents the boundary condition prescribed along the exposed plane. The mois-
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ture is then transported progressively along the resin matrix and permeable fibers
as the moisture exposure time increases.

Fig. 10 illustrates the variation in the moisture wetness of the resin matrix adjacent
to the lower boundary with the elapsed exposure time. After the 250th hours, the
variation of the moisture wetness along the length of the resin matrix is very small,
that is, the entire resin matrix is almost fully saturated with moisture. The results
of Figures 9 and 10 show that the moisture diffusion of the hexagonal array is
somewhat slower than that of the square pattern under the same volume fraction of
fibers at the same moisture exposure time.
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matrix). Therefore, the inter-phase is not modeled explicitly. Furthermore, it is assumed 11 
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fiber volume fractions can be modeled without modifying the original model simply by 13 
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three steps, in the resin matrix adjacent to the lower boundary on moisture diffusion. The 20 
moisture which reaches the far end of the resin matrix reduces as the volume fraction of 21 
the fibers increases. The physical explanation for this is that the hexagonal distributed 22 
fibers impede moisture transfer, particularly at higher volume fractions. The result 23 
implies that a fiber-reinforced composite should be constructed using a resin matrix 24 
containing a high volume fraction of fibers in order to provide long-term durability with 25 
maximum protection against the effects of moisture penetration. Most importantly, 26 
different fiber volume fractions can be modeled without modifying the original model 27 
simply by controlling the size of the inter-phase region within the HHME domain. This 28 
advantage of the HHME approach becomes particularly apparent when the scheme is 29 

Figure 10: Moisture diffusion in resin matrix with vf =0.27 from 10th to 250th hours
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4.2 Influence of volume fraction of fibers on moisture diffusion

The coupled HHME-FE scheme was applied in order to investigate the moisture
diffusion characteristics of the resin matrix containing hexagonal distributed fibers
with various volume fractions, i.e. 10 to 70 percent in six equal steps, respectively.
The corresponding results are presented in Fig. 11.

In the HHME sub-domain of the HHME-FE computational model, the material
properties of the inter-phase region are identical to those in the matrix region (that
is, the resin matrix). Therefore, the inter-phase is not modeled explicitly. Further-
more, it is assumed that a perfect bonding exists between the fibers and the resin
matrix. Hence, different fiber volume fractions can be modeled without modifying
the original model simply by controlling the size of the inter-phase region within
the HHME domain. The HHMEM parameters of the respective inclusion and inter-
phase regions are listed in Tab. 5 for each volume fraction studied. In the hexagonal
fiber HHME-FE model, a total of 1056 master nodes are used, with 12 nodes on
each of the 88 HHME sub-domains, and 840 four-node quadrilateral elements in
the FE sub-domain.

Fig. 11 shows the effect of varying volume fractions of fibers, i.e. 10 to 70 per-
cent in three steps, in the resin matrix adjacent to the lower boundary on moisture
diffusion. The moisture which reaches the far end of the resin matrix reduces as
the volume fraction of the fibers increases. The physical explanation for this is that
the hexagonal distributed fibers impede moisture transfer, particularly at higher
volume fractions. The result implies that a fiber-reinforced composite should be
constructed using a resin matrix containing a high volume fraction of fibers in or-
der to provide long-term durability with maximum protection against the effects
of moisture penetration. Most importantly, different fiber volume fractions can be
modeled without modifying the original model simply by controlling the size of
the inter-phase region within the HHME domain. This advantage of the HHME
approach becomes particularly apparent when the scheme is applied to investigate
the relationship between the fiber volume fraction and the moisture diffusion char-
acteristics of a heterogeneous composite material filled with multiple fibers.

5 Conclusion

This study has developed a heterogeneous hybrid moisture element method (HH-
MEM) for modeling and analyzing moisture diffusion in a heterogeneous resin
composite containing multiple permeable fibers. A special finite element, called
heterogeneous hybrid moisture element (HHME), was proposed in order to model
heterogeneous materials like imbedded inclusions with surrounding inter-phases.
The heterogeneous region was subdivided into two sub-domains containing the in-
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Table 5: HHMEM parameters for each studied volume fraction

Volume fraction
Inclusion Inter-phase
λ p c s

10% 0.5 1 0.379 6
20% 0.5 1 0.537 5
30% 0.5 2 0.657 4
40% 0.5 3 0.759 3
50% 0.5 4 0.849 2
60% 0.5 5 0.930 1
70% 0.5 6 0 0
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Figure 11: Effects of varying volume fractions of fibers in resin matrix on 6 
moisture diffusion 7 
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Figure 11: Effects of varying volume fractions of fibers in resin matrix on moisture
diffusion

clusion part and the inter-phase part. The characteristic of HHME is determined by
an equivalent hybrid moisture capacitance/conductance matrix. This matrix is cal-
culated using the conventional FEM in space discretization as well as the θ -method
in time discretization with similar mass/stiffness properties and matrix condensing
operations. A coupled HHME-FE scheme has been developed and implemented
using MATLAB language.

The performance of the proposed HHME-FE method, by comparing the results
obtained for the moisture distribution profiles in a heterogeneous resin composite
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with those obtained from the conventional FEM scheme, is validated. Second, the
modeling approach was employed to investigate various aspects of the transient
moisture diffusion process in a heterogeneous resin composite containing square
and hexagonal distributed fibers. Specifically, the analysis investigated the effect of
the volume fraction of fibers on the rate of moisture diffusion. The results showed
that the amount of moisture penetrating the resin composite reduces significantly
as the fraction volume of fibers increases. Therefore, it can be inferred that a fiber-
reinforced composite should be constructed using a resin matrix with a high volume
fraction of fibers in order to protect the inner components against moisture ingres-
sion.

The modeling approach proposed in this study has a number of key advantages
when applied to an analysis of transient moisture diffusion in heterogeneous mate-
rials with embedded multiple inclusions. Firstly, in the computational model, the
regions of the resin occupied by the fibers are all replaced by HHMEs such that only
one HHME equivalent hybrid moisture capacitance/conductance matrix requires
calculation for all HHMEs with the same characteristics. Hence, the execution time
in the mesh modeling stage, the total number of DOFs in the computational model,
and the PC memory storage and processing requirements are considerably reduced.
Secondly, varying volume fractions of fibers can be modeled without modifying
the original model simply by controlling the size of the inter-phase region within
the HHME domain. Finally, the results obtained from the proposed method are in
very good agreement with those of the conventional FEM scheme.
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