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A Structural Reliability Analysis Method Based on Radial
Basis Function
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Abstract: The first-order reliability method (FORM) is one of the most widely
used structural reliability analysis techniques due to its simplicity and efficiency.
However, direct using FORM seems disability to work well for complex problems,
especially related to high-dimensional variables and computation intensive numer-
ical models. To expand the applicability of the FORM for more practical engineer-
ing problems, a response surface (RS) approach based FORM is proposed for struc-
tural reliability analysis. The radial basis function (RBF) is employed to approx-
imate the implicit limit-state functions combined with Latin Hypercube Sampling
(LHS) strategy. To guarantee the numerical stability, the improved HL-RF (iHL-
RF) algorithm is used to assess the reliability index and corresponding probability
of failure based on the constructed RS model. The effectiveness of the proposed
method is demonstrated through five numerical examples.

Keywords: structural reliability analysis, first-order reliability method, response
surface method, radial basis function

1 Introduction

During the past three decades, much effort has been made to develop efficient meth-
ods for structural reliability analysis. Response surface method (RSM) is consid-
ered to be one of the most widely used methods with the ability to approximate the
limit-state functions of large and complex structural systems. By integrating the
RS approaches, various reliability analysis techniques such as first-order reliability
method (FORM), second-order reliability method (SORM), Monte Carlo simula-
tion (MCS) can be easily applied to evaluate the probability of failure for more
complex practical engineering problems.

Bucher and Bourgund (1990) originally adopted a quadratic polynomial without
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cross terms and selected the axial experimental sampling method to efficiently con-
struct the RS, based on which the probability of failure can be easily evaluated in
combination with advanced MCS. Rajashekhar and Ellingwood (1993) made im-
provements to the Bucher’s algorithm and formulated more iterations to satisfy a
given convergence criteria. Gaytona et al (2003) proposed a RSM named CQ2RS
(Complete Quadratic Response Surface with ReSampling) allowing to take into
account the knowledge of the engineer on one hand and to reduce the cost of the
reliability analysis using a statistical formulation of the RSM problem on the other
hand. Kaymaza and McMahon (2005) proposed a response surface method based
on weighted regression for structural reliability analysis instead of normal regres-
sion. Liu and Moses (1994) suggested a sequential RSM together with Monte
Carlo importance sampling (MCIS). Lu et al (2007) applied an advanced RSM for
mechanical reliability analysis. Kang et al (2010) proposed an efficient RSM ap-
plying a moving least squares (MLS) approximation for structural reliability anal-
ysis instead of the traditional least squares approximation generally used in the
RSM. Gupta and Manohar (2004) introduced an improved RSM for the determi-
nation of failure probability and importance measures and also proposed global
measures of sensitivity of failure probability with respect to the basic random vari-
ables. Zou et al (2008) employed the cross-validated MLS method to construct
the RS of the indicator function in conjunction with the optimum symmetric LHS
technique. Das and Zheng (2000) proposed a method with cumulative formation of
the response surface function and its use in reliability analysis. Guan and Melchers
(2001) estimated the effect of response surface parameter variation on structural re-
liability analysis. Gavin and Ya (2008) represented high-order limit state functions
in the response surface method for structural reliability analysis. Zheng and Das
(2000) developed an improved RSM and applied to the reliability analysis of a stiff-
ened plated structure. SchuiBier et al (1989) proposed the efficient computational
schemes to compute structural failure probabilities. Kim and Na (1996) proposed
an improved sequential RSM by using the gradient projection method, the sam-
pling points for RS approximation are selected to be close to the original failure
surface. Bucher and Most (2008) presented a comparison of approximate response
functions in structural reliability analysis. For the reliability estimation of complex
structures, RS methodology has been suggested as a way to estimate the implicit
limit state function. Typically the RS is constructed by using polynomial functions
and fitted to the implicit function at a number of points. In recent years, a few ap-
proaches have been developed to apply RBF with implicit performance functions.
Deng (2006) presents three RBF network (RBF) based reliability analysis meth-
ods, i.e. RBF based MCS, RBF based FORM, and RBF based SORM. Cheng et al
(2007); Cheng et al (2008) proposed an artificial neural network (ANN)-based in-
verse FORM and ANN-based RSM in conjunction with the uniform design method
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for predicting failure probability.

However, the above-mentioned methods will still encounter a severe drawback in
efficiency when more complicated structures with high-dimensional variables. The
existing methods usually involve repeated deterministic response analyses of com-
plex structures due to the variation of the basis variables, and therefore require
a relatively long computation time as the number of random variables increases.
Therefore, it is necessary to propose a structural reliability analysis approach based
on RBF.

In this paper, radial basis function combined with FORM is proposed for struc-
tural reliability analysis. RBF is adopted to approximate the limit-state functions
combined with Latin Hypercube Sampling (LHS), and the probability of failure
is evaluated by conducting FORM on the created RS. The structure of this paper
is illustrated as follows. Section 2 introduces description of first-order reliability
method (FORM). Section 3 presents Radial basis function (RBF)-based structural
reliability analysis. Five numerical examples are investigated in section 4. Section
5 draws some conclusions on the proposed method.

2 Description of FORM

Consider following limit state function with n uncertain parameter

g(X) = 0, Xi = 1,2, · · · ,n (1)

where the system state is separated into two domains, the system is safe if g(X)>0,
while failure if g(X)<0. The probability of failure is defined by integrating the joint
probability density function fx(X) over the failure domain.

Pf = Pr{g(X) < 0}=
∫

g(X)<0
fX(X)dX (2)

The limit state function g(X) is usually a nonlinear function of X, therefore the in-
tegration boundary is nonlinear. The number of random variables is usually high,
multidimensional integration is involved. Because of these complexities, it is diffi-
cult or even impossible to directly solve Eq. (2). To easily evaluate the integral in
Eq. (2), approximation methods have been developed, such as FORM, SORM, etc.
Due to its simplicity and efficiency, FORM has used for engineering applications.
By using FORM, the probability of failure can be approximated by

Pf = Φ(−β ) (3)

where Φ is the standard normal distribution function, and the reliability index β is
defined as the minimum distance from origin in the standard normal space to the
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limit state surface. Du (2007) The first step of using FORM is to transform the
non-normal random variable X in X-space to normal variables U in U-space whose
elements follow a standard normal distribution. The transformation is given by

Ui = Φ
−1 [FXi(Xi)] , i = 1,2...n (4)

where FXi is the cumulative distribution function (CDF) of Xi, and Φ−1 is the in-
verse normal distribution function. Then the reliability index and the so-called most
probable point (MPP) U∗ is identified with the following optimization model.

min ‖U‖
Subject to g(U) = 0

(5)

where ‖•‖ represents the normal. Du (2007) There are many optimization algo-
rithms to solve Eq.(5), the iHL-RF method is commonly used to achieve the solu-
tion.

3 RBF-based structural reliability analysis

Direct using FORM may not work well for complex structural reliability problems.
Thus, a RBF-based structural reliabiliy analysis technique is developed here. RBF
is used to approximate the limit-state function and optimal Latin Hypercube Sam-
pling strategy is employed to locate the samples in the design space.

3.1 Construction of RBF

Radial basis functions are developed for scattered multivariate data interpolation.
Mullur and Messac (2006) The method uses linear combinations of a radially sym-
metric function based on Euclidean distance. The response functions can be ap-
proximated by using a RBF model. A RBF model be expressed as:

g̃(X) =
n

∑
i=1

wiφ(‖X−Xi‖) (6)

where n is the number of sampling points, X is the vector of input variables, Xi is
vector of input variables at the ith sampling point. RBFs are expressed in terms
of the Euclidean distance r = ‖X−Xi‖. The coefficients wi, i=1,. . . ,n, are un-
known weighting coefficients to be determined. Gutmann (2001) Some of the most
commonly used basis functions include: linear, cubic, thin plate spline, Gaussian,
multi-quadric, inverse multi-quadric, etc.

In this study, Gaussian radial basis function is adopted, which can be expressed as

φ(r) = e−αr2
, r ≥ 0; 0 < α < 1 (7)
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Considering a set of n sampling points, the RBF model can be expressed in matrix
form as

G̃ = Φw (8)

where

Φ =


φ1(r1) φ1(r2) · · · φ1(rn)
φ2(r1) φ2(r2) · · · φ2(rn)

...
...

. . .
...

φn(r1) φn(r2) · · · φn(rn)

 (9)

The weighting coefficient vector w can be obtained by solving Eq.(8).

To construct RBF model, the LHS method is selected to locate the sampling points.
The LHS method contains n sample points between upper bound and lower bound
over m dimensions is a matrix of n rows and m columns. Each row corresponds to a
sample point. The m columns are randomly permuted to yield sample that appears
random overall, but is uniformly distributed if each dimension is viewed separately.
The n values in each column are randomly selected one from each of the intervals.
The design domain of sampling points is limited in µi− kσi ≤ Xi ≤ µi + kσi, as
illustrated in Fig.1 for two-dimensional problem, where k is “sampling coefficient”.
The sampling coefficient is selected by designer according to practical engineering
problems.

3.2 Solution of the approximate reliability index

For the MPP search, there are many general optimization algorithms available to
solve Eq.(5). Du (2007) The widely used method is the iHL-RF algorithm owing
to its simplicity and efficiency. The iHL-RF is computationally efficient and glob-
ally convergent, meaning that it guarantees to converge to a local MPP from any
starting point. The recursive algorithm of method for the minimum probability is
summarized as follows.

In iteration k+1, the MPP is defined by

Uk+1 = Uk +αdk (10)

where the search direction dk is determined by

dk =
∇g(Uk)UT

k −g(Uk)

‖∇g(Uk)‖2 ∇g(Uk)−Uk (11)

where ∇g(Uk) represents the gradient of the state limit function g(U) at Uk
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Figure 1: Sampling points for a two variable problem

The step size α is determined by minimizing the merit function defined by

m(U) =
1
2
‖U‖+ c |g(U)| (12)

In which the constant c should satisfy

c >
‖U‖
‖∇g(U)‖

(13)

To reduce the computational cost, in practice, the step size is computed finding
a value α that the merit function is sufficiently reduced. The following rule is
employed to find α such that

α = max
h∈N

{
bh
∣∣m(Uk +bhdk)−m(Uk) < 0

}
, b > 0 (14)

In this algorithm b=0.5 and c = 2‖Uk‖
‖∇g(Uk)‖ +10 are used.

In Eq. 14 indicates that α=bh is the first integer.

3.3 Computational procedures of the proposed method

The calculation steps of the proposed method can be described as follows (Fig. 2):
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Figure 2: Flowchart of the proposed method

Step 1. Select random variables X and define the state function g(X) according to
the engineering problem.

Step 2. Define the sampling space and generate sampling points by using Latin
hypercube sampling method.

Step 3. Conduct simulation analysis at each corresponding sample and compute
the corresponding value of the performance function.

Step 4. Construct radial basis function approximate model and calculate the weight-
ing coefficient w vector using Eq.(9).

Step 5. Compute the distance β to this new design point from the origin, probability
of failure by iHL-RF algorithm and check the convergence criterion.
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4 Numerical examples

4.1 Example 1

Consider a highly non-linear limit state function discussed in Ref. Cheng et al
(2009).

g(X) = X2
1 +X2

1 X2 +X3
3 +18 (15)

The statistics of the two random variables in this limit state function are listed in
Tab.1. The exact reliability index and failure probability value is obtained using
Adaptive MCS with 100000 samples are 2.535 and 0.00563, respectively. The
results and relative error are shown in Tab.2. The reliability results are almost the
same with the exact solution.

Table 1: Statistics of the random variables for example 1

Variable Mean values Standard deviation Distribution
X1 10.0 5.0 Normal
X2 9.9 5.0 Normal

Table 2: Comparison of results of example 1

Method Failure probability Reliability index Relative error of β

MCS 0.00563 2.535 —
Proposed method 0.00564 2.534 0.039%

4.2 Example 2

Consider a problem of Ref. Das and Zheng (2000). The limit state function is
expressed

g(X) = X2X3X4−
X2

3 X2
4 X5

X6X7
−X1 (16)

where all the random variables are normal and mutually independent. The statistics
are listed in Tab. 3. The result calculated by the proposed method is compared
with directional simulation with 100000 samples yields Pf = 3.369×10−4, and the
corresponding reliability index β=3.4, which are regarded as the exact referenced
solution. The results are shown in Tab. 4. It should be pointed out that the reliability
results of the proposed method are almost the same with the exact solution.
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Figure 3: Linear portal frame of example 3

4.3 Example 3

This numerical example is a linear frame structure one story and one bay as shown
in Fig.3. Cheng et al (2007) Different cross sectional areas Ai and horizontal load P
are treated as independent random variables, their statistics are listed in Tab.5. The
sectional moments of inertia expressed as Ii = αiA2

i (α1 = 0.0833, α2 = 0.16670).
The Young’s modulus is treated as deterministic E = 2×106kN/m2.

The limit state function is expressed

g(A1,A2,P) = 0.01−umax(A1,A2,P) (17)

where umax denotes the max horizontal displacement as the function of basic ran-
dom variables. The limit state function is implicit, and the structural response has
to be calculated by using the FEM. The reliability index and failure probability cal-
culated by the proposed method is compared with the MCS result with the exact
solution Pf = 0.2322×10−2 and its corresponding reliability index β = 2.834. The
results and relative error are shown in Tab.6. It can be seen that the analysis results
are all very close to the exact ones.

4.4 Example 4

This example, the proposed method has been applied to a truss structure (Fig. 4).
Kim and Na (1996) All the random properties are summarized in Tab. 7, E is the
elastic modulus and A is the section area.
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Figure 4: Truss type girder of example 4

Table 3: Statistics of the random variables for example 2

Variable Mean values Standard deviation Distribution
X1 0.01 0.003 Normal
X2 0.3 0.015 Normal
X3 360 36 Normal
X4 226×10−6 11.3×10−6 Normal
X5 0.5 0.05 Normal
X6 0.12 0.006 Normal
X7 40 6 Normal

Table 4: Comparison of results of example 2

Method Failure probability Reliability index Relative error of β

MCS 0.03369% 3.40 —
Proposed method 0.03495% 3.39 0.294%

Table 5: Distributional properties of random variables in example 3

Variable Mean Standard deviation Unit Distribution
A1 0.36 0.036 m2 Lognormal
A2 0.18 0.018 m2 Lognormal
P 20.0 5.0 kN Type I largest

The limit state function is defined by the center deflection of the truss-type girder.

g(X) = 11.0−u(X) (18)
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Table 6: Comparison of analysis results of example 3

Method Failure probability Reliability index Relative error of β

MCS 0.2322% 2.834 —
Proposed method 0.2292% 2.831 0.106%

Table 7: Distributional properties of random variables in example 4

Variable Mean Standard deviation Unit Distribution
E1 of diagonal member 2100000 210000 kg/cm2 Lognormal
A1 of diagonal member 20 1 cm2 Lognormal

E2 of main member 2100000 210000 kg/cm2 Lognormal
A2 of main member 10 2 cm2 Lognormal

P1 5000 750 Kg Type I largest
P2 5000 750 Kg Type I largest
P3 5000 750 Kg Type I largest
P4 5000 750 Kg Type I largest
P5 5000 750 Kg Type I largest
P6 5000 750 Kg Type I largest

Table 8: Comparison of analysis results of example 4

Method Failure probability Reliability index Relative error of β

MCS 0.6350% 2.492 —
Proposed method 0.5544% 2.539 -1.85%

where u(X) denotes the max displacement as the function of basic random vari-
ables. The limit state function of this problem is also implicit response function,
and the structural response is computed by using the FEM. The reliability index
and failure probability computed by the proposed is compared with the MCS result
is obtained with 200000 simulations with the exact solution Pf = 0.635×10−2and
its corresponding reliability index β = 2.492. The results and relative error of the
proposed method are shown in Tab. 8. It is found that the reliability results are
accurately close to the exact solution.

4.5 Example 5

A frame structure with 12 stories and 3 bays as shown in Fig. 5. Das and Zheng
(2000); Deng (2006); Cheng et al (2007) Different cross sectional areas Ai and
horizontal load P are treated as independent random variables, their statistics are
listed in Tab. 9. The sectional moments of inertia expressed as Ii = αiA2

i (α1 =
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Figure 5: Linear portal frame structure of example 5

Table 9: Distributional properties of random variables in example 5

Variable Mean Standard deviation Unit Distribution
A1 0.25 0.025 m2 Lognormal
A2 0.16 0.016 m2 Lognormal
A3 0.36 0.036 m2 Lognormal
A4 0.20 0.020 m2 Lognormal
A5 0.15 0.015 m2 Lognormal
P 30.0 7.5 kN Type I largest
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Table 10: Comparison of analysis results of example 5

Method Failure probability Reliability index Relative error β

MCS 7.5058% 1.4391 —
Proposed method 7.4637% 1.4421 -0.208%

α2 = α3 = 0.0833, α4 = 0.2667, α5 = 0.2). The Young’s modulus is treated as
deterministic E = 2×107kN/m2. The limit state function is defined as

g(A1,A2,A3,A4,A5,P) = 0.096−umax(A1,A2,A3,A4,A5,P) (19)

where umax denotes the max horizontal displacement as the function of basic ran-
dom variables. The limit state function is also implicit function, and the structural
response is computed by using the FEM. The results of the proposed method is
compared with MCS yields Pf = 7.5058×10−2, and the corresponding reliability
index β = 1.4391, which are regarded as the exact referenced solution. The results
and relative error are shown in Tab. 10. It can be found that the result obtained
by the proposed method is closer to the referenced solution with less computation
time than of the MCS.

5 Conclusions

The main contribution of this paper is to propose a response surface (RS) based
FORM for structural reliability analysis. The method involves using LHS method
to generate samples, approximation of the limit state function by the RBF model
and estimation of the failure probability using the FORM. In the proposed method,
an RBF model is used to approximate the structural response function so that the
number of deterministic response analyses can be dramatically reduced. It can
thus prohibitively reduce the computation time. Comparisons were made with
MCS method to evaluate the accuracy and computational efficiency of the pro-
posed method. It was shown through the examples that the proposed method pro-
vides accurate results and is a computationally efficient approach for estimation
of the probability of failure of structures. Compared with the MCS method, the
proposed method is much more economical to achieve reasonable accuracy when
dealing with problems where closed-form failure functions are not available or the
estimated failure probability is extremely small. Five numerical examples illustrate
the effectiveness of the proposed method.
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