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Identification of Elasto-Plastic Constitutive Parameters by
Self-Optimizing Inverse Method: Experimental

Verifications

Shen Shang and Gun Jin Yun1,1

Abstract: In this paper, the Self-Optimizing Inverse Method (Self-OPTIM) has
been experimentally verified by identifying constitutive parameters solely based on
prescribed boundary loadings without full-field displacements. Recently the Self-
OPTIM methodology was developed as a computational inverse analysis tool that
can identify parameters of nonlinear material constitutive models. However, the
methodology was demonstrated only by numerically simulated testing with full-
field displacement fields and prescribed boundary loadings. The Self-OPTIM is
capable of identifying parameters of the chosen class of material constitutive mod-
els through minimization of an implicit objective function defined as a function of
full-field stress and strain fields in the optimization process. The unique advan-
tages of the Self-OPTIM includes: 1) model independency that is expected to open
up a wide range of applications for various engineering simulations; 2) capabili-
ties of parameter identification based solely on global measurements of boundary
forces and displacements. In this paper, the Self-OPTIM inverse method is ex-
perimentally verified by using two different shapes of specimens made of AISI
1095 steel: 1) dog-bone and 2) notched specimens under a loading and unloading
course. Parameters of a cyclic plasticity model with nonlinear kinematic hardening
rule and associated flow theory are identified by the Self-OPTIM. Multiple tests and
the inverse simulations are conducted to ensure consistent performance of the Self-
OPTIM. The identified parameters are successively used to reconstruct the material
response.

Keywords: Self-OPTIM, inverse analysis, elasto-plastic constitutive model, pa-
rameter indentification.
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1 Introduction

As computer and computational technologies are rapidly advanced, complex non-
linear constitutive models have become more and more feasible for use in the de-
sign of complex structures. Most constitutive models contain either physical or
phenomenological parameters that should be calibrated based on experimental ob-
servations. However, as the number of parameters increases, it would be more
challenging to determine the parameters from limited availability of laboratory test
data. Such difficulties are related to lack of information on the material behavior.
Therefore, robust inverse methods for identifying constitutive model parameters are
considered of great importance for better predictions of in-situ response of materi-
als [Cooreman et al. (2007); Ghaboussi et al. (1998); Ghouati et al. (1998); Grediac
et al. (2006a); Pannier et al. (2006); Ponthot et al. (2006)]. In the literature, there
are three distinct categories of inverse identification methods: 1) the finite element
model updating (FEMU) method [Hild et al. (2006); Mahnken (2000); Pagnacco et
al. (2005)]; and 2) the virtual field method (VFM) [Avril et al. (2004); Avril et al.
(2008); Grediac et al. (2006b); Grediac et al. (1990); Pierron et al. (2007)]. All of
the existing identification methods enforce equilibrium conditions, either in weak
or strong form, the constitutive relationships that relate full-field displacements to
the stresses, and the boundary conditions. However, they differ in the objective
functions they use and in whether they require measured full-field displacements or
not.

As updating-based methods, the FEMU methods iteratively update constitutive pa-
rameters, minimizing an objective function that represents the error, or gap, be-
tween the measured quantity and the corresponding quantity computed by using
finite element analyses. The FEMU approach has been applied to model parameter
identification for materials with linear elastic [Lecompte et al. (2007)], viscoelas-
tic [Moreau et al. (2006)], elasto-plastic [Kajberg et al. (2004)] and viscoplastic
[Kajberg et al. (2007)] behavior. FEMU methods may not require full-field mea-
surements; partial measurements can also be sufficient to determine the constitutive
parameters. However, the FEMU methods require iterative finite element analyses,
which take a great deal of computational times. In the VFM, a chosen set of kine-
matically admissible virtual displacement fields is assumed and substituted into the
virtual work equation along with full-field displacements measured by the digital
image correlation (DIC) technique. This leads to a system of linear equations that
can be solved for constitutive parameters [Grediacet al (1990)]. In 2007, Avril and
Pierron compared the VFM with FEMU methods based on minimization of a vari-
ety of gaps, such as displacement gap, constitutive equation gap, and equilibrium
gap. They concluded that FEMU based on “displacement gap” minimization yields
equations that are similar to those used by the VFM [Avril et al. (2007)]. The VFM
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has an advantage of faster computation times than FEMU approaches; however, it
requires full-field measurements obtained by using costly equipment. Moreover,
DIC based full-field displacement data are subject to potential measurement er-
rors. The DIC technique has been combined with finite element (FE) simulation
to identify key parameters in the material model [Cooreman et al. (2008); M.H.H.
Meuwissen (1998)]. The VFM has recently been extended to identify the consti-
tutive parameters that govern elasto-plastic constitutive equations [Grediacet et al.
(2006a); Pierron et al. (2010); Sutton et al. (2008)]. On the other hand, Ghaboussi
and his co-workers developed an autoprogressive training algorithm that enables
artificial neural network (ANN) based material models to be automatically trained
through nonlinear finite element analyses under boundary force and displacement
measurements from laboratory tests [Ghaboussiet et al. (1998)]. The autoprogres-
sive training algorithm is considered an innovative inverse analysis method that can
extract local constitutive behavior in ANN forms from the global response observed
in the laboratory testing. However, it is limited to the application of ANN based
material constitutive models. Inspired by the autoprogressive training algorithm,
self-optimization inverse analysis method (Self-OPTIM), a new inverse constitu-
tive parameter identification framework was developed by [Yun et al. (2011)]. In
their work, verifications of the Self-OPTIM method was demonstrated for parame-
ter identification of cyclic plasticity model based on numerically simulated tests.

In this paper, the Self-OPTIM is experimentally verified through identification of
parameters of an elasto-plasticity constitutive model. The Self-OPTIM methodol-
ogy has unique advantages: 1) model-independency that opens up a wide range
of applications to various engineering simulations; 2) capabilities of parameter
identification based solely on global measurements of boundary forces and dis-
placements; and 3) simplicity of implementations with a variety of global opti-
mization tool such as genetic algorithms or gradient-free simplex method. In the
Self-OPTIM framework, parameters of a chosen material constitutive model are
unknown a priori. Two parallel nonlinear finite element simulations are conducted
through all load (or time) increment steps per each iterative optimization process
by separately imposing two boundary conditions – 1) natural boundary conditions
and 2) essential boundary conditions – obtained from the same tested specimen and
experimental design on the two finite element models. To this end, an implicit ob-
jective function, expressed in terms of full-field stresses and strains from the two
nonlinear finite element analyses, is iteratively minimized. This paper is organized
as follows: Section 2 briefly describes the chosen material constitutive model, Sec-
tion 3 presents the Self-OPTIM inverse identification algorithm, Section 4 presents
verifications and discussions of the Self-OPTIM method with experimental data,
and Section 5 summarizes the conclusions.
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2 Material constitutive model

The Self-OPTIM is a model independent inverse identification method in which
parameters of any material constitutive model can be identified. Numerous elasto-
plastic models are available that can be applied to simulate the inelastic behavior
of a material under cyclic loadings. In this paper, a cyclic plasticity model with
a non-linear kinematic hardening law (Armstrong–Frederick type), as presented in
[Armstrong (1966)] has been adopted. Inaccurate reproductions of experimental
results caused by inherent shortcomings of the chosen model should be treated as a
modeling error. Thus such limitations of the chosen model should not be considered
as defects of the proposed Self-OPTIM methodology.

2.1 Material Constitutive Model

A UMAT material subroutine has been implemented to be used in the Self-OPTIM
method. The model is based on the work by Lemaitre and Chaboche [Lemaitre
et al. (1990)]. The chosen elasto-plasticity model can reproduce both nonlinear
isotropic and kinematic hardening behavior which is commonly observed, but not
limited to, in metallic materials.

The associate plastic flow rule under normality hypothesis assumes that the plastic
strain increases in a direction normal to the yield surface. However, it is notable that
frictional materials such as soils and rock with large dilations or certain metallic
alloys used in metal sheet forming violate the associate flow rule. Fundamental
assumption in the plasticity theory is the decomposition of the total strain rate into
elastic and plastic parts. They are expressed as

dε = dε
e +dε

p; dε
p
i j = dλ

∂ f
∂Si j

(1)

where dλ is the plastic multiplier. In the radial return method, trial deviatoric
stress increment takes a stress state to outside of the yield surface and then plastic
corrector brings back the stress state onto the yield surface in the radial direction.
On the π plane, the von Mises yield locus takes a circular form. The multi-axial
yield function is expressed as

F(σ) = σ
tr
e − r−σy = 0 (2)

σ
tr
e =

√
3
2
(σ tr_dev

i j −αi j)(σ tr_dev
i j −αi j) (3)

where σ
tr_dev
i j is the trial deviatoric stress component; αi j is the back stress for

nonlinear kinematic hardening; σy is the yield stress, and r is the drag stress for



Identification of Elasto-Plastic Constitutive Parameters 59

isotropic hardening behavior. The yield function is a nonlinear function of the
effective plastic strain. Thus, Newton’s iterations should be executed to find the
plastic strain increment which is expresses as

∆ε
p = ∆pn where n =

3
2

(
σdev−αt

σ tr
e

)
(4)

where n is the normal direction tensor; ∆p is the increment of effective plastic
strain; σdev is the deviatoric stress tensor; αt is the back stress at the previous
converged state time t; and σ tr

e is the effective trial stress.

2.2 Effects of Hardening Parameters on Cyclic Elasto-Plastic Behavior of Ma-
terials

For the kinematic hardening behavior, the Amstrong-Frederick type model (A-F
model) [Armstrong et al. (1966)] is used for simulating evolutions of the back
stress under cyclic loadings. However, it is known that the model has limitations
in reproducing ratcheting response of the material and the decomposed nonlinear
kinematic hardening models can better predict stresses under cyclic loadings than
the conventional A-F model does [Bari et al. (2000)]. As previously mentioned, it
is notable that such limitations of the A-F model cannot be claimed as limitations
of the proposed Self-OPTIM methodology. To reproduce the Bauschinger effect,
the A-F model defines evolutionary equation of the back stress as follows

α̇i j =
2
3

Cni j ṗ− γαi j ṗ (5)

As the effective plastic strain increment (ṗ) increases, the rate of the back stress
(α̇i j) also increases. ni j is a component form of the normal direction tensor (n).
Two model parameters C and γ determines the maximum saturated yield stress
(C/γ) along the kinematic hardening evolution and γ influences the rate of satu-
ration of the yield stress due to kinematic hardening. Considering such effects of
the C and γ parameters on the kinematic hardening and translational evolutions of
the yield surface in stress space, at least half-cycle (loading-yielding-unloading-
yielding) stress-strain path with a sufficiently large strain range is required to iden-
tify the parameters.

A nonlinear isotropic hardening model suggested by Chaboche [Chaboche (1986)]
is adopted to simulate expansion of the yield surface under increasing plastic de-
formations. The rate equation of the isotropic hardening parameter is expressed
as

ṙ(p) = b(Q− r)ṗ (6)
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In Eq. (6), r is the drag stress showing isotropic hardening behavior and Q deter-
mines the saturated yield stress (Q + Sy0) to be reachable during cyclic straining.
The value of b determines the rate of the saturation of the yield stress. Eq. (6) is
expressed as r(p) = Q(1− e−bp) if integrated with initial value r = 0. Thus, de-
pending on the strain range and the parameter b, local stress-strain paths could be
sufficient or insufficient for identifying the Q parameter. Under symmetric stress
or strain controlled experiments of metallic materials, both isotropic and kinematic
hardening effects are combined to generate the cyclic hardening behavior.

Figure 1 illustrates the effect of combined nonlinear isotropic and kinematic hard-
ening on the cyclic hardening response. According to this observation, multiple
cycles of stress-strain paths experienced by the material can provide comprehen-
sive information to identify the hardening parameters.
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Figure 1: Cyclic Hardening Behavior and Effects of Combined Nonlinear Harden-
ing Model Parameters

As long as sufficient stress-strain data within the linear elastic range are generated,
Young’s modulus and Poisson ratio could also be identified. Since error of the ini-
tial yield stress can create large errors in subsequent stress updates, the yield stress
can be identified as long as the material is yielded. However, due to limitations of
the testing machine and geometry of specimens used, loading and half of unloading
path under tension stress states was used in this paper, for example, in order to avoid
buckling during material tests. For those reasons, only nonlinear kinematic hard-
ening was activated in this paper. In the following, the proposed Self-Optimizing
inverse method will be introduced with details.
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3 Self -Optimization Inverse Analysis Method (Self-OPTIM)

3.1 Capability of the Self-OPTIM Inverse Analysis Method

The Self-OPTIM method was originally developed for parameter identification of
material constitutive models based on experimental data such as full-field (or partial
field) displacements, global force and displacement boundary loadings. In this pa-
per, further investigation on the Self-OPTIM is conducted to experimentally verify
its extensive capability of identifying parameters of material constitutive models
using only the global force and displacement boundary loadings measured from
laboratory tests. This is considered as an advantageous feature of the Self-OPTIM
because the DIC based full-field displacements are always subjected to measure-
ment errors. Unlike the FEMU approaches that directly compare observable re-
sponses for experiments and FE simulations, the Self-OPTIM method minimizes
an objective function (OF) defined in terms of full-field stresses and strains ex-
tracted through a course of two parallel nonlinear finite element simulations along
the loading curve. It is notable that stresses and strains are related by constitutive
theories.

3.2 Computational Procedures for Self-OPTIM

Figure 2 shows overall computational procedures of the implemented Self-OPTIM
method. In the first step, the targeted material is tested under a predefined cyclic
loading profile. Potentially it could be any test – such as tension, compression,
torsion tests, or more complex multi-axial tests as long as well-defined boundary
forces and displacements could be properly measured. It is recommended that load-
ing paths has to be determined based on the parameters to be identified and based on
understandings of effects of the parameters on stress predictions. However, identi-
fication of optimal loading paths related to experimental design has been addressed
in this paper.

Within each optimization iterative step, two nonlinear finite element analyses are
conducted using updated material constitutive model parameters under the experi-
mentally measured force and displacement boundary loadings. From the displace-
ment-driven nonlinear FE simulation, stresses (σU ) and strains (εU ) are extracted
at every Gauss point and load step. Correspondingly, from the force-driven non-
linear FE simulations, stresses (σF ) and strains (εF ) are extracted at every Gauss
point and load step. The Self-OPTIM method uses an implicit objective function
(OFimplicit , see Eq. (7)) defined as a function of stresses (σF , σU ) and strains (εF ,
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Figure 2: Schematic flowchart of Self-OPTIM inverse analysis method
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where ||·|| indicates the Euclidean norm; σ k
iF , εk

iF and σ k
iU ,εk

iU are the simulated
stresses and strains extracted from the zone of interests(ZOI) under force and dis-
placement boundary conditions, respectively; and LS, NE, and GP denote the total
number of selected load steps, the total number of selected elements in ZOI, and
the total number of Gauss points in the finite elements, respectively.

A fundamental difference between the Self-OPTIM and the other inverse identifi-
cation methods is that the experimental measurements of displacement, force, and
other responses are not used as reference values in the Self-OPTIM. Instead, those
experimental measurements act as predefined boundary loadings for the two par-
allel nonlinear FE simulations. More details on theoretical background and proce-
dures of the Self-OPTIM framework can be found in [Yun et al. (2011)].



Identification of Elasto-Plastic Constitutive Parameters 63

3.3 Hybrid Genetic-Simplex Algorithm

In this paper, a hybrid genetic-simplex method was employed for efficient search-
ing of the optimum constitutive parameters. The optimization technique used in the
Self-OPTIM framework is a combination of genetic algorithm (GA) and simplex
methods [Nelder et al. (1965)] (Title: A simplex-method for function minimiza-
tion). Initially, a total of 200 individuals are randomly generated to form an initial
population within feasible bounds. After the OFimplicit is evaluated for all individ-
uals, the individual solution giving the minimum OFimplicit value is selected as an
initial guess for the subsequent simplex method. This procedure first searches for
the solution space globally and it is followed by optimization iterations using the
simplex method with a reasonable initial input. Therefore, it reduces the possibility
of being trapped to a local minimum. The maximum number of iterations is set as
a terminating criterion. Therefore, the simplex searching will be terminated when
the preset maximum iteration number is reached.

4 Verification of Self-OPTIM Identification with Experiment Test Results

4.1 Material Tests and Predefined Boundary Loading Data

Two types of test specimens – dog-bone specimens (for homogeneous stress tests)
and notched specimens (for heterogeneous stress tests) – are used for the purpose
of experimentally verifying the Self-OPTIM methodology. Three specimens of
each type were cut from the same plate with 2 mm thickness. The geometric
dimensions of the specimens and the corresponding finite element models using
eight-node plane stress elements are shown in Figure 3. Displacement-controlled
uni-axial tension loading and unloading tests were carried out in Y direction by
an INSTRON material test machine at a quasi-static strain rate 1.5×10−5. In the
homogeneous stress test, three dog-bone specimens were loaded up to a maximum
displacement 4.318 mm and unloaded to 4.064 mm. In the heterogeneous stress
tests, three notched specimens were loaded up to maximum displacement 2.032
mm and unloaded to 1.778 mm. The displacement and force data were recorded
at a sampling frequency of 5 Hz. Data of the full loading path can be divided into
three parts: linear elastic, plastic deformation, and linear unloading regions. Due to
the measurement noise , the experimental force-displacement data were curve-fitted
before they were used in the Self-OPTIM. Approximately, 200 load steps of data
(pairs of displacement and force data) were resampled for being imposed to two
parallel nonlinear FE simulations used in Self-OPTIM analyses. For applying the
boundary forces to the FE model, it is assumed that the boundary force is imposed
as uniformly distributed along the gripped line. A group of white-colored elements
indicated in Figure 3 was selected as a ZOI from which stresses and strains were
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extracted during Self-OPTIM identification processes.
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Figure 3: Geometry and FE mesh of the test specimen (all dimensions shown are
in mm) (a) dog-bone specimen and (b) notched specimen

It must be noted, however, that data in the plastic regime of the unloading course
were not included in the predefined boundary loading because the test data included
the geometric softening effect due to buckling under compression in addition to
the effect of pure material deformation. According to our numerical studies, in-
clusions of the unloading hardening curve hindered Self-OPTIM from identifying
correct constitutive parameter sets. According to reproduced experimental force-
displacement curve by nonlinear FE simulations with the identified parameters, it
could be judged that the identified parameters could be very different from the
feasible parameters. Therefore, it is important to Self-OPTIM analyses that no ge-
ometric softening effect be included in the predefined boundary loading data (i.e.
reference data).

4.2 Identification Results and Discussions

A total of six Self-OPTIM inverse analyses were conducted to identify the consti-
tutive model parameters: three for dog-bone shape specimens and three for notched
specimens. Good convergence was observed in all of the Self-OPTIM inverse anal-
yses. Identification results of the unknown parameter set are summarized in Table
1 and Table 2. The mean value and the standard error (=σ /n1/2 where σ is the
standard deviation and n is the number of samples) of each identified parameter are
plotted in Figure 4.

It can be observed that the identified parameters have good agreement with each



Identification of Elasto-Plastic Constitutive Parameters 65

Table 1: Identification results from Self-OPTIM of dog-bone specimen

Dog-bone Specimen
1 2 3 Mean Standard error

E (GPa) 92.582 95.430 97.450 95.154 1.412
σy(MPa) 276.604 295.633 268.254 280.164 8.102
C (GPa) 6.618 5.528 6.197 6.114 0.317

γ 51.251 45.591 48.801 48.548 1.638

Table 2: Identification results of from Self-OPTIM of notched specimen

Notched Specimen
1 2 3 Mean Standard error

E (GPa) 88.804 87.625 97.471 91.300 3.104
σ y(MPa) 305.052 291.531 272.329 289.637 9.494
C (GPa) 4.188 5.146 6.573 5.302 0.693

γ 29.661 34.243 37.112 3.672 2.170

other in both specimen types. The six force-displacement curves were recon-
structed by using nonlinear FE simulations in which the model parameters iden-
tified by Self-OPTIM were used. When compared with the corresponding curves
from experimental tests, all of them were observed to be identical. Verification re-
sults of the first notched specimen are shown in Figure 5. Therefore it was demon-
strated that the Self-OPTIM is able to identify the parameter set that can represent
the experimental data accurately.

To further examine the identification results, two simulations were conducted for
cross comparisons in which the mean values of the parameters identified from
dog-bone shape specimens were used to predict the force-displacement response
of notched specimens and vice versa. Because the specimens are made of the same
material, the force-displacement curves are expected to be identical in an ideal
case. However, slight discrepancy between the reconstructed curves observed in
Figure 6(a) and Figure 6(b) is attributable to the stochastic process associated with
materials. First, considering the stochastic process in detail, it must be noted that
the material has inherited variability; in reality, every material point has different
material properties. Secondly, the material pre-hardening caused by manufactur-
ing process could be different between the dog-bone and notched specimens; this
could lead to different yield stresses and hardening behavior in the two specimen
types. Finally, the modeling error caused by gripping is inevitable in each test; it is
challenging to exactly align the grip position in the lab to that of the finite element
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model.

 

Figure 4: Mean value and standard error of the identified parameters in homoge-
nous and heterogeneous test

 
Figure 5: Comparison of the force-displacement curves reconstructed by using the
parameters prior to Self-OPTIM, after Self-OPTIM and experiment data

In order to show progress of self-calibration by the Self-OPTIM analysis, the stress
and strain distribution from force-driven and displacement-driven simulations by
using initial parameter set and identified parameter set at a certain load step are
shown in Figure 7. It is observed that correlation of stresses and strains between
two parallel simulations significantly increase after Self-OPTIM simulations.

Normalized longitudinal stresses and strains extracted from force-driven and disp-
lacement-driven simulations of the notched specimen were plotted at different stages
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a) 

 

b) 

 

 
Figure 6: a) Reconstructed force-displacement curve of the dog-bone specimen
by the parameter set identified by notched specimens; b) reconstructed force-
displacement curve of the notched specimen by the parameter set identified from
dog-bone specimens

of Self-OPTIM analyses as shown in Figure 8. First, a parameter set prior to Self-
OPTIM was used in the simulations. As shown in the first column of Figure 8, the
stresses and strains simulated under two boundary loading conditions were very dif-
ferent. After five iterations of Self-OPTIM, the two sets of stresses and strains have
better agreements. Finally, the two sets of stresses and strains become almost iden-
tical since the parameter set is well identified after the Self-OPTIM analyses. The
correlation coefficient (R), root mean squared error (RMSE), and mean absolute
error (MAE) of stresses and strains between force-driven and displacement-driven
simulations at different iterative steps are calculated by Eq. (8) to Eq. (10). The
statistical indices are defined as follows

R =
∑
n

(
An− Ā

)
(Bn− B̄)√(

∑
n

(
An− Ā

)2
)(

∑
n
(Bn− B̄)2

) (8)

RMSE =

√
∑
n
(An−Bn)2

n
(9)

MAE =
∑
n
|An−Bn|

n
(10)

Where An and Bn are two vectors to be compared. The results are listed in Table 3.
As the optimization iteration proceeds, it was observed that R value approaches to
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Figure 7: Stress and Strain distributions of the notched specimen on longitudinal
direction at 150th load step are compared between force-driven and displacement-
driven analyses by using initial parameter set and identified parameter set

one, and both RMSE and MAE values decrease significantly.

Table 3: Statistic analysis of stresses and strains of a notched specimen from force-
driven and displacement-driven simulations

R RMSE MAE
σ ε σ ε σ ε

Prior to Self-OPTIM 0.83618 0.89493 0.13622 0.14433 0.11511 0.12003
5th Iteration 0.99775 0.93077 0.01530 0.11163 0.01172 0.09385

After Self-OPTIM 0.99882 0.99892 0.01281 0.01122 0.01005 0.00704
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Figure 8: Plots of normalized longitudinal stresses and strains of a notched spec-
imen from force-driven and displacement-driven simulations using the parameter
set prior to Self-OPTIM, at the 5th optimization iteration, and after Self-OPTIM

5 Conclusions

In this paper, a novel inverse parameter identification methodology, Self-OPTIM,
was verified experimentally. Unlike other existing inverse identification methods,
the verified Self-OPTIM method does not need any full-field displacement data. By
using only the global force and displacement boundary loadings that can readily
be measured from experimental tests, parameters of the elasto-plastic model were
successfully identified. Two different geometric types of specimen were used with
intentions for verification of generality of the identified parameters. For statistical
analysis of test results, three specimens were tested for each geometric type. Pa-
rameters identified through the Self-OPTIM were evaluated for reproducing global
and local material response. The Self-OPTIM analysis provided consistent pa-
rameter sets, and it was proven that the identified parameters could predict in-situ
material response. While Young’s modulus and yield stress were very consistent
for multiple tests and different geometries of the specimens, two hardening param-
eters showed relatively larger difference between dog-bone shape specimens and
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notched specimens. It is considered that this difference is a result of the stochastic
process associated with materials and the insensitivity of the parameters to stresses
and strains.

Acknowledgement: This research is supported by the New Faculty Startup Fund
from the University of Akron. The authors are grateful for this support.

References

Armstrong, P.J.; Frederick, C.O., (1966): A Mathematical Representation of the
Multiaxial Bauschinger Effect. Berkeley Nuclear Laboratories.

Armstrong, P.J., Frederick, C.O., (1966): A Mathematical Representation of the
Multiaxial Bauschinger Effect.

Avril, S.; Grediac, M.; Pierron, F., (2004): Sensitivity of the virtual fields method
to noisy data. Computational Mechanics 34, 439-452.

Avril, S.; Huntley, J.M.; Pierron, F.; Steele, D.D., (2008): 3D heterogeneous
stiffness reconstruction using MRI and the virtual fields method. Experimental
Mechanics 48, 479-494.

Avril, S.; Pierron, F., (2007): General framework for the identification of consti-
tutive parameters from full-field measurements in linear elasticity. International
Journal of Solids and Structures 44, 4978-5002.

Bari, S.; Hassan, T., (2000): Anatomy of coupled constitutive models for ratchet-
ing simulation. International Journal of Plasticity 16, 381-409.

Chaboche, J.L., (1986): Time-Independent Constitutive Theories for Cyclic Plas-
ticity. International Journal of Plasticity 2, 149-188.

Cooreman, S.; Lecompte, D.; Sol, H.; Vantomme, J.; Debruyne, D., (2007):
Elasto-plastic material parameter identification by inverse methods: Calculation of
the sensitivity matrix. International Journal of Solids and Structures 44, 4329-
4341.

Cooreman, S.; Lecompte, D.; Sol, H.; Vantomme, J.; Debruyne, D., (2008):
Identification of mechanical material behavior through inverse modeling and DIC.
Experimental Mechanics 48, 421-433.

Ghaboussi, J.; Pecknold, D.A.; Zhang, M.F.; Haj-Ali, R.M., (1998): Autopro-
gressive training of neural network constitutive models. International Journal for
Numerical Methods in Engineering 42, 105-126.

Ghouati, O.; Gelin, J.C., (1998): Gradient based methods, genetic algorithms and
the finite element method for the identification of material parameters. Simulation
of Materials Processing: Theory, Methods and Applications, 157-162



Identification of Elasto-Plastic Constitutive Parameters 71

993.

Grediac, M.; Pierron, F., (2006a): Applying the virtual fields method to the identi-
fication of elasto-plastic constitutive parameters. International Journal of Plasticity
22, 602-627.

Grediac, M.; Pierron, F.; Avril, S.; Toussaint, E., (2006b): The virtual fields
method for extracting constitutive parameters from full-field measurements: A re-
view. Strain 42, 233-253.

Grediac, M.; Vautrin, A., (1990): A New Method for Determination of Bending
Rigidities of Thin Anisotropic Plates. Journal of Applied Mechanics-Transactions
of the Asme 57, 964-968.

Hild, F.; Roux, S., (2006): Digital image correlation: from displacement measure-
ment to identification of elastic properties - a review. Strain 42, 69-80.

Kajberg, J.; Lindkvist, G., (2004): Characterization of materials subjected to
large strains by inverse modelling based on in-plane displacement fields. Interna-
tional Journal of Solids and Structures 41, 3439-3459.

Kajberg, J.; Wikman, B., (2007): Viscoplastic parameter estimation by high
strain-rate experiments and inverse modeling - Speckle measurements and high-
speed photography. International Journal of Solids and Structures 44, 145-164.

Lecompte, D.; Smits, A.; Sol, H.; Vantomme, J.; Van Hemelrijck, D., (2007):
Mixed numerical-experimental technique for orthotropic parameter identification
using biaxial tensile tests on cruciform specimens. International Journal of Solids
and Structures 44, 1643-1656.

Lemaitre, J.; Chaboche, J.L., 1990. Mechanics of Solid Materials. Cambridge
University Press.

M.H.H. Meuwissen, C.W.J.o., F.P.T. Baaijiens, R. Petterson, J.D. Janssen, (1998):
Determination of the elasto-plastic properties of aluminium using a mixed numerical-
experimental method. Journal of Materials Processing Technology 75, 204-211.

Mahnken, R., (2000): A comprehensive study of a multiplicative elastoplasticity
model coupled to damage including parameter identification. Computers & Struc-
tures 74, 179-200.

Moreau, A.; Pagnacco, E.; Borza, D.; Lemosse, D., 2006. An evaluation of dif-
ferent mixed experimental/numerical procedures using FRF for the identification of
viscoelastic materials, International conference on noise and vibration engineering
ISMA, Leuven.

Nelder, J.A.; Mead, R., (1965): A Simplex-Method for Function Minimization.
Computer Journal 7, 308-313.

Pagnacco, E.; Lemosse, D.; Hild, F.; Amiot, F., 2005. Inverse strategy from



72 Copyright © 2012 Tech Science Press CMC, vol.27, no.1, pp.55-72, 2012

displacement field measurement and distributed forces using FEA, SEM Annual
Conference and Exposition on Experimental and Applied Mechanics, Poland.

Pannier, Y.; Avril, S.; Rotinat, R.; Pierron, F., (2006): Identification of elasto-
plastic constitutive parameters from statically undetermined tests using the virtual
fields method. Experimental Mechanics 46, 735-755.

Pierron, F.; Avril, S.; Tran, V.T., (2010): Extension of the virtual fields method
to elasto-plastic material identification with cyclic loads and kinematic hardening.
International Journal of Solids and Structures 47, 2993-3010.

Pierron, F.; Vert, G.; Burguete, R.; Avril, S.; Rotinat, R.; Wisnom, M.R.,
(2007): Identification of the orthotropic elastic stiffnesses of composites with the
virtual fields method: Sensitivity study and experimental validation. Strain 43,
250-259.

Ponthot, J.P.; Kleinermann, J.P., (2006): A cascade optimization methodol-
ogy for automatic parameter identification and shape/process optimization in metal
forming simulation. Computer Methods in Applied Mechanics and Engineering
195, 5472-5508.

Sutton, M.A.; Yan, J.H.; Avril, S.; Pierron, F.; Adeeb, S.M., (2008): Identifi-
cation of heterogeneous constitutive parameters in a welded specimen: Uniform
stress and virtual fields methods for material property estimation. Experimental
Mechanics 48, 451-464.

Yun, G.J.; Shang, S., (2011): A Self-Optimizing Inverse Analysis Method for
Estimation of Cyclic Elasto-Plasticity Model Parameters. International Journal of
Plasticity 27, 576-595.


