
Copyright © 2012 Tech Science Press CMC, vol.27, no.3, pp.275-303, 2012

A New Interval Comparison Relation and Application in
Interval Number Programming for Uncertain Problems

C. Jiang1,2, X. Han1 and D. Li3

Abstract: For optimization or decision-making problems with interval uncer-
tainty, the interval comparison relation plays a very important role, as only based
on it a better or best decision can be determined. In this paper, a new kind of in-
terval comparison relation termed as reliability-based possibility degree of interval
is proposed to give quantitative evaluations on “how much better” of one interval
than another, which is more suitable for engineering reliability analysis and nu-
merical computation than the existing relations. In the new relation, the range of
the comparing values is extended into the whole real number field, and the precise
comparison is made possible for any pairs of intervals on the real line. Further-
more, the suggested interval comparison relation is applied to the interval number
programming, and two kinds of transformation models are developed for both of
the linear and nonlinear interval number programming problems, based on which
the uncertain optimization problems can be changed into traditional deterministic
optimization problems. Two numerical examples are finally investigated to demon-
strate the effectiveness of the two transformation models.

Keywords: Reliability; Interval comparison; Interval number programming; Pos-
sibility degree of interval; Uncertainty modeling

1 Introduction

Uncertainty concerned with material properties, loads, boundary conditions and so
on widely exists in practical engineering problems. Probability method (Charnes
and Cooper, 1959; Kall, 1982; Gyeong-Mi, 2005; Abbas and Bellahcene, 2006)
and fuzzy method (Delgado et al., 1989; Luhandjula, 1989; Slowinski, 1986; Liu
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and Iwamura, 2001) are commonly employed to quantify the uncertainty, based on
precise probability distributions and membership functions of the uncertain param-
eters, which are not always easy to achieve because of lacking enough uncertainty
information for engineering problems. However, it is always not difficult to obtain
the variation bounds for a practical parameter, based on only a small amount of un-
certainty information or engineering experience. Thus the interval method makes
it possible to quantify the uncertainty in many practical problems without enough
uncertainty information, and has been attracting more and more attentions.

In the formulation of realistic problems, interval numbers representing the uncer-
tain parameters may occur in the constraints of an optimization problem or in the
determination of the best alternative of a decision-making problem (Molai and
Khorram, 2007), which makes the issue of interval comparison very important.
Research on interval comparison has been aimed towards finding a complete and
robust methodology which can give a quantitative or qualitative ranking for any two
real interval attributes, and so far a quantity of such relations have been developed.
According to reference (Sengupta and Pal, 2009), interval comparison relations can
be divided into two classes, namely preference-based interval comparison relation
(P-ICR) and value-based interval comparison relation (V-ICR). The former can
be used to judge whether one interval is better or worse than another qualitatively,
while the latter can give a specific value to represent the extent that one interval is
better or worse than another.

For the P-ICR, the foremost work can be traced to references (Moore, 1966, 1979),
in which two partial order relations were defined on intervals. The first one is an
extension of ‘<’ on the real line, and the other one is an extension of the concept of
set inclusion ‘⊂’. However, these two relations can not be used to rank the partially
or fully nested intervals. As an improvement, Ishibuchi and Tanaka (Ishibuchi and
Tanaka, 1990) proposed two new relations, among which one is based on prefer-
ence to both of the lower bound and upper bound of interval and the other is based
on preference to both of the midpoint and width of interval. Though nested inter-
vals can be compared now, there still exist several cases that these two relations
fail. Subsequently, Ishibuchi and Tanaka’s relations were integrated into a uni-
form formulation using a sort of bi-parametric cut of the comparing intervals, and
whereby a kind of new interval comparison relation was constructed (Chanas and
Kuchta, 1996a, 1996b). The above mentioned approaches all belong to the partial
order relation, and they can only answer “which one is better” among two intervals,
instead of “how much better”. Nevertheless, for most practical applications the V-
ICR identifying “how much better” of one interval than another might be more
important. Especially for uncertain optimization problems, only after knowing the
specific extents of interval comparison, the constraints with interval parameters can
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be successfully changed to deterministic ones that we can handle.

Most of the current V-ICRs are based on the probability method, namely the com-
pared intervals are assumed as two random numbers with uniform distributions,
and the probability that one random number is larger or smaller than another is in-
terpreted as the extent that one interval is better or worse than another. For the best
knowledge of the authors, reference (Nakahara et al., 1992) seems the first attempt
introducing the probability method into the interval comparison. Subsequently,
some different schemes for V-ICR were developed also based on the probability
method (Sevastjanov and Rog, 1997; Sevastjanov and Venberg, 1998; Wadman et
al., 1994; Kundu, 1997, 1998; Sevastjanov et al., 2001, 2002; Yager et al., 2001).
Recently, an approach which can derive the results of comparison as a probability
interval was proposed based on the Dempster-Shafer theory of evidence (Sevast-
janov, 2004). A two-objective interval comparison technique was developed by
taking into account the probability of supremacy of one interval over the other
one and relation of compared widths of intervals (Sevastjanov and Rog, 2006). A
possibility degree of interval number has been suggested based on the probabil-
ity method and applied to the nonlinear interval number programming (Jiang et
al., 2008), which does not contradict the Kundu’ fuzzy relation (Kundu, 1997) but
gives an explicit and easier format to work with. Except the probability method,
the other ways are also employed to construct the V-ICR among which we can only
cite a few works (Sengupta and Pal, 2000, 2001; Wang et al., 2005; Sun and Yao,
2008; Facchinetti et al., 1998; Liu and Da, 1999). Two relations were defined to
compare and order any two intervals on the real line in terms of values for both
of optimistic and pessimistic decision-makers (Sengupta and Pal, 2000), and they
were further adopted to deal with the interval inequality constraints in the linear
interval number programming (Sengupta and Pal, 2001). A degree of one inter-
val utility being greater than another one was defined as the degree of preference
(Wang et al., 2005). An index entitled as possibility degree function was proposed
to compare two intervals, which behaves especially well when used to deal with
equi-centered or closely-centered intervals (Sun and Yao, 2008). Two equivalent
possibility degree formulas were proposed to compare intervals, whose value rep-
resents a specific extent that one interval is greater than another (Facchinetti et al.,
1998; Liu and Da, 1999). Based on the Tseng and Klein’s work (Tseng and Klein,
1989)), a satisfaction function is defined for interval comparison (Molai and Khor-
ram, 2007).

There exist several limitations for the above mentioned V-ICRs, which form severe
obstacles that make the interval method unable to play a bigger role in dealing with
the practical uncertain problems as it merits. Firstly, for nearly all of the current
V-ICRs the range of the values is limited within the scope of [0, 1], in which 0
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and 1 represent that one interval is absolutely larger or smaller than another one.
In theory, these relations can only work well when their values are not equal to 0
or 1, and once these two bound points are reached their comparing function will
be weakened. For two active intervals, their comparing values will be fixed at
1 or 0 no matter how you move one of them on the real line, provided that two
intervals are kept fully separated. However, for practical engineering problems
different relative positions of two parameter intervals generally indicate different
reliability, whereas the current V-ICRs can not grasp this important characteristic.
As a matter of fact, lacking the ability of reliability analysis has become a most
severe defect of the current V-ICRs, which limits a wider engineering application
of the interval method. Secondly, the current V-ICRs are not well suited to the
numerical computation also because of the above two bound points of 0 and 1.
When applied to uncertain optimization or decision-making problems, these two
bound points are likely to form inflection points and bring about a problem of non-
differentiability for the considered function, which is generally a serious difficulty
for numerical realization.

This paper aims to construct a new kind of V-ICR which can overcome the above
limitations existing in the current V-ICRs, and furthermore develop corresponding
interval number programming methods based on this relation. Four major parts are
included in the following text. Firstly, three equivalent V-ICRs termed as possibility
degree of interval are introduced, and their limitations are further investigated. Sec-
ondly, a new kind of V-ICR named reliability-based possibility degree of interval
(RPDI) is proposed, and its fine properties in the aspects of reliability analysis and
numerical computation are also analyzed. Thirdly, the RPDI is applied to the inter-
val number programming and whereby several transformation models are obtained
for both of the linear and nonlinear uncertain optimization problems. Finally, two
numerical examples are presented to demonstrate the effectiveness of the suggested
interval number programming methods.

2 Three equivalent V-ICRs

Firstly, the definition of the interval number X I is given as follows, which represents
a closed bounded set of real numbers (Moore, 1979):

X I =
[
XL,XR]=

{
X
∣∣XL ≤ X ≤ XR} (1)

where the superscripts L and R represent lower and upper bounds of interval, re-
spectively. The interval X I can be also rewritten:

X I = Xc +[−1,+1]Xw (2)
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where the superscripts c and w represent midpoint and radius of interval, respec-
tively:

Xc =
XL +XR

2
, Xw =

XR−XL

2
(3)

For the above intervals, they should be compared or ranked using the interval com-
parison relation, rather than only based on their real values like we usually do for
real number comparison. For two intervals AI and BI , three V-ICRs termed as
possibility degree of interval were proposed (Facchinetti et al., 1998; Liu and Da,
1999; Xu and Da, 2003):

Relation 1 (Facchinetti et al., 1998)

p(AI ≤ BI) = min
{

max
{

BR−AL

2Aw +2Bw ,0
}

,1
}

(4)

Relation 2 (Liu and Da, 1999)

p(AI ≤ BI) =
max

{
0,2Aw +2Bw−max

{
AR−BL,0

}}
2Aw +2Bw (5)

Relation 2 (Xu and Da, 2003)

p(AI ≤ BI) =
min

{
2Aw +2Bw,max

{
BR−AL,0

}}
2Aw +2Bw (6)

where the value of p(AI ≤ BI) represents a specific possibility that interval AI is
smaller than BI (or BI is larger than AI). The above three relations have been proven
equivalent (Xu and Da, 2003), and actually the recently developed relation (Sun
and Yao, 2008) is also an equivalent form of these relations. For p(AI ≤ BI), the
following properties can be concluded:

1. 0≤ p(AI ≤ BI)≤ 1;

2. If AR ≤ BL, then p(AI ≤ BI) = 1, and it represents that AI is absolutely less
than BI . On the real line, AI is completely on the left of BI .

3. If AL≥BR, then p(AI ≤BI) = 0, and it represents that AI is absolutely greater
than BI . On the real line, AI is completely on the right of BI .

4. (Complementarity) If p(AI ≤ BI) = q, then p(AI ≤ BI) = 1− q, where q ∈
[0,1].
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Figure 1: Variation pattern of possibility degree of interval by only changing Bc

5. p(AI ≤ BI) = 1
2 ,only when AL +AR = BL +BR (equi-centered).

6. (Transitivity) For three intervals AI , BI and CI , if p(AI ≤ BI)≥ q and p(BI ≤
CI)≥ q, then p(AI ≤CI)≥ q, where q ∈ [0,1].

Figure 1 is provided to illustrate the variation pattern of p(AI ≤ BI), in which Ac

, Aw and Bw are all fixed, and only the midpoint Bc can be changed. The vertical
axis denotes possibility degree of interval. Moving interval BI along the horizontal
axis, the values of p(AI ≤ BI) (dash line) take on three variation states, namely
constant 0, monotonously increasing from 0 to 1, and constant 1, and the inflection
points occur at two cases of BR = AL and BL = AR. In the state 2, two intervals are
partially or fully overlapped, and with moving of interval BI towards the right side
of interval AI the possibility that AI is less than BI obviously becomes larger and
correspondingly the value of p(AI ≤ BI) also has an increasing trend.

Comparing with the probability-based V-ICRs, the above relations have a simpler
mathematical expression, and can be applied to engineering problems more conve-
niently. However, they still have some significant drawbacks, which erect barriers
for their wider applications. It also should be noticed that these limitations which
will be given in the following section exist not only in the above three V-ICRs but
also in all of the current V-ICRs, though they are investigated only corresponding
to the forgoing possibility degree of interval.
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3 Limitations of the possibility degree of interval

Firstly, as shown in Fig. 1, we can find that the possibility degree of interval can
only work well for cases that intervals are partially or fully overlapped (state 2),
while nearly loses comparing function for completely separated intervals (states 1
and 3). For two intervals which are kept separated, we will always obtain a same
value 0 or 1 using the above possibility degree, regardless of their relative posi-
tions. However, in practical engineering problems, different relative positions of
parameter intervals generally indicate different reliability of a structure or system.
Here, as an example, the possibility degree of interval is applied to the strength
analysis of an uncertain structure, in which AI and BI represent the structural stress
and strength, respectively. The stress AI is expected to be less than the strength BI

to achieve a safe structure. The following cases are then investigated:

Case 1 AI = [150Mpa, 170Mpa] BI = [200Mpa, 220Mpa]
Case 2 AI = [120Mpa, 140Mpa] BI = [200Mpa, 220Mpa]
Case 3 AI = [195Mpa, 215Mpa] BI = [200Mpa, 220Mpa]
Case 4 AI = [185Mpa, 205Mpa] BI = [200Mpa, 220Mpa]
Case 5 AI = [260Mpa, 280Mpa] BI = [200Mpa, 220Mpa]

Case 6 AI = [230Mpa, 250Mpa] BI = [200Mpa, 220Mpa] (7)

Firstly, cases 1 and 2 are analyzed, and the relative positions of two intervals in
these two cases are illustrated in Fig. 2. It can be found that the stress interval
AI is completely on the left side of the strength interval BI in both two cases and
furthermore the distance of two intervals in case 2 is relatively larger than case 1.
Thus, in case 2 the stress has a relatively smaller possibility to exceed the strength,
and whereby possess a greater reliability than case 1. Similarly, the structural re-
liability of cases 4 and 6 is better than cases 3 and 5, respectively. Nevertheless,
if using the possibility degree of interval p(AI ≤ BI) to analyze the above 6 cases,
we obtain a same value 1 for cases 1 and 2, and a same value 0 for cases 5 and 6,
but different values 0.625 and 0.875 for cases 3 and 4. Obviously, the possibility
degree of interval only successfully reflects the real reliability information in values
for cases 3 and 4 (overlapped intervals), as through its values case 4 can be judged
to be more reliable than case 3 which is in accordance with our foregoing analysis.
However for completely separated intervals, such as cases 1 and 2, or cases 5 and 6,
we can not judge which one is more reliable among two cases based on the values
of p(AI ≤ BI), as a same value 1 or 0 is obtained for two cases. Thus the above
possibility degree of interval can not be used as an effective mathematical tool for
reliability analysis, while for practical engineering problems the reliability analysis
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Figure 2: Relative positions of stress interval AI and strength interval BI

is generally extremely important. To a certain extent, the current V-ICRs including
the possibility degree of interval remains more at mathematical level rather than ap-
plication level. To develop a kind of more effective V-ICR for practical engineering
analysis, the reliability characteristic should be considered and well reflected in the
relation.

Secondly, as shown in Fig. 1, there exists two inflection points of 0 and 1 for the
above possibility degree of interval, and it generally lead to non-differentiability for
concerned functions. As an example, a simple interval inequality with a variable x
in the left-side interval is investigated:

[x+1, x+2]≤ [8,10] (8)

The possibility degree of interval can be computed for the above function:

p([x+1, x+2]≤ [8,10]) =


1, x≤ 6
9−x

3 , 6 < x≤ 9
0, x > 9

(9)

It can be found that the obtained possibility degree is non-differentiable at two
points of x = 6 and x = 9, though the bounds of the left-side interval are both
continuous and differentiable with respect to the variable x. Therefore, if the pos-
sibility degree of interval is applied to uncertain optimization or decision-making
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problems, the traditional gradient-based computational techniques may lose effi-
ciency and the numerical realization will become more difficult.

4 A reliability-based possibility degree of interval

In this section, a new kind of V-ICR, termed as reliability-based possibility degree
of interval (RPDI) will be proposed, which can overcome the above defects of
current V-ICRs. For the possibility degree of interval defined by Eqs. (4), (5) and
(6), if we extend the variation characteristics of state 2 to both of states 1 and 3,
then the RPDI can be formulated for intervals AI and BI:

pr(AI ≤ BI) =
BR−AL

2Aw +2Bw (10)

where the symbol pr is used to denote RPDI, which also represents a specific pos-
sibility that interval AI is less than BI (or BI is greater than AI). When interval AI

is degenerated into a real number A or BI is degenerated into a real number B, the
RPDI is still applicable and it can be rewritten:

pr(A≤ BI) =
BR−A

2Bw , pr(AI ≤ B) =
B−AL

2Aw (11)

For pr(AI ≤ BI), the following properties can be concluded:

1. −∞≤ pr(AI ≤ BI)≤+∞;

2. If AR ≤ BL, then pr(AI ≤ BI) ≥ 1. On the real line, AI is completely on the
left of BI .

3. If AL ≥ BR, then pr(AI ≤ BI) ≤ 0. On the real line, AI is completely on the
right of BI .

4. (Complementarity) If pr(AI ≤ BI) = q, then pr(AI ≤ BI) = 1−q, where q ∈
[−∞,∞].

5. pr(AI ≤ BI) = 1
2 , only when AL +AR = BL +BR.

6. (Transitivity) For three intervals AI , BI and CI , if pr(AI ≤BI)≥ q and pr(BI ≤
CI)≥ q, then pr(AI ≤CI)≥ q, where q ∈ [−∞,∞].

Figures 3 and 4 are presented to illustrate the variation pattern of pr(AI ≤ BI). In
Fig. 3, Ac, Aw and Bw are fixed, and the midpoint Bc can be only changed. Moving
interval BI along the horizontal axis, the values of pr(AI ≤ BI) (dash line) take on
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Figure 3: Variation pattern of reliability-based possibility degree of interval by only
changing Bc

a consistent linear variation state, which is different from the possibility degree of
interval as shown in Fig. 1. With increasing of Bc, the possibility or reliability of
AI ≤ BI apparently becomes larger, and correspondingly the value of pr(AI ≤ BI)
increases monotonously, which is well in accordance with the reliability variation.
In Fig. 4, Ac, Aw and Bc are all fixed, and the radius Bw can be only changed. The
symbol pr0 is used to denote the value of pr(AI ≤ BI) when Bw = 0. Increasing
the value of Bw from 0 to ∞, two kinds of nonlinear variation patterns can be ob-
tained for RPDI (dash line) according to different values of pr0. For pr0 > 0.5 and
pr0 < 0.5, the variation curves of pr(AI ≤ BI) are monotonously decreasing and
increasing respectively, and they both infinitely approach 0.5. For pr0 = 0.5, the
value of pr(AI ≤ BI) will be kept constant.

As shown in Fig. 3, RPDI can work well not only for overlapped intervals but also
for completely separated intervals. For two overlapped intervals, the fine compar-
ing function of the possibility degree of interval is inherited, and the same results
can be obtained regardless of using RPDI or the above possibility degree of inter-
val. For two separated intervals, the value of RPDI no longer falls into a fixed value
1 or 0 while related to the relative position of intervals, and furthermore its varia-
tion trend is in accordance with the variation of the reliability very well. Based on
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this property, RPDI can be used as an effective mathematical tool for engineering
reliability analysis. Now, we adopt RPDI also to analyze the same example defined
by Eq. (7). We can get pr0 = 1.75 and pr0 = 2.5 for cases 1 and 2, pr0 = 0.625
and pr0 = 0.875 for cases 3 and 4, pr0 = −1.0 and pr0 = −0.25 for cases 5 and
6, respectively. As aforementioned that the reliability of cases 2, 4 and 6 is better
than cases 1, 3 and 5, respectively, and therefore it can be found that the RPDI can
reflect these reliability information very well through its values in which a greater
value of RPDI indicates a better reliability.

On the other hand, as shown in Fig. 3, the RPDI has a consistent and smoothed
variation state, and the inflection points as shown in Fig. 1 do not exist any more.
Therefore, RPDI generally will not lead to the problem of non-differentiability, and
hence the numerical computation can be realized more conveniently and easily than
the other V-ICRs including the above possibility degree of interval. As an example,
we use RPDI to also analyze Eq. (8) and the following result can be obtained:

pr([x+1, x+2]≤ [8,10]) =
9− x

3
, - ∞ < x < ∞ (12)
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It can be found that the obtained function is continuous and differentiable with
respect to the variable x on the whole real number field, while there exist two non-
differentiable points using the possibility degree of interval as shown in Eq. (9).

Through the above analysis, it can be found that the major defects of the current V-
ICRs have been eliminated in our new developed relation. Furthermore, the RPDI
has an easier mathematical expression which is completely explicit. Comparing
with the current V-ICRs, the suggested RPDI seems more suitable for reliability
analysis and numerical computation, and can be applied to practical engineering
problems more conveniently. On the other hand, the RPDI should not be regarded
as only a simple modification of the possibility degree of interval, though they
have a similar mathematical expression a certain extent. Actually, it is a significant
extension in concept for the V-ICR, through which the value range of V-ICRs are
extended from [0,1] to [−∞,∞] and the precise comparison is made possible for
any pairs of intervals on the real line. More importantly, based on this extension
the V-ICR can be used as a new kind of reliability index for engineering reliability
analysis.

5 Interval number programming based on the RPDI

Using intervals to quantify the uncertainty of the imprecise parameters in a pro-
gramming problem, an interval number programming problem can be then formu-
lated. As a class of important uncertain optimization methods, the interval number
programming has been obtaining more and more attentions, and some prominent
works have been published in this field, including linear interval number program-
ming (Ishibuchi and Tanka, 1990; Chanas and Kuchta, 1996; Sengupta and Pal,
2001; Xu and Da, 2003; Tong, 1994; Inuiguchi and Kume, 1992; Inuiguchi and
Sakawa, 1995; Mausser and Laguna, 1999; Chinneck and Ramadan, 2000; Aver-
bakh and Lebedev, 2005; Oliveira and Antunes, 2007), nonlinear interval number
programming (Ma, 2002; Li and Azarm, 2008; Liu, 2008; Liu and Wang, 2007;
Jiang et al., 2008; Jiang and Han, 2007; Jiang et al., 2007), optimality condition
for interval number programming (Wu, 2007, 2008, 2009), and etc. In the follow-
ing text, the proposed RPDI will be employed to deal with the interval constraint
or interval objective function, and whereby several transformation models are de-
veloped for linear and nonlinear interval number programming, through which the
uncertain optimization problems can be transformed into deterministic optimiza-
tion problems.



A New Interval Comparison Relation 287

5.1 Linear interval number programming

A general linear interval number programming problem can be formulated:

min
X

f (X,c) =
n

∑
i=1

cI
i Xi

subject to

g j(X,a) =
n

∑
i=1

aI
i jXi ≤ bI

j, j = 1, ..., l

Xi ≥ 0, i = 1,2, ...,n (13)

where X is ann-dimensional decision vector. f and g are objective function and
constraint, respectively, and l is the number of the constraints. c and a are n-
dimensional coefficient vector and n× l coefficient matrix existing in the interval
objective function and constraints, and their uncertainty is quantified by an interval
vector cI and an interval matrix aI , respectively. bI

i denotes the allowable interval of
the ith constraint. For each specific X, the possible values of the objective function
or any constraint will form an interval instead of a real number, which is different
from the traditional deterministic optimization problems.

In the stochastic optimization (Liu et al., 2003), we often make an uncertain con-
straint satisfied with a confidence level and whereby transform the uncertain con-
straint into a deterministic one. Similarly, we can use the proposed RPDI to deal
with the inequality constraints in Eq. (13), and make them satisfied with certain
levels so as to achieve deterministic constraints:

pr
(
gI

j (X)≤ bI
j
)

=
bR

j −gL
j (X)

2gw
j (X)+2bw

j
≥ λ j, j = 1,2, ..., l (14)

where gI
j (X) represents an interval of the jth constraint at a specific X caused by

the interval coefficients. λ j ∈ [−∞,∞] is a predetermined RPDI level for the jth
constraint, and it can be adjusted to control the feasible field of X. A larger λ

means a smaller feasible field of Eq. (14), but a greater reliability of the uncertain
constraint. λ can be allocated different values for different constraints according
to their respective reliability requirements. Subsequently, we use two different ap-
proaches to deal with the uncertain objective function, and whereby construct two
kinds of transformation models for the interval number programming.
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5.1.1 The first transformation model

In reference (Ishibuchi and Tanaka, 1990), a preference-based interval comparison
relation (P-ICR) expressed as ≤mw was formulated for minimization problems:

AI ≤cw BI if Ac ≥ Bc and Aw ≥ Bw

AI <cw BI if AI ≤cw BI and AI 6= BI (15)

Based on ≤cw, an interval with both of smaller midpoint and radius is preferred.
Using ≤cw to deal with the interval objective function, thus we naturally hope to
find an optimal decision vector to obtain an objective interval with not only smallest
midpoint but also smallest radius, and therefore the interval objective function in
Eq. (13) can be transformed into a deterministic two-objective optimization prob-
lem:

min
X

[ f c(X), f w(X)] (16)

f c(X) =
1
2
( f L(X)+ f R(X))

f w(X) =
1
2
( f R(X)− f L(X))

where f c(X) and f w(X) denote midpoint and radius of the objective function inter-
val at a specific X.

Thus the interval number programming problem Eq. (13) can be transformed into a
following deterministic programming problem, which forms our first kind of trans-
formation model:

min
X

[ f c(X), f w(X)]

subject to

pr
(
gI

j (X)≤ bI
j
)

=
bR

j −gL
j (X)

2gw
j (X)+2bw

j
≥ λ j, j = 1,2, ..., l

Xi ≥ 0, i = 1,2, ...,n (17)
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For linear interval number programming, intervals of the uncertain objective func-
tion and constraints at any specific Xi ≥ 0, i = 1,2, ...,n can be obtained explicitly:

f L(X) =
n

∑
i=1

cL
i Xi, f R(X) =

n

∑
i=1

cR
i Xi

gL
j (X) =

n

∑
i=1

aL
i jXi, gR

j (X) =
n

∑
i=1

aR
i jXi, j = 1,2, ..., l (18)

Substituting Eq. (18) into Eq. (17) leads to:

min
X


n
∑

i=1
cL

i Xi +
n
∑

i=1
cR

i Xi

2
,

n
∑

i=1
cR

i Xi−
n
∑

i=1
cL

i Xi

2


subject to

n

∑
i=1

[
λ j
(
aR

i j−aL
i j
)
+aL

i j
]
Xi ≤ bR

j −λ j
(
bR

j −bL
j
)
, j = 1,2, ..., l

Xi ≥ 0, i = 1,2, ...,n (19)

Using the linear combination method (Hu, 1990), a deterministic single-objective
optimization problem can be finally obtained in terms of a desirability function fd :

min
X

fd (X) =
n

∑
i=1

[(
1
2
−β

)
cL

i +
1
2

cR
i

]
Xi

subject to

n

∑
i=1

[
λ j
(
aR

i j−aL
i j
)
+aL

i j
]
Xi ≤ bR

j −λ j
(
bR

j −bL
j
)
, j = 1,2, ..., l

Xi ≥ 0, i = 1,2, ...,n (20)

where 0 ≤ β ≤ 1 is a weighting factor of the two objective functions. Obviously,
Eq. (20) is a traditional linear programming problem, and it can be easily solved
by the simplex method (Nocedal and Wright, 1999).
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5.1.2 The second transformation model

For practical engineering problems, sometimes we need to maximize the possibil-
ity or reliability that the objective function satisfies a certain requirement. Then
the second transformation model can be constructed for the above interval num-
ber programming, in which the RPDI is expected to be maximized for the interval
objective function:

max
X

pr
(

f I (X)≤ eI)=
eR− f L (X)

2 f w (X)+2ew

subject to

pr
(
gI

j (X)≤ bI
j
)

=
bR

j −gL
j (X)

2gw
j (X)+2bw

j
≥ λ j, j = 1,2, ..., l

Xi ≥ 0, i = 1,2, ...,n (21)

where eI is a predetermined performance interval which needs to be satisfied by the
interval objective function as far as possible.

Also based on Eq. (18), Eq. (21) can be changed into the following explicit expres-
sion:

max
X

eR−
n
∑

i=1
cL

i Xi

2ew +
n
∑

i=1

(
cR

i − cL
i

)
Xi

subject to

n

∑
i=1

[
λ j
(
aR

i j−aL
i j
)
+aL

i j
]
Xi ≤ bR

j −λ j
(
bR

j −bL
j
)
, j = 1,2, ..., l

Xi ≥ 0, i = 1,2, ...,n (22)

Obviously, Eq. (22) is a traditional nonlinear programming problem with linear
constraints, and it can be efficiently solved by many well-established algorithms
such as feasible direction method, sequential linear programming (SLP) method
and etc (Nocedal and Wright, 1999).
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5.2 Nonlinear interval number programming

A general nonlinear interval number programming problem can be formulated:

min
X

f (X,U)

subject to

g j(X,U)≤ bI
j, j = 1, ..., l

U ∈ UI =
[
UL,UR] , Ui ∈U I

i =
[
UL

i ,UR
i
]
, i = 1,2, ...,q

Xi ≥ 0, i = 1,2, ...,n (23)

where the q-dimensional interval vector UI collects all of the uncertain parame-
ters in the objective function and constraints. Here, the objective function f and
constraints g are nonlinear and continuous functions with respect to X or U.

Like the linear interval number programming, we can create two similar transfor-
mation models for the above problem as Eqs. (17) and (21). The only difference is
that for nonlinear interval number programming the intervals of the objective func-
tion and constraints at each specific X can not obtained explicitly by Eq. (18) but
the following optimization processes:

f L(X) = min
U∈Γ

f (X,U), f R(X) = max
U∈Γ

f (X,U)

gL
j (X) = min

U∈Γ
g j(X,U), gR

j (X) = max
U∈Γ

g j(X,U), j = 1,2, ..., l

U ∈ Γ =
{

U
∣∣UL ≤ U≤ UR} (24)

Thus for nonlinear interval number programming, the finally obtained determinis-
tic optimization problems like Eqs. (17) and (21) can not be explicitly expressed,
which is different from the linear interval number programming. Furthermore,
the two-layer nesting optimization is generally involved when solving these ob-
tained deterministic optimization problems, in which the outer layer optimization
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is used to optimize the design vector to achieve a minimal desirability function
(the first transformation model) or a maximal RPDI value (the second transforma-
tion model), and the inner layer optimization is used to compute the bounds of
the uncertain objective function and constraints. In this paper, a GA-based nest-
ing optimization method (Jiang et al., 2008) is employed to solve the deterministic
optimization problems, in which the intergeneration projection genetic algorithm
(IP-GA) (Liu and Han, 2003) with fine global convergence performance is adopted
as optimization solver for both of the outer layer and inner layer optimization.

6 Numerical examples and discussion

6.1 Numerical example for linear interval number programming

The following linear interval number programming problem is investigated:

min
X

[−3.0,−2.0]X1 +[−2.0,−1.0]X2 +[−2.0,−1.0]X3

subject to

[0.5,1.5]X1 +[0.5,1.5]X2 +[1.5,3.0]X3 ≤ [11.0,13.0]

[0.5,2.0]X1 +[1.0,2.0]X2 +[−2.0,0.0]X3 ≤ [10.0,12.0]

X1 ≥ 1.0, X2 ≥ 1.0, X3 ≥ 1.0 (25)

Firstly, the first transformation model is adopted to deal with the above problem,
and the weighting factor β is set to 0.5 which means that the midpoint and radius
of the interval objective function are given a same preference. The RPDI levels λ1
and λ2 are given a same value for the two interval constraints, and the computation
results under different RPDI levels are listed in Table 1. It can be found that differ-
ent RPDI levels correspond to different optimization results. With increasing of the
RPDI level from 0.0 to 1.8, the desirability function fd increases from -23.0 to -2.3,
namely becomes worse. It is because that a larger RPDI level produces a smaller
feasible field of the transformed deterministic constraints and whereby leads to a
worse result for the objective function. However, when the RPDI level reaches to
an excessively large value 2.0, the feasible field starts to become empty and the
optimum does not exist. On the other hand, the obtained optimal design makes the
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Table 1: Computation results under different RPDI levels for the first transforma-
tion model (numerical example 1)

1λ , 2λ  Optimal 
design vector 

Interval of the 
objective 
function 

Interval of 
constraint 1 

Interval of 
constraint 2 df  RPDI of the two 

constraints 

0.0, 0.0 (22.0, 1.0, 1.0) [-70.0, -46.0] [13.0, 37.5] [10.0, 46.0] -23.0 0.00, 0.05 

0.5, 0.5 (8.5, 1.0, 1.1) [-29.7, -19.1] [6.4, 17.6] [3.0, 19.0] -9.5 0.50, 0.50 

1.0, 1.0 (4.0, 1.0, 1.2) [-16.3, -10.2] [4.3, 11.0] [0.7, 10.0] -5.1 1.00, 1.00 

1.5, 1.5 (2.0, 1.0, 1.1) [-10.1, -6.0] [3.1, 7.7] [-0.2, 5.9] -3.0 1.50, 1.50 

1.8, 1.8 (1.3, 1.0, 1.1) [-7.8, -4.5] [2.6, 6.4] [-0.4, 4.5] -2.3 1.80, 1.80 

2.0, 2.0 Infeasible  — — — — — 

 

two uncertain constraints have better reliability with increasing of the RPDI levels.
The variation pattern of relative positions between the allowable interval and the
constraint interval under different RPDI levels is illustrated in Figure 5 for the first
constraint. For λ1 = 0 the interval of the first constraint at the optimal design vector
is completely on the right of the allowable interval, and it moves gradually along
the negative direction of the coordinate axis with increasing of the RPDI levels.
For λ1 = 1.8, a leftmost interval apart from the allowable interval is gotten, which
indicates a best reliability of the first constraint.

 

 
 

11.0 13.0

 1 0.0λ =

 1 0.5λ =
 1 1.0λ =  

 1 1.5λ =  

 1 1.8λ =  

Allowable interval Constraint interval 

Figure 5: Relative positions between the allowable interval and the constraint 1
interval under different RPDI levels
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Table 2: Computation results under different RPDI levels for the second transfor-
mation model (numerical example 1)

1λ , 2λ  Optimal 
design vector 

Interval of 
the objective 

function 

Interval of 
constraint 1

Interval of 
constraint 2

RPDI of the 
objective 
function 

RPDI of the 
two constraints

-0.2, -0.2 (39.7, 1.0, 1.0) [-123.0, -81.3] [21.8, 64.0] [18.8, 81.3] 2.93 -0.20, -0.11 

0.2, 0.2 (14.4, 1.0, 1.0) [-47.3, -30.9] [9.2, 26.1] [6.2, 30.9] 2.84 0.20, 0.22 

0.7, 0.7 (6.1, 1.0, 1.0) [-22.4, -14.3] [5.1, 13.7] [2.1, 14.3] 2.70 0.75, 0.70 

1.2, 1.2 (3.0, 1.0, 1.0) [-13.1, -8.1] [3.5, 9.1] [0.5, 8.1] 2.57 1.26, 1.20 

1.7, 1.7 (1.5, 1.0, 1.0) [-8.4, -5.0] [2.7, 6.7] [-0.3, 5.0] 2.45 1.72, 1.70 
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Figure 6: Relation between the RPDI of the constraints and the optimal RPDI of
the objective function

The second transformation model is also adopted to deal with the above problem,
and the performance interval eI is set to [3.0,5.0]. The SLP method (Nocedal and
Wright, 1999) is adopted to solve the obtained deterministic optimization problem.
The RPDI levels are also given different values for the two constraints, and the
computation results are listed in Table 2. It can be found that with increasing of
the RPDI level the optimal RPDI of the objective function and the RPDI of the
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constraints behave two opposite variation trends, which can also be shown in Fig.
6. For λ1 = −0.2, we have a maximal RPDI value 2.93 for the objective function
but minimal RPDI values -0.20 and -0.11 for the two interval constraints, while for
λ1 = 1.7 we have a minimal RPDI value 2.45 for the objective function but maximal
RPDI values 1.72 and 1.70 for the constraints. Thus to achieve a greater possibility
or reliability of the objective function satisfying the performance interval, relaxing
the reliability requirement of the constraints a certain extent is generally needed.
Without loss of generality, the case that the RPDI level takes a negative value -
0.2 is investigated in this example. Actually, for a practical engineering problem
allocating a negative RPDI level to the interval constraint is generally meaningless,
as it is likely to bring about a completely unreliable design.

F1

L

X2

X1

U1U2

F2
z

 
Figure 7: A beam design problem

6.2 Numerical example for nonlinear interval number programming

A practical beam design problem as shown in Fig. 7 is investigated, which is modi-
fied from the numerical example in reference (Wang, 2003). The cross-sectional di-
mensions X1 and X2 are needed to be optimized to obtain a minimum vertical deflec-
tion of the beam. The other two cross-sectional dimensions U1 and U2 are uncertain
parameters, and their variation intervals are [0.9cm,1.1cm] and [1.8cm,2.2cm], re-
spectively. Meanwhile, two constraints are applied, namely the cross-sectional area
and maximal stress of the beam should not be more than

[
270cm2,330cm2

]
and[

10kN/cm2,13kN/cm2
]
, respectively. The Young’s Modulus E, bending forces F1

and F2, length L of the beam are 2×104kN/cm2, 600kN, 50kN and 200cm, respec-
tively. Then, a complex nonlinear interval number programming problem can be
formulated as follows:
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Figure 8: Convergence curve of the outer layer IP-GA for λ1 = 0.8 and λ2 = 1.0
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Figure 9: Relative positions between the performance interval and the optimal ob-
jective function interval under different RPDI levels

min
X

f (X,U) =
F1L3

48EIz
=

5000
1

12U1 (X1−2U2)
3 + 1

6 X2U3
2 +2X2U2

(X1−U2
2

)2

subject to

g1 (X,U) = 2X2U2 +U1 (X1−2U2)≤
[
270cm2,330cm2]
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g2 (X,U) = 180000X1
U1(X1−2U2)

3+2X2U2[4U2
2 +3X1(X1−2U2)]

+ 15000X2
(X1−2a2)U3

1 +2U2X3
2

≤
[
10kN/cm2,13kN/cm2

]
a1 ∈ [0.9cm,1.1cm] , a2 ∈ [1.8cm,2.2cm]

10.0cm≤ X1 ≤ 120.0cm, 10.0cm≤ X2 ≤ 120.0cm (26)

where the objective function f represents the vertical deflection of the beam.

Table 3: Computation results under different RPDI levels for the first transforma-
tion model (numerical example 2)

1λ , 2λ  Optimal 
design vector 

(cm) 

Interval of the 
objective function 

(10-3cm) 

Interval of 
constraint 1

(cm2) 

Interval of 
constraint 2
(kN/cm2) 

df  

(10-3) 

RPDI of the 
two constraints

0.8, 1.0 (119.9, 37.4) [7.0, 8.5] [239.4, 291.7] [5.0, 6.0] 4.25 0.81, 1.97 

0.9, 1.2 (120.0, 29.7) [8.4, 1.0] [211.6, 257.7] [6.9, 8.4] 5.09 1.12, 1.36 

1.1, 1.5 (85.6, 38.3) [14.6, 17.7] [211.6, 257.7] [6.1, 7.4] 8.83 1.12, 1.61 

 

The first transformation model is firstly adopted to solve the above problem, and
the weighting factor β is also set to 0.5. When using the GA-based nesting op-
timization method (Jiang et al., 2008) to solve the obtained deterministic opti-
mization problem, the maximum generations for the inner layer IP-GA and the
outer layer IP-GA are specified as 100 and 300, respectively, and the population
size and probability of crossover for the IP-GA are set to 5 and 0.5, respectively.
Considering that the stress constraint is more important than the area constraint
as its violation may lead to failure of the beam, it is given a relatively larger
RPDI level. The computation results under different combinations of λ1 and λ2
are listed in Table 3. It can be found that with increasing of λ1 and λ2 the desir-
ability function fd also becomes worse, while reliability of the constraints becomes
better. For λ1 = 0.8 and λ2 = 1.0, the obtained interval of the area constraint is[
239.4cm2,291.7cm2

]
, which is partially overlapped with the corresponding allow-

able interval
[
270cm2,330.0cm2

]
. However, for the other two cases, the obtained

intervals of the area constraint and stress constraint are both completely separated
with respective allowable intervals, and hence the RPDI values of the constraints
at the optimal design are larger than 1.0 which indicates a better reliability. The
convergence curve of the outer layer IP-GA for the case of λ1 = 0.8 and λ2 = 1.0
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Table 4: Computation results under different RPDI levels for the second transfor-
mation model (numerical example 2)

1λ , 2λ  Optimal 
design vector 

(cm) 

Interval of the 
objective 

function (10-3cm)

Interval of 
constraint 1 

(cm2) 

Interval of 
constraint 2 
(kN/cm2) 

RPDI of the 
objective 
function 

RPDI of 
the two 

constraints
0.7, 1.0 (119.8, 40.3) [6.6, 8.0] [249.7, 304.3] [4.5, 5.4] 1.41 0.70, 2.15 

0.8, 1.2 (120.0, 37.4) [7.0, 8.5] [239.5, 291.8] [5.0, 6.0] 1.21 0.81, 1.97 

0.9, 1.4 (120.0, 34.0) [7.6, 9.2] [227.1, 276.7] [5.7, 6.9] 0.94 0.94, 1.73 

1.0, 1.6 (111.4, 34.6) [8.8, 10.1] [221.7, 270.0] [5.8, 7.0] 0.41 1.00, 1.70 

 

is also provided in Fig. 8. It can be found that after a certain amount of generations
the outer layer optimization converges at a relatively stationary value.

Now, the second transformation model is also adopted to deal with the above beam
design problem, in which the performance interval is set to

[
9.0×10−3cm,10.0×10−3cm

]
for the objective function. The GA-based nesting optimization method is also
adopted to solve the obtained deterministic optimization problem, and all the con-
cerned parameters are kept same. The computational results under different com-
binations of λ1 and λ2 are listed in Table 4. For the optimal RPDI of the objective
function and the RPDI of the constraints, two opposite variation trends are also
observed. By increasing λ1 and λ2 from 0.7, 1.0 to 1.0, 1.6, the RPDI of the ob-
jective function declines from 1.41 to 0.41, while the RPDI of the two constraints
rises from 0.70 and 2.15 to 1.00 and 1.70. The relative position pattern of the per-
formance interval and the optimal objective function interval under different RPDI
levels is shown in Fig. 9. For the case of λ1 = 1.0 and λ2 = 1.6, the optimal ob-
jective function interval is fully overlapped with the performance interval, and the
corresponding RPDI value is relatively small. With decreasing of λ1 and λ2, the
obtained optimal objective function interval moves towards the left side of the per-
formance interval on the whole, and for λ1 = 0.9 and λ2 = 1.4 it becomes only par-
tially overlapped with the performance interval. And for the other two cases with
lower RPDI levels, the optimal objective function intervals are finally completely
separately with the performance interval, which indicates a larger possibility or re-
liability of the uncertain objective function satisfying the performance interval of
the vertical deflection.
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7 Conclusion

In this paper, we propose a new kind of V-ICR termed as reliability-based possi-
bility degree of interval, which can overcome the major limitations of the current
V-ICRs. The RPDI can work well not only for overlapped intervals but also for
completely separated intervals, and hence the precise comparison is made possi-
ble for any pairs of intervals on the real line. In addition, the RPDI has an easier
and completely explicit mathematical expression, and whereby can be more con-
veniently applied to practical engineering problems. It should be noticed that the
RPDI can not be regarded as only a simple modification of the traditional V-ICRs,
on the contrary, it is a significant extension in concept for the V-ICR, and based
on this extension we can use the V-ICR to carry out engineering reliability analy-
sis. The similar extension can be also accomplished in the other probability-based
V-ICRs, and corresponding new reliability-based relations can be constructed.

The RPDI is also applied to the interval number programming, and two kinds of
transformation models are developed for both of the linear and nonlinear interval
number programming problems, based on which two deterministic optimization
problems can be finally achieved. These two transformation models both use the
RPDI to deal with the uncertain constraints while different approaches for the un-
certain objective function. For linear interval number programming, the obtained
deterministic optimization problems can be explicitly expressed and efficiently
solved, while for nonlinear interval number programming they are implicit two-
layer nesting optimization problems which are more difficult to solve. In the two
numerical examples, both linear and nonlinear interval number programming prob-
lems are investigated, and for each one both of the two transformations models are
used. The computation results indicate that with increasing of the RPDL levels
the reliability of the uncertain constraints becomes better while the objective func-
tion becomes worse. Thus for practical engineering problems, appropriate values
should be allocated for the RPDL levels based on an overall consideration of the
manufacturing cost, design requirements, working reliability and etc.
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