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The Anisotropy of Young’s Modulus in Bones
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Abstract: In this paper, yet another method for evaluating the elastic modulus
for human bones is introduced and investigated. This method adopts the Jankowski
and Tsakalakos strain energy function in which, the Born-Mayer energy term is
the predominant term for calculations the elastic constants. By taking accounts the
directional aspects of the spatial structure of bones, we obtain different values for
the Young’s modulus depending on the direction of the applied force with respect
to the material’s structure. The inverse problem analyzed in this paper is solved
by inversion of the experimental data. An efficient stopping criterion is adopted
to cease the iterative process in order to retrieve stable numerical solutions. The
numerical implementation of the aforementioned method is realized by employing
a genetic algorithm.
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1 Introduction

Over the last decades, special attention has been given to problems related to the
mechanical strength of bones depending on the mass and on the spatial structure of
the bones [Allolio (1999); Cummings et al. (1993); Gomberg et al. (2003); Snyder
et al. (1993); Veenland et al. (1997); Abdel-Wahab et al (2010)]. The mean inter-
cept length (MIL) and the line frequency deviation (LFD) are two general methods
which are used for quantifying directional aspects of the spatial structure of bone.
Whitehouse (1974) was the first who describes the anisotropy of bones by means of
MIL measurements. For instance, the MIL calculated as a function of the measur-
ing direction yields an ellipse in bone samples [Harrigan and Mann (1984); Cowin
(1985); Keaveny et al. (2001)]. The tendency of the MIL to produce nearly per-
fect ellipses and ellipsoids is due to insensitivity of the MIL to orientation [Geraets
(1998); Geraets et al. (2006)]. Sets of densely packed parallel test lines are in
principal used to measure MIL and LFD values [Chetverikov (1981); Harrigan and
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Mann (1984); Cheal et al. (1987); Turner (1992); Odgaard (1997); Saltikov (1958);
Turner (1992)]. Unlike the MIL method, the LFD method can easily be adapted to
work with multilevel gray values instead of binary data [Geraets et al. (2006)].
Homminga et al. (2004) investigated the relevance of directional aspects of bone
structure with respect to osteoporotic fracture. The trabeculae in osteoporotic verte-
brae are oriented predominantly in longitudinal direction, thus providing sufficient
stiffness to endure common loading forces but offering less resistance to any load
in an off axial direction.

The MIL and LFD methods on one hand and Young’s modulus on the other were
analyzed by Geraets (1998) and Geraets et al. (2008). These authors have improved
the prediction of Young’s modulus by combining the LFD with the MIL.

At this stage, it should be mentioned the work of Giesen and Van Eijden (2000) who
analyzed the 3D structure of the trabecular bone of the human mandibular condyle.
They found that the trabecular structure can withstand larger stresses in parasagittal
planes than in the medio-lateral direction, suggesting that the condyle is optimally
adapted to sustain stresses and strains occurring in vivo. This fact reminds us the
Wolff law of bone remodeling [Wolff (1892)], which states that the structure of
the bone is optimized to offer maximum resistance to stresses and strains with a
minimum amount of mass. An interesting review lecture in this direction has been
addressed by Huiskes (2000). It should be noted that Van Ruijven, Giesen and Van
Eijden (2002) determined the strains occurring in the mandibular condyle due to
static loads, in order to verify that the parasagittal platelike structure of the trabec-
ular bone is optimized to sustain these loads.

As a consequence of the bone anisotropy, the Young’s modulus of bones is anisotropic
as well [Ashby (1983); Giesen et al. (2001); Van Ruijven et al. (2003)]. It is
important to mention that the relationship between the structural and mechanical
anisotropy was studied by Van Lenthe and Huiskes (2002).

In general, bones are heterogeneous, inhomogeneous and anisotropic, and for many
purposes, they can be treated as linearly elastic solids described by the generalized
Hooke’s law [Lakes et al. (1975); Lakes and Katz (1979 a,b)]. Depending on
the internal symmetry displayed by the bone, the number of elastic constants can
be considerably reduced. Because of the symmetry, 21 constants are sufficient to
describe the complete mechanical behavior. Estimation of the elastic constants
depends on the strain energy function. Consequently, special care should be taken
when choosing the form of the strain energy function associated with the human
condyle bones.

Motivated by this fact and encouraged by the recent results of Geraets et al. (2008),
we decided to present in this paper yet another method for evaluating the elas-
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tic modulus for human bones, in particular for trabecular bone of the mandibular
condyle. This method adopts the Jankowski and Tsakalakos energy strain function
[Jankowski and Tsakalakos (1985); Jankowski (1988)] in which, the Born-Mayer
energy term is the predominant term for calculations the elastic constants

Er = 1
2 α ∑

R
exp(−βR), (1)

where α and β are unknown parameters depending of the mandibular condyle me-
chanical behavior. The sum is extended to all the nearest neighbors who are located
at distancesR(n). For a cell volume Ω containing the bone sample, the second-order
elastic constants (stiffness constants)Ci jkl , i, j,k, l = 1,2,3, are evaluated as

Ci jkl =
1
Ω

∂ 2Er

∂εi j∂εkl
, i, j,k, l = 1,2,3. (2)

The main advantage of the Jankowski and Tsakalakos energy strain function is that
of simplicity and convergency when coupled to the experimental data in order to
find the unknown parameters, a very desirable feature from the computational point
of view. Consequently, the inversion of the experimental data has a stable character
when accompanied by a suitable stopping criterion. Unknown parameters may
result in a reduced number of iterations performed by the genetic algorithm and
hence reduced computational time.

The paper is organized as follows: Sect.2 is devoted to the calculation of the
Young’s modulus for an anisotropic body subject to arbitrary small initial deforma-
tions, by using the Jankowski and Tsakalakos energy strain function. The inverse
problem for the evaluation of the unknown parameters is presented in Sect. 3. Next
section presents the results of the method regarding the evaluation of the Young’s
modulus for the human condyle bones. Finally, concluding remarks are provided
in Sect.5.

2 The Calculation of the Young’s Modulus

Let us consider a cell volume Ω of the bone sample, embedded into a 3D box of
dimensionsa× b× cmm3. A number N of elementary cells with the elementary
cell size ofav× bv× cvµm3 divide the box. The trabecular bone is modeled as a
periodic structure with three different materials [Singh (1978)], namely the types
A, B and C, respectively. Type A is formed of fine straight or curved rods 0.08-
0.14mm in diameter and about 1mm in length. Type B is made up of plates arranged
parallel to each other and connected by numerous rods. The plates are 0.16-0.3mm
thick, a few millimeters long and are separated by a gap of 0.4-0.8mm. Type C is
constituted of irregular plates of 0.12-0.24mm thick with numerous fenestrations.
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Figure 1: Three types of trabecular bone (after Singh (1978)) and corresponding
elementary cells (after Zusset (1994)).

The plates enclose tubular spaces of 0.7-2mm in diameter. Figure 1 represents the
types of trabecular bone and also, the elementary cells of the periodic model for
the trabecular bone, respectively [Zysset (1994)]. In this Section we admit that the
bone sample has known shape and volume.

We adopt the Jankowski and Tsakalakos model (1.1) in which, the Born-Mayer
repulsive energy term is the predominant term for calculations the elastic constants.
The second-order elastic constants (stiffness constants) are determined by Eq. (1.2).

To derive the general formulae for the Young’s modulus in the case of an anisotropic
body subject to arbitrary small initial deformations, we start with the previously
results of Delsanto, Provenzano and Uberall (1992) regarding the differentiation
with respect to εi j of a given function

∂

∂εi j
=

1
2

(
Xi

∂

∂x j
+X j

∂

∂xi

)
. (3)

In Eq. (2.1) Xi are the Lagrangian coordinates corresponding to an initial state
which may be subject to an initial finite deformation, xi are the final Eulerian co-
ordinates, differing from Xi by an infinitesimal deformation. Using Eq. (2.1) it
is straightforward to prove that, for a differentiable function f (r), the following
relation holds(

∂ 2 f (r)
∂εkl∂εi j

)
r=R

=
1

R3 [R f ′′(R)− f ′(R)]Yi jkl +
1

4R
f ′(R)Zi jkl, (4)
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where

Yi jkl = XiX jXkXl, (5)

Zi jkl = XiXkδ jl +XiXlδ jk +X jXlδik +X jXkδil, (6)

R =
√

X2
1 +X2

2 +X2
3 . (7)

Applying Eqs. (2.2)-(2.5) to Eqs. (1.4) and (1.5), it follows that

Ci jkl =
1
Ω

∂ 2Er

∂εi j∂εkl
= Ai jkl−Bi jkl, (8)

where

Ai jkl = ∑
n

f (n)Y (n)
i jkl, (9)

Bi jkl = ∑
n

g(n)Z(n)
i jkl, (10)

f (n) = f (R(n)) = 4g(n)

[
1+

βR(n)

(R(n))2

]
, (11)

g(n) = g(R(n)) =
K

R(n) exp(−βR(n)), (12)

where K is defined as

K =
αβ

8Ω
, (13)

and Y (n), Z(n) and R(n) refer to the corresponding quantities defined in Eqs. (2.3),
(2.4) and (2.5) respectively, as calculated for the n-th nearest neighbor.

In order to simplify the calculation of the elastic constants, it is useful to observe
that the number of terms to be evaluated explicitly may be greater reduced due to
some special symmetries, in addition to the usual symmetries of Ci jkl .

We use here Voigt’s convention to denote each pair of indices of the elastic con-
stants by a single index (i, j)→ iδi j +(9− i− j)(1−δi j). According to this conven-
tion we have Cklmn = Cαβ , where the Latin subscripts range over the values 1,2,3,
while the Greek subscripts range over the values 1,2,. . . ,6. Therefore, 6 indepen-
dent elastic constants can be calculated next

C11 = C22 = A11−B11, C12 = A12−B12, C13 = C23 = A13−B13,
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C14 =−C24 = C56 = A14−B14, C33 = A33−B33,

C44 = C55 = A44−B44, C66 = (C11−C12)/2, (14)

for the structures A and C, and 9 independent elastic constants

C11 = A11−B11, C12 = A12−B12, C13 = A13−B13,

C22 = A22−B22, C23 = A23−B23, C33 = A33−B33,

C44 = A44−B44, C55 = A55−B55, C66 = A66−B66, (15)

for the structure B, where

A11 =
2
3

fcη
′4, A12 =

1
6
( fa + fc)η2, A13 =

1
6

fcη
2
η
′2, A14 =

1
12
√

2
fcη

3
η
′,

A22 =
1
16

(9 fa + fc)η4, A23 =
1
16

(9 fa + fc)η2
η
′2, A33 =

1
16

(9 fa + fc)η4,

A44 =
1
8
(9 fa + fc)η2

η
′2, A55 =

1
8
( fa +9 fc)η4, A66 =

1
16

( fa +3 fc)η ′4,

B11 = 8gcη
′2,B12 = (ga +6gc)η ′2, B13 =

1
6
(2ga +3gc)η2,

B14 =
1
16

(ga +3gc)ηη
′, B22 = (6ga +2gc)η2, B23 =

1
2
[
3gaη

2 +4gcη
′2)
]
,

B33 =
2
3
[
3gaη

2 +gcη
2] , B44 =

2
3
[
3gaη

′2 +gcη
′2] ,

B55 =
1
2
[
3gaη

2 +gc(η2 +4η
′2)
]
, B55 =

1
6
[
gc(η2 +4η

′2)
]
,

fa = f (Ra), fc = f (Rc), ga = g(Ra), gc = g(Rc),

Ra =
1√
2

ηa, Rc = a

√
1
3

η ′2 +
1
6

η2, η = 1+ ε, η
′ = 1+ ε

′.

The functions f and g are explicitly defined by Eqs. (2.9) and (2.10). A compar-
ison of the proposed method of calculation the Young’s modulus with the classi-
cal methods was previously analyzed by Delsanto, Provenzano and Uberall (1992).
The conclusion is that the proposed theory allows an easy identification of only two
parameters by using a genetic algorithm based on the inversion of the experimental
data [Chiroiu, Munteanu and Toader (2010)].
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3 The Inverse Problem

In order to evaluate the Jankowski and Tsakalakos strain energy function (1.1), the
unknown parameters α and β have to be extracted from the experimental data. For
this purpose, we develop the problem based on the relationship between the form
and the function in bones, produced and maintained by mechanical forces.

Consider that the human mandibular condyle specimen is embedded into a 3D box
of dimensionsa× b× cmm3 and divided into Nelementary cells of sizeav× bv×
cvµm3. This cell volume was analyzed by Giesen and Van Eijden (2000) and Van
Eijden et al. (2006).

The underformed condyle specimen in the stress-free reference state, and possible
deformation of the condyle in the midsagittal cross-section are shown in Figure
2. In all simulations, the condyle is subjected to uniaxial load (tension and com-
pression) and torsion (shear) respectively. The gray colour indicates the unloaded
shape, and the deformed shapes are depicted by lines. At the bottom, the deforma-
tion is zero, because the saw plane is fixed during the simulation. Let us suppose
that the underformed specimen surface is modeled as an ellipsoid surface S defined
by the implicit equation [Bardinet, Cohen and Ayache (1994); Munteanu, Chiroiu
and Chiroiu (2002)]

S≡

[(
X1

a1

) 2
c2

+
(

X2

a2

) 2
c2

] c2
c1

+
(

X3

a3

) 2
c1
−1 = 0, (16)

where the constants ai, i = 1,2,3 and ci, i = 1,2, are unknown. For a sphere of
radius R we have c1 = c2 = 1 and a1 = a2 = a3 = R, respectively. The X3-axis
corresponds to the X3-axis of inertia of the ellipsoid model.

For determining of the unknown constants z j = {a1, a2,a3,c1,c2,α ,β}, j = 1, ...,7,
we formulate an inverse problem closely related to the Wolff law which states
that the structure of bone is optimized to offer maximum resistance to stresses
and strains with a minimum amount of bone mass [Popescu and Chiroiu (1981)].
The inverse problem combines the minimum volume and the minimum compliance
problems, respectively:

Inverse problem: Determine the Jankowski and Tsakalakos energy strain function
(1.1) and the unknown surface S of the condyle specimen defined by Eq. (3.1) from

minimizez j,u
∫
Ω

γ(x1,x2,x3)dx1dx2dx3 , and

minimizez j,u f T u,
subject to K(z j)u = f ,

(17)
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Figure 2: Possible deformations of the mid-sagittal cross-section of the condyle
specimen (after Van Ruijven et al. (2002)).

where xi are the Eulerian coordinates, γ is a function which depends on the un-
known surface S defined by Eq. (3.1), K(z j)is the stiffness matrix, f is the vector of
the static external loads and u is the corresponding displacement vector determined
by the equilibrium equations K(z j)u = f .

The static loading cases include the uniaxial test (tension and compression) and the
torsion test (shear). The loading vector f is determined from the strain field inside
the trabecular bone due to static loading evaluated by Van Ruijven, Giesen and Van
Eijden, (2002) and additional experimental data [Hou et al. (1998); Kabel et al.
(1999)].

Van Ruijven, Giesen and Van Eijden, (2002) calculated the supero-inferior, the
medio-lateral and the antero-posterior µ-strain for all loadings (anterior load, api-
cal load and posterior load). The maximum values of the µ-strains are -3301±1720
for the posterior load (supero-inferior) and 2762±1241 for posterior load (antero-
posterior). The minimum values are −26±186 for the apical load (medio-lateral)
and 54±210 for anterior-load (medio-lateral). Consequently, the range of f is esti-
mated to be between 40N and 145N.

The inverse problem (3.2) is solved by using a genetic algorithm. We use a binary
vector with 7 genes representing the real values of the parameters z j, j = 1,2, ...,7.
The length of the vector depends on the required precision, which in this case are
six places after the decimal point. The domain z j ∈ [−a j,a j] with length 2a j is
divided into a least 15000 equal size ranges. That means that each parameterz j, j =
1,2, ...,7, is represented by a gene (string) of 22 bits (221 < 3000000 ≤ 222). The
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alternation of generations is stopped when convergence is detected. The stopping
criteria are defined with a function that receives the actual state of the genetic algo-
rithm: the actual solution, the actual (maximal) fitness, the actual population with
all the fitness. This function returns a boolean that says if the execution must be
interrupted or not.

4 Results

As has been stated before, a genetic algorithm was used to solve the inverse prob-
lem (3.2). The genetic algorithm was carried out for the number of populations
20, ratio of reproduction 1.0, number of multi-point crossovers 1, probability of
mutation 0.2 and maximum number of generations 200. We have considered a
bone sample embedded into a 3D box of dimensions a =3.5mm, b =3.5mm and
c =3.4mm. This volume is divided into Nelementary cells of size 34×34×34µm3.
The density of bone is defined as the weight of the bone phase divided by the total
volume (ρ =0.160-0.950 g/cm3).

We report in this section the results of the genetic algorithm obtained after 234 iter-
ations for N =40.833(3)×107. The quality of solutions is measured by the accuracy
errors εV for the volume, and εA for the surface S area, respectively

εV =
V (SN)
V (S)

−1, εA =
A(SN)
A(S)

−1, (18)

where N is the number of the elementary cells. Figure 3 presents the accuracy
errors as functions of the number of elementary cells. From the figure it can be
seen that as N increases then εV and εA decrease. Therefore, the inverse problem
admits a convergent and stable numerical solution for N ≥40.833(3)×107.

Once the convergence with respect to N has been established, a noisy version of
the loading vector f can be written by multiplication it by 1 + r, r being random
numbers uniformly distributed in [−ε,ε], with ε = 10−1,ε = 10−2 and ε = 10−3,
respectively. Figure 4 presents the accuracy errorεA, as functions of the level of
noise added into the loading vector. From the figure it can be seen that the itera-
tive process is convergent with respect to increasing the number of iterations for
ε = 10−2 and ε = 10−3. In this case, the accuracy errors keep decreasing even after
a large number of iterations. The situation is different for ε = 10−1. The accuracy
errors decrease up to a certain iteration number and after that they start increas-
ing. If the algorithm is continued beyond this point then the numerical solutions
lose their smoothness and become unstable, i.e. highly oscillatory and unbounded.
Therefore, a stopping criterion must be introduced in order to finish the iterative
process at the point where the errors in the numerical solutions start increasing.
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We specify that the accuracy error exhibits a similar behavior.

The first result of the genetic algorithm consists in the estimation of the constants
required by the condyle specimen surface S given by Eq. (3.1)

c1 = c2 = 0.245, a1 = a2 = 0.722R, a3 = R, (19)

with R = 0.0619m for the particular bone considered in this paper. Next, the con-
stants α(units Ryd (Rydberg) 1 Ryd=13.6 eV=2.092×10−21J) and β (units ua in
units of a−1 where a is the elementary cell lattice constant) are shown in Table 1.
The constants have different values depending of the type of loading. It is impor-
tant to say that αaffects only the absolute values of the elastic constants and moduli
as a multiplicative constant. Once the constants α and β are known for each type
of trabecular bone, the strain energy function (1.4) can be evaluated.

Figure 3: Relative errors εV ,εA as functions of N.

Elastic constants evaluated for each type of bone are listed in Table 2. It should
be mentioned that the comparison of our results with similar data by others is
not available, but we believe that it is useful to mention here some results ob-
tained by mechanical testing methods or ultrasonic wave propagation techniques
by several investigators for various bones. For instance, Lang (1969, 1970) found
C11 =19.7GPa, C12 =12.10GPa, C13 =12.6GPa, C33 =32.00GPa, C44 =5.40GPa,
C66 =3.80GPa for bovine phalanx. For the bovine femur dried, the aforementioned
authors obtained C11 =23.80GPa, C12 =10.20GPa, C13 =11.20GPa, C33 =33.40GPa,
C44 =8.20GPa, C66 =10.20GPa. For the bovine femur, Van Buskirk et al (1981) ob-
tained C11 =16.25GPa, C12 =6.34GPa, C13 =5.89GPa, C33 =25.00GPa, C44 =6.65GPa,
C66 =4.96GPa.
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Figure 4: Relative error εA for three levels of noise added into the loading vector.

Table 1: Energy constants for each type of bone.

Constants A B C
α 0.23 tension

0.32 compression
0.41 shear

0.25 tension
0.34 compression
0.42 shear

0.21 tension
0.30 compression
0.39 shear

β 0.50 tension
0.76 compression
0.29 shear

0.52 tension
0.83 compression
0.35 shear

0.44 tension
0.71 compression
0.26 shear

We have to also mention that the constant C44 may exhibits negative values for large
positive deformations, as shown in Figure 5. The constant C44 represents resistance
to shear. For most materials, the shear modulus is two times to three times greater
than Young’s modulus, but it is possible (for prestrained materials) to obtain a neg-
ative shear modulus. Estimated results for the Young’s modulus profile are shown
for each type of bone in Figures 6, 7 and 8, respectively. Right sides illustrate
the computed LFD profiles. For measuring the LFD profiles, first the fraction of
pores is calculated for each test line separately and then the standard deviation of
these fractions yields [Geraets et al. (1997): Geraets et al. (1998); Geraets (1998)].
Close examination of the Young’s modulus profiles reveals a good similarity of the
type C of bone with the shape corresponding to one of the structures generated
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by Van Lenthe and Huiskes (2002), Geraets (1998) and Geraets et al. (2008), re-
spectively. For the types A and B, respectively, we obtained different profiles on
Young’s modulus in comparison to the results of aforementioned authors.

Figure 9 provides the stress-strain constitutive law in the axial (coronal) and trans-
verse (sagittal) directions for the type A of bone.

Table 2: Elastic constants for each type of bone.

Constants [GPa] A B C
C11 20.44 21.23 18.45
C12 13.28 14.77 12.98
C13 13.28 13.97 11.98
C14 9.55 0 9.34
C22 20.44 24.44 18.45
C23 13.28 11.05 11.98
C24 −9,55 0 −9.34
C33 23.20 24.44 22.89
C44 11.30 11.69 11.26
C56 9.55 0 9.34
C55 11.30 11.62 11.26
C66 3.58 3.95 2.74

5 Conclusions

A good evaluation of the mechanical anisotropy is the mean intercept length (MIL).
By measuring the distance between two successive bone-marrow transitions for a
number of spatial orientations, an ellipsoid can be fitted through the data points.
But the ellipsoids are not always sufficient to describe the anisotropy of the Young’s
modulus or other mechanical properties of bones [Gomberg et al. (2003); Hoffmeis-
ter et al. (2000); Pidaparti and Turner (1997)]. By analyzing the spatial structures
of bone, Geraets et al (2008) have adopted an interesting method to use the MIL
and the line frequency deviation (LFD) combined. Unlike the MIL method the LFD
method can easily be adapted to work with multilevel gray values instead of binary
data [Geraets et al. (2006)].

In this paper, yet another method for evaluation of the Young’s modulus of human
mandibular condyle bones was proposed, based on the Jankowski and Tsakalakos
strain energy function. The elastic constants are computed by using the classical
definition and the previously results by Delsanto, Provenzano and Uberall (1992)
regarding the differentiation of a function with respect to deformations. The strain
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Figure 5: Plot of elastic constant C44 versus deformation.

Figure 6: Estimated Young’s modulus profile for the type A of bone.
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Figure 7: Estimated Young’s modulus profile for the type B of bone.

Figure 8: Estimated Young’s modulus profile for the type C of bone.

energy function requires the choice of two constants, whilst the underformed bone
surface modeled as an ellipsoid surface, requires the choice of five constants. The
estimation of these constants is achieved by using an inverse problem which com-
bines the minimum volume problem and the minimum compliance problem.

The numerical results obtained by using a genetic algorithm showed that the in-
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Figure 9: Constitutive law in the axial and transverse directions for the type A of
bone.

verse problem produces a convergent and stable numerical solution with respect to
increasing the number of the elementary cells and decreasing the amount of noise,
respectively. Furthermore, the proposed method was also compared with MIL and
LFD. It was shown that, in terms of accuracy, our method completes with new
information the results of aforementioned methods.

Future work will be related to the mineralization effect on the stress and strain
distribution in the mandibular condylar bone.

References

Abdel-Wahab, A.A.; Maligno, A.; Silberschmidt, V.V. (2010): Dynamic prop-
erties of cortical bone tissue: Izod tests and numerical study. CMC: Computers,
Materials & Continua 19(3): 217–238.

Allolio, B. (1999): Risk factors for hip fracture not related to bone mass and their
therapeutic implications. Osteoporosis International Suppl. 2: s9–s16.



152 Copyright © 2011 Tech Science Press CMC, vol.26, no.2, pp.137-155, 2011

Ashby, M.F. (1983): The mechanical properties of cellular solids. Metallurgical
Transactions 14A: 1755–1769.

Bardinet E.; Cohen L.; Ayache, N. (1994): Fitting of iso-surfaces using su-
perquadrics and free-form deformations. In Proceedings IEEE Workshop on Biomed-
ical Image Analysis (WBIA), Seattle, Washington.

Cheal, E.J.; Snyder, B.D.; Nunamaker, D.M.; Hayes, W.C. (1987): Trabecular
bone remodeling around smooth and porous implants in an equine patellar model.
Journal of Biomechanics 20: 1121–1134.

Chetverikov, D. (1981): Textural anisotropy features for texture analysis. In: Pro-
ceedings of the 5th IEEE Computer Society Conference on Pattern Recognition and
Image Processing, Dallas 583–588.

Chiroiu, V.; Delsanto, P.P.; Munteanu, L.; Rugin?, C.; Scalerandi, M. (1987):
Determination of the second-and third-order elastic constants in Al from the natural
frequencies, Journal of the Acoustical Society of America 102(1).

Chiroiu, C.; Munteanu, L.; Chiroiu, V.; Delsanto, P.P.; Scalerandi, M. (2000):
A genetic algorithm for determining of the elastic constants of a monoclinic crystal.
Inverse Problems, Institute of Physics Publishing 16:121–132.

Chiroiu, V.; Munteanu, L.; Toader, A. (2010): Optimum design of a thin elas-
tic rod using a genetic algorithm. CMES: Computer Modeling in Engineering&
Sciences, 65(1): 1–26.

Cummings, S.R., Black, D.M., Nevitt, M.C., Browner, W., Cauley, J., Ensrud,
K. (1993): Bone density at various sites for prediction of hip fractures. Lancet 341,
72–75.

Cowin, S.C. (1985): The relationship between the elasticity tensor and the fabric
tensor. Mechanics of Materials 4: 137–147.

Delsanto, P.P.; Provenzano, V.; Uberall, H. (1992): Coherency strain effects in
metallic bilayers. J. Phys., Condens. Matter. 4: 3915–3928.

Donescu, St.; Chiroiu, V.; Munteanu, L (2009): On the Young’s modulus of a
auxetic composite structure. Mechanics Research Communications, 36: 294–301.

Geraets, W.G.M. (1998): Comparison of two methods for measuring orientation.
Bone 23: 383–388.

Geraets, W.G.M.; Van der Stelt, P.F.; Lips, P., Elders, P.J.M.; Van Ginkel,
F.C.; Burger, E.H. (1997): Orientation of the trabecular pattern of the distal radius
around the menopause. Journal of Biomechanics 30: 363–370.

Geraets, W.G.M.; Van Ruijven, L.J.; Verheij, J.G.C.; Van der Stelt, P.F.; Van
Eijden, T.M.G.J. (2008): Spatial orientation in bone samples and Young’s modu-
lus. Journal of Biomechanics 41: 2206–2210.



The Anisotropy of Young’s Modulus in Bones 153

Geraets, W.G.M., Van der Stelt, P.F., Lips, P., van Ginkel, F.C.(1998): The
radiographic trabecular pattern of hips in patients with hip fractures and in elderly
control subjects. Bone 22: 165–173.

Geraets, W.G.M.; Van Ruijven, L.J.; Verheij, J.G.C.; Van Eijden, T.M.G.J.;
Van der Stelt, P.F. (2006): A sensitive method for measuring spatial orientation in
bone structures. Dentomaxillofacial Radiology 35: 319–325.

Giesen, E.B.W.; Van Eijden, T.M.G.J. (2000): The three-dimensional cancellous
bone architecture of the human mandibular condyle. Journal of Dental Research
79, 957–963.

Gomberg, B.R.; Saha, P.K.; Wehrli, F.W. (2003): Topology-based orientation
analysis of trabecular bone networks. Medical Physics 30: 1–11.

Harrigan, T.P.; Mann, R.W. (1984): Characterization of microstructural anisotropy
in orthotropic materials using a second rank tensor. Journal of Materials Science
19: 761–767.

Hoffmeister, B.K.; Smith, S.R.; Handley, S.M.; Rho, J.Y. (2000): Anisotropy of
Young’s modulus of human tibial cortical bone. Medical and Biological Engineer-
ing and Computing 38: 333–338.

Homminga, J.; Van-Rietbergen, B.; Lochmu¨ ller, E.M.; Weinans, H.; Eck-
stein, F.; Huiskes, R. (2004): The osteoporotic vertebral structure is well adapted
to the loads of daily life but not to infrequent “error” loads. Bone 34: 510–516.

Hou, F.J.; Lang, S.M.; Hoshaw, S.J.; Reimann, D.A.; Fyhrie, D.P. (1998): Hu-
man vertebral body apparent and hard tissue stiffness. Journal of Biomechanics 31:
1009–1015.

Huiskes, R. (2000): If bone is the answer, then what is the question? Journal of
Anatomy 197: 145–156.

Jankowski, A.F.; Tsakalakos, T. (1985): The effect of strain on the elastic con-
stants of noble metals. J. Phys. F: Met. Phys. 15: 1279–1292.

Jankowski, A.F. (1988): Modelling the supermodulus effect in metallic multilay-
ers. J. Phys. F: Met. Phys., 18: 413–427

Kabel, J.; van Rietbergen, B.; Dalstra, M.; Odgaard, A.; Huiskes, R. (1999):
The role of an effective isotropic tissue modulus in the elastic properties of cancel-
lous bone. Journal of Biomechanics 32: 673–680.

Katz, J.L.; Meunier, A. (1987): The elastic anisotropy of bones. Journal of
Biomechanics 20( 11/12): 1063–1070

Keaveny, T.M.; Morgan, E.F.; Niebur, G.L.; Yeh, O.C. (2001): Biomechanics of
trabecular bone. Annual Reviews of Biomedical Engineering 3: 307–333.



154 Copyright © 2011 Tech Science Press CMC, vol.26, no.2, pp.137-155, 2011

Lakes, R.S.; Katz, J.L.; Sternstein, S.S. (1975): Torsional and biaxial dynamic
and stress relaxation properties of bovine and human cortical bone. ASME Biome-
chanics Symposium (eds, Skalak, R. and Nevern, R.M.) 10, 133–134. American
Society of Mechanical Engineers, New York.

Lakes, R.S.; Katz, J.L. (1979a): Viscoelastic properties and behavior of cortical
bone: part II: Relaxation mechanisms. Journal of Biomechanics 12: 679–687.

Lakes, R.S.; Katz, J.L. (1979b): Viscoelastic properties and behavior of cortical
bone: part III: A non-linear constitutive equation. Journal of Biomechanics 12:
689–698.

Lang, S.B. (1969): Elastic coefficients of animal bone. Science 165: 287–288.

Lang, S.B. (1970): Ultrasonic method for measuring elastic coefficients of bone
and the results on fresh and dried bovibe bones. IEEE Trans. Bio-Med. Engng. 17:
101–105.

Munteanu, L.; Chiroiu, C.; Chiroiu, V. (2002) : Nonlinear dynamics of the left
ventricle. Physiological Measurement, Institute of Physics Publ., 23: 417–435.

Munteanu, L.; Donescu, St.; Chiroiu, V. (2006): An inverse problem for the
motion of blood in small vessels. Physiological Measurement, Institute of Physics
Publishing, 27: 865–880.

Odgaard, A. (1997): Three-dimensional methods for quantification of cancellous
bone architecture. Bone 20: 315–328.

Pidaparti, R.M.V.; Turner, C.H. (1997): Cancellous bone architecture: advan-
tages of nonorthogonal trabecular alignment under multidirectional joint loading.
Journal of Biomechanics 30: 979–983.

Popescu, H.; Chiroiu, V. (1981): Optimum design of structures (in Romanian),
Publishing House of the Romanian Academy.

Saltikov, S.A. (1958): Stereometric Metallography, second ed. Metallurgizdat,
Moscow.

Singh, I. (1978): The architecture of cancellous bone. Journal of Anatomy 127:
305–310.

Snyder, B.D.; Piazza, S.; Edwards, W.T.; Hayes, W.C. (1993): Role of trabecu-
lar morphology in the etiology of age-related vertebral fractures. Calcified Tissue
International 53 (Suppl. 1): s14–s22.

Teodosiu, C. (1982): Elastic models of crystal defects. Publishing House of the
Romanian Academy, Springer-Verlag.

Turner, C.H. (1992): On Wolff’s law of trabecular architecture. Journal of Biome-
chanics 25: 1–9.



The Anisotropy of Young’s Modulus in Bones 155

Van Eijden, T.M.G.J.; Van der Helm, P.N.; Van Ruijven, L.J.; Mulder, L.
(2006): Structural and mechanical properties of mandibular condylar bone. Journal
of Dental Research 85: 33–37.

Van Lenthe, G.H.; Huiskes, R. (2002): How morphology predicts mechanical
properties of trabecular structures depends on intraspecimen trabecular thickness
variations. Journal of Biomechanics 35: 1191–1197.

Van Rietbergen, B.; Weinans, H.; Huiskes, R.; Odgaard, A. (1995): A new
method to determine trabecular bone elastic properties and loading using microme-
chanical finite-element models. Journal of Biomechanics 28: 69–81.

Van Ruijven, L.J.; Giesen, E.B.W.; Van Eijden, T.M.G.J. (2002): Mechani-
cal significance of the trabecular microstructure of the human mandibular condyle.
Journal of Dental Research 81(10): 701–710.

Van Ruijven, L.J.; Giesen, E.B.W.; Farella, M.; Van Eijden, T.M.G.J. (2003):
Prediction of mechanical properties of the cancellous bone of the mandibular condyle.
Journal of Dental Research 82(10): 819–823.

Veenland, J.F.; Link, T.M.; Konermann, W.; Meier, N.; Grashuis, J.L.; Gelsema,
E.S. (1997): Unraveling the role of structure and density in determining vertebral
bone strength. Calcified Tissue International 61: 474–479.

Whitehouse, W.J. (1974): The quantitative morphology of anisotropic trabecular
bone. Journal of Microscopy 101: 153–168.

Wolff, J. (1892): Das Gesetz der Transformation der Knochen.Berlin: A. Hirch-
wild. Translated as The Law of Bone Remodeling (eds. Maquet P. and Furlong, R.).
Berlin: Springer (1986).

Zysset, P. (1994): A constitutive law for trabecular bone. PhD thesis École Poly-
technique Fédérale de Lausanne.




