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A Multi-Criteria Topology Optimization for Systematic
Design of Compliant Mechanisms

Zhen Luo1,2 and Nong Zhang,13

Abstract: This paper attempts to present a new multi-criteria topological opti-
mization methodology for the systematic design of compliant micro-mechanisms.
Instead of employing only the strain energy (SE) or the functional specifications
such as mechanical efficiency (ME), in this study an alternative formulation repre-
senting multiple design requirements is included in the optimization to describe the
performance of compliant mechanisms. In most conventional designs, SE is used to
only measure the design requirement from the point of view of structures, while ME
is usually applied to describe the mechanical performance of mechanisms. How-
ever, the design of a compliant mechanism is required to comprehensively consider
both the structural and mechanical performance quantities. Displacement, material
usage and dynamic response are imposed as three external constraints to narrow the
searching domain. In doing so, the multi-criteria optimization problem involving
the SE and ME can reasonably embody the mechanical structural characteristics of
compliant mechanisms. A sequential convex programming, the method of mov-
ing asymptotes (MMA), is applied to solve the topological optimization problem,
which can not only ensure numerical accuracy but also both the monotonous and
non-monotonous structural behaviors. SIMP model (solid isotropic material with
penalization) is used to indicate the dependence of elastic modulus upon regular-
ized element densities. Several typical numerical examples are used to demonstrate
the effectiveness of the proposed methodology, and the prototype of a resulting
mechanism has also been manufactured to validate the design of the compliant
mechanism.
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1 Introduction

Compliant mechanisms [Howell (2001); Ananthasuresh and Howell (2005)] are a
relatively new breed of mechanical devices that transmits motion and energy from
specified input ports to output ports via the flexibility of its structural components
rather than from hinges, bearings, and slides movement. Compared to rigid-body
mechanisms, in compliant mechanisms, the elastic deformation is intended as a
source of motion, and the flexibility of structural components permits the structure
to fulfill the required functions analogous to rigid-link mechanisms. The primary
advantage of compliant mechanisms is that fewer parts, fewer assembly processes
and no lubrication are needed, which are beneficial for improving reliability, perfor-
mance and manufacturing. The disadvantage of compliant mechanisms is that some
of the input energy is stored as elastic work in the mechanism, which will reduce
the efficiency. Fatigue analysis is typically another issue for compliant mechanisms
than for rigid-body counterparts when undergoing the prescribed functions cycli-
cally. Due to member links and flexural joints involved, the design of compliant
mechanisms is more complex than rigid-body mechanisms, remarkable develop-
ment has occurred in recent years after introducing the topology optimization.

Topology optimization has experienced considerable progress and has been ex-
tended to a wide range of engineering areas, such as mechanisms, functional ma-
terials, and micro and nano-scaled structures [Bendsøe & Sigmund (2003)]. The
topology optimization consists of determining the best arrangement of a prescribed
volume of material within a given design space to iteratively eliminate and re-
distribute material in the space in order to achieve the best performance of the
conceptual design [Eschenauer and Olhoff (2001)]. Several typical approaches
have been developed for topology optimization of continuum structures, such as
the element-based optimization methods characterized by the material distribution,
typically the homogenization approach [Bendsøe and Kikuchi (1988)], the den-
sity variable approach [Bendsøe and Sigmund (1998)], and the geometry-oriented
topology optimization introducing a function that describes the shape and topol-
ogy of the structure implicitly, typically the level set-based method [e.g. Sethian
and Wiegmann (2000); Wang, Wang and Guo (2003); Allaire, Jouve and Toader
(2004)].

Due to their great promise in providing better solutions to mechanical and struc-
tural design problems, compliant mechanisms have recently experienced consid-
erable development in a variety of areas [e.g. Larsen, Sigmund and Bouuwstra
(1997); Sigmund (1997); Wang, Chen, Wang and Mei (2005); Luo, Chen, Yang,
Zhang and Abdel-Malek (2005); Luo and Tong (2008)]. The systematic design of
compliant mechanisms falls into two categories: lumped and distributed compliant
mechanisms. Lumped compliant mechanisms are based on rigid-body kinematic
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synthesis [Howell and Midha (1994); Howell (2001)], and distributed compliant
mechanisms are based on topology optimization [e.g. Ananthasuresh, Kota and Gi-
anchandani (1994); Sigmund (1997); Frecker, Ananthasuresh, Nishiwaki, Kikuchi
and Kota (1997)].

If the elastic deformation in a mechanism is only limited to local regions as in
mechanisms with flexural or notch hinges, such mechanisms are called lumped
compliant mechanisms and they can be typically synthetized by the pseudo-rigid-
body method (PRBM) [Howell (2001)]. Lumped compliant mechanisms are first
accomplished by the synthesis of a conventional rigid-link mechanism to explore
basic topological patterns of the mechanism and then produce the pseudo-rigid-
body mechanism, after which flexibility is introduced to formulate some small-
length local flexural pivots to formulate a lumped compliant mechanism. There-
fore, the PRBM mechanism involves rigid-body mechanism theory and compliant
mechanism analysis. However, lumped compliant mechanisms may not be suitable
for micro-scale mechanisms due to the approximation of the design approach. The
mechanism mainly bends around concentrated flexural hinges where the material
around the hinges is easily subject to overstress and overstrain, which will speed
up fatigue breakage. Although under certain specific loading configurations, the
PRBM is available for modeling beams with continuous deflection [Nathan and
Howell (2003)].

Topological optimization methods [Bendsøe and Kikuchi (1988)] were first ex-
tended to the optimal design of compliant mechanisms by Ananthasuresh [1994].
This method can engender jointless distributed compliant mechanisms bending
throughout the structure and obtaining their flexibility from topology and shape
of the material continuum. The distributed compliant mechanism is particularly
suitable for micro-scale structures [Ananthasuresh and Howell (2005)] due to its
continuous and monolithic characteristics. It is difficult to fabricate the micro-
structured compliant mechanisms as the conventional macro-scale mechanisms with
hinges and links because of the difficulty associated with manufacture, lubrication,
and friction processes under micro-scale. The fully compliant mechanism is in
essence a kind of jointless mechanical device, which is capable of producing dis-
tributed compliance from the elastic deformation of the structure due to continuity
and monolithic of comprising materials.

With respect to the optimal design of compliant mechanisms via topology opti-
mization, there are two typical methods in defining the optimization objectives,
focusing on structural quantities or/and mechanical measurements as single ob-
jective optimization, or as multi-objective optimization. For instance, Yin and
Ananthasuresh (2003) formulated the optimization problem for compliant mech-
anisms where the objective is in the flexibility-strength formulation to maximize
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the structural mutual strain energy. Saxena and Ananthasuresh (2001) proposed the
homogenization-based approach for nonlinear and curved path problems with an
efficiency-strength objective. The work of [Nishiwaki, Frecker, Min and Kikucki
(1998)] studied the multi-objective optimization problem of compliant mechanisms
using the homogenization-based method, but found that utilization of this method
is somewhat troublesome. [Sigmund (1997), Wang, Chen, Wang and Mei (2005),
Luo, Tong, Wang and Wang (2007)] have studied the approaches for optimal de-
sign of compliant mechanisms using mechanical advantage or geometrical advan-
tage. Frecker, Ananthasuresh, Nishiwaki, Kikuchi and Kota (1997) suggested a
multi-criterion formulation, including mutual strain energy (or mutual potential en-
ergy) and strain energy, to ensure the prescribed flexibility and enough stiffness
of the structure. Luo, Chen, Zhang, Yang and Abdel-Malek (2005) presented a
multi-objective programming method using a compromise programming scheme,
in which a kinematic function and a structural function are considered, simultane-
ously. Luo, Tong, Wang and Wang (2007) employed the level set method to study
the distributed compliant mechanisms using the objective function of mechanical
efficiency.

Most above mentioned formulations for topology optimization of compliant mech-
anisms have primarily been concerned with the optimization formulations which
only use structural or mechanical functionalities from mechanism problems. How-
ever, topology optimization of compliant mechanisms is required to own the char-
acteristics of both mechanism performance and structural ability. Therefore, the
aim of this paper is to present a new multi-criterion formulation for the topology
optimization of distributed compliant mechanisms, where the mechanical efficiency
is applied to meet motion and force requirements of the mechanism while structural
strain energy is considered to satisfy structural stiffness requirement.

2 Multi-criteria optimization problem

2.1 SIMP material interpolations

Topological optimization of continuum structures is essentially the integer pro-
gramming problem with 0-1 discrete design variables. However, the optimization
problem is ill-posed and difficult to solve directly using gradient-based optimiza-
tion approaches. Therefore, the original optimization problem is usually relaxed
to allow elemental densities to take intermediate values from 0 to 1. Homogeniza-
tion approach [Bendsøe and Kikuchi (1988)] and variable density method [Bendsøe
and Sigmund (1999)] are two typical schemes for the relaxation. Homogenization-
based approaches were once the most commonly adopted interpolation scheme for
compliance topology optimization where the effective material properties are char-
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acterized by the homogenized process. However, it is difficult to determine the
microstructure pattern for compliant mechanisms. Consequently, solid isotropic
material with penalization (SIMP) [Zhou and Rozvany (1991)], a simple but ef-
fective interpolation scheme belonging to the variable density method, is used to
indicate the dependence upon some power of the element relative densities and
material modulus. Bendsøe and Sigmund (1999) proved the existence of physical
meaning of the SIMP model when some simple conditions on the exponent are sat-
isfied (such as penalty exponent p≥3 for Poisson’s ratio 1/3). SIMP was adopted
as the density-stiffness interpolation scheme in this work.

2.2 Multi-criteria formulation

In the multi-criteria formulation, the multiple objective functions are considered
in the design, both from structural problems such as and strain energy (SE), and
mechanical function specification such as mechanical efficiency (ME). The multi-
criteria objective is considered to be a ratio of the ME to the SE. Three constraints
(displacement, stress, and dynamic) are imposed to limit the searching domain of a
compliant mechanism. The proposed multi-criteria optimization problem is defined
by



Minimize
X=(x1,x2,...,xn)T

: f (X) =
{
−ME(X)

SE(X)

}

Subject to:



uin(x)≤ u∗in
λi(X)≥ [β ], i = 1,2, ...,M

n
∑
j=1

x jVj−V̄ ≤0, j = 1,2, ...,n

0 < xmin ≤ x j ≤ 1, j = 1,2, ...,n

(1)

where uin(x)/u∗in ≤ 1 is the constraint introduced to limit the largest input displace-
ment to control the maximum stress level in the optimum mechanism. ME is used
to indicate the functionality of the mechanism, and SE is applied to measure the
structural stiffness. V̄ is the amount of allowable material usage in the design do-
main. n is the number of finite elements, x is the design variable, and xmin=0.001
is introduced to avoid numerical singularity of the stiffness matrix, as well as to
prevent possibility of localized modes in low density areas.

β is a newly introduced design variable that posed a lower bound on each eigen-
value, which can be obtained by solving the following dynamic optimization prob-
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lem to narrow the feasible search domain

Maximize
β ,∆X={∆x1,∆x2,...,∆xn}T

: [β ]

Subject to :


λ j(X)+ f T

j j(X)∆X ≥ β , j = rm, ...,Rm,m = 1, ...,M

(
n
∑

i=1
Vjx j)+∇TV (X)∆X ≤ V̄ , i = 1,2, ...,n

0 < xmin ≤ xi < 1, i = 1,2, ...,n

(2)

where f T
j j represents gradient vector components. ∆X denotes the design increment

vector. The multiple eigenvalues are numbered from rm to Rm, where rm, and Rm

indicate the first and the last eigenvalues (rm = Rm for simple eigenvalue). M is
the total number of eigenvalues. For further details of solving this dynamic opti-
mization problem, readers are referred to the relevant works [Seyanian, Lund and
Olhoff (1994); Luo, Yang, Chen Zhang and Abdel-Malek (2005)].

2.3 Sensitivity analysis

The spring model [Sigmund (1997)] has been widely applied to characterize the
relationship between work-piece and compliant mechanism. A spring model con-
sists of a design domain and a spring with known stiffness attached at the output
port in conformity to the desired direction, where the spring is used to model the
work-piece. The spring stiffness can be estimated from the elastic behavior of the
work-piece, and the interaction between the mechanism and the work-piece is cap-
tured properly. The spring model is subsequently used to express functional speci-
fications as well as structural stiffness. In this context, based on the work [Sigmund
(1997)], a piezoelectric actuated micro compliant amplifier, as shown in Fig. 1, is
used to explain the spring model in Fig. 2.

Only for the sake of numerical simplicity, the following analysis is based on the
assumption of linear finite elements and a stiff work-piece with no gap between the
output port and the work-piece. Objective functions and constraints of the com-
pliant mechanism can be evaluated by employing finite element analysis based on
the spring model. The geometrical advantage is measured by the ratio of displace-
ments at the output and input ports GA = ∆out/∆in, and the mechanical advan-
tage is the ratio of reaction (output) force at the output port and the input force
MA = Fout/Fin. The mechanical efficiency can then be determined by the ratio of
output work to input work ME = sgn(GA)×MA×GA, which involves MA and
GA to compliant mechanism design, where sgn(GA) indicates the desired direc-
tion of the output displacement. The mechanical advantage (MA) is re-written as
MA = Fout/Fin = ks ·∆out/Fin, where ks represents the stiffness of the spring model,
and ∆out is the displacement at the output port of the spring model.
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Figure 1: Compliant micro-amplifier
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Figure 2: Spring model of quarter sym-
metry

The mechanical efficiency (ME) is then represented as

ME = sgn(GA)×MA×GA = sgn(GA)
(
ks ·∆2

out/Fin ·∆in
)

(3)

After getting the ME, the objective function is defined as

f (X) =
{
−ME

SE

}
=
{
−sgn(GA)×MA×GA

SE

}
=−

sgn(GA)
(
ks ·∆2

out/Fin ·∆in
)

SE
(4)

where ∆out = ∆21− c∆22 can be measured by superposition of displacements at
the output port caused by load case 1 and load case 2, respectively, where c =
(∆21−∆out)/∆22. c is the factor with which the displacement ∆22, induced by
the unit dummy load applied at the output port, must be considered to obtain the
displacement ∆out . Reaction force Fout = c f2 at the output port is rewritten as
Fout = f2(∆21

/
(∆22 + f2/ks)). MA, GA and ME can be calculated by using dis-

placements (∆11, ∆21, ∆12 and ∆22) and load cases ( f1 and f2).

Here the mechanical advantage (MA) and the geometrical advantage (GA) are
given as:

MA =
Fout

Fin
=

f2

f1

∆21

∆22 + f2/ks
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GA =
∆out

∆in
=

f2∆21

(ks∆22 + f )∆11− ks∆
2
21

(5)

Based on MA and GA, the mechanical efficiency ME is then stated as

ME = sgn(GA)×MA×GA =
f2

f1

(
f2∆21

(ks∆22 + f2)∆11− ks∆
2
21

)(
∆21

∆22 + f2/ks

)
(6)

Similarly, the displacements at the output and input ports can be expressed as fol-
lows:

∆out =
Fout

ks
= f2

∆21

ks∆22 + f2

and

∆in = ∆11− c∆12 = ∆11−∆
2
21

(
ks

ks∆22 + f2

)
(7)

The sensitivity of objective function is expressed by

∂ f (x)
∂xi

=−
∂
(ME

SE

)
∂xi

=
− ∂ (ME)

∂xi
(SE)+(ME) ∂ (SE)

∂xi

(SE)2 (8)

where the sensitivity of mechanical efficiency ME is derived as

∂ME
∂x j

= sgn(GA)
(

MA
∂GA
∂x j

+GA
∂MA
∂x j

)
(9)

where the sensitivities of GA and MA are respectively described by

∂GA
∂x j

=
(

∆in
∂∆out

∂x j
−∆out

∂∆in

∂x j

)
/∆

2
in (10)

∂MA
∂x j

=
f2

f1

[{
(∆22 + f2/ks)

∂∆21

∂x j
−∆21

∂∆22

∂x j

}
/(∆22 + f2/ks)2

]
(11)

In terms of the sensitivities of ∆i j, sensitivities of ∆out and ∆in can be specified as

∂∆out

∂x j
= f2

[(
(ks∆22 + f2)

∂∆21

∂x j
−∆21

∂∆22

∂x j

)
/(ks∆22 + f2)2

]
(12)

∂∆in

∂x j
=

∂∆11

∂x j
− ∂c

∂x j
∆21− c

∂∆12

∂x j
(13)
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where the sensitivity of c can be expressed by ∆out and ∆in together with their
sensitivities, which is also dependent on MA and its sensitivities, and it is written
as

∂c
∂x j

=
{

∆22

(
∂∆21

∂x j
− f2/ks ·

∂MA
∂x j

)
− ∂∆22

∂x j
(∆21−MA · f1/ks)

}
/∆

2
22 (14)

Hence, the sensitivities analysis of ME can be directly performed in terms of the
sensitivities of displacement∆i j, where ∆i j and its sensitivity will be derived based
on the following discussion. Since the spring model is assumed to be linear in this
work, the equivalent spring model can therefore be implemented by superposition
of two load cases (Fig. 3), and the continuum structure is discretized into N ele-
ments for subsequent finite-element analysis. Therefore, displacements of ∆i j can
be calculated by solving a finite element problem with two load cases, respectively.
The first load case consists of the input load f1 defined by finite element load vec-
tor F1, and the second load case is a dummy load f2 defined by finite element load
vector F2, in terms of the direction of intended motion.

Using the dummy load method, we have the following forms:

∆11 =
(
{V}T [K]{V}

)
/ f1, ∆21 =

(
{V}T [K]{U}

)
/ f2

∆12 =
(
{U}T [K]{V}

)
/ f1, ∆22 =

(
{U}T [K]{U}

)
/ f2 (15)

where the indices i, j in ∆i j denote the displacement at port i induced by the exerted
load case at port j. If there is no resistance from a work-piece, ∆11 and ∆21 (or ∆22
and ∆12) will evolve to the calculated displacements at the input and output ports,
respectively. [K] denotes the global stiffness matrix. Displacement vectors {V} and
{U} related to two load cases {F1} and {F2} can be found by solving the following
two sets of linear equations:

[K]{U}= {F1}, [K]{V}= {F2} (16)

Using the SIMP interpolation scheme [Bendsøe and Sigmund (1999)], the sensi-
tivities analysis of displacements for all ∆i j(i, j = 1,2) can be worked out by using
the adjoint method. For instance, the sensitivity of ∆11 can be given by

∆11 =
(
{U}T [K]{U}

)/
f1 (17)

∂∆11

∂xe =

(
∂ {U}T

∂xe ([K]{U})+{U}T ∂ ([K]{U})
∂∂xe

)
/ f1 (18)
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(a) Input force F1                  (b) Output dummy load F2 

 
Figure 3: Dummy load method with superposition of two load cases for mechanism
design

Since the load vectors in [K]{U} = {F} and {U}T [K] = {F}T are actually inde-
pendent of the design variables, we can obtain the following equations:

∂

(
{U}T [K]

)
∂xe = {U}T ∂ [K]

∂xe +
∂{U}T

∂xe [K] = 0 (19)

∂ ([K]{U})
∂xe = [K]

∂{U}
∂xe +

∂ [K]
∂xe {U}= 0 (20)

Substituting (18) and (19) into (17) can lead to

∂∆11

∂xe =−{U}T ∂ [K]
∂xe {U} (21)

Combining SIMP interpolation model, we can get

∂∆11
/

∂xe =−
N

∑
e=1

[
p(xe)p−1{ue

1}T [ke]{ue
1}
]
/ f1 (22)

Following a similar way, the general formulation of sensitivity of displacement is
given as

∂∆i j/∂xe =−
N

∑
e=1

[
p(xe)p−1{ue

j}T [ke]{ue
i }
]
/ fi (23)
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where xe is the design variable (relative density of element), p is the penalty expo-
nent, the subscripts i and j denote the displacement at port i induced by load j. [ke]
is the element matrix, {ue

j} and {ue
i } are the displacement vectors.

If ME is only maximized, a mechanism with very weak structure might be ob-
tained. Therefore, the structural requirements can be remedied by minimizing the
strain energy, which is equivalent to minimizing the mean compliance or maximiz-
ing the stiffness. The strain energy is then calculated by considering the load case
characterized in Fig. 4 where the boundary of the applied input load is restrained
and a dummy load is applied at the output port in the opposite direction, to ac-
count for the resistance of the work-piece. Thus, the SE is incorporated into the
optimization formulation.

The structural strain energy (SE) can be defined by:

SE =
Ne

∑
j=1

(Emin + xp
j ∆E){ũe

j}T [k̃e
j]{ũe

j} (24)

∂SE
∂x j

=−
Ne

∑
j=1

pxp−1
j {ũ

e
j}T [k̃e

j]{ũe
j} (25)

where, Ne is the element number, ũe
j represents the displacement exerted by the ap-

plied force− f2 in Fig. 4, [k̃e
j] is the stiffness matrix for the mechanism design prob-

lem which is different from [ke
j] due to the different boundary condition induced by

the extra specified restraint at the input port. The following optimal results based

e
ju

2f

 
Figure 4: Strain energy (SE) calculation for structure design
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on design domain shown in Fig. 1 are briefly sketched, showing that the different
objectives, such as SE, MA, GA and ME, can obtain different optimal results. For
simplicity, the reaction force provided by vertical motion of PZT amplifier to the
coupled compliant mechanism is equalized by two vertical forces. The mechanism
topologies are shown in Fig. 5.

                   

(a) Optimum mechanism topology of SE , iterations is 138, optimal results is 2.15 
(b) Optimum mechanism topology of MA , iterations is 262, optimal results is 0.31 
(c) Optimum mechanism topology of GA , iterations is 214, optimal results is 2.74 
(d) Optimum mechanism topology of ME , iterations is 313, optimal results is 0.85 

 

Figure 5: Optimal solutions using different objective functions

2.4 Numerical instabilities

Numerical instabilities, checkerboards, mesh-dependency, and one-node connected
hinges, will occur when performing the design of compliant mechanisms using
topological optimization. The reasons for checkerboards and mesh-dependency
are well understood [Diaz and Sigmund (1995)] and many methods such as filter-
ing scheme can be applied to overcome these difficulties [Sigmund and Petersson
(1998)]. Similar to checkerboards, one-node connected hinges are also caused by
improper computational modeling in the numerical procedure, as well as improper
modeling of stress variations, i.e., when stresses and strains are inadequately mod-
eled using low-order finite elements. In other words, the hinges can be regarded as
one form of the building blocks of checkerboard patterns where the hinge is mod-
eled by an artificially stiff corner-to-corner connection of two four-node elements.
However, compared to checkerboards, the hinge pattern is not repeated within the
mechanism. Deformation takes place almost entirely within hinge regions where
the shape is subject to infinity and the mechanism is easy to break. Although this
scheme can eliminate checkerboards in the mechanism, they are not always appro-
priate or suitable for preventing one-node connected hinges.
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The sensitive filtering method [Sigmund (2001)] can improve smoothness and dif-
ferential properties of the objective function and it can regularize the topology op-
timization problem. However, it may not be effective in removing one-node hinges
and cannot guarantee a hinges-free design. Although the checkerboards and hinges
problem are relevant, but the formulation of the optimization problem should favor
the distribution of compliant hinges from one-node connected hinges. Luo, Chen,
Zhang, Yang and Abdel-Malek (2005) suggested a hybrid-filtering approach and a
density filtering method, respectively. Practically, they are beneficial for alleviat-
ing the one-node connected hinges to some extent, and for efficiently eliminating
checkerboards and preventing mesh-dependency. In this work, the density filtering
method is applied to settle numerical instabilities. However, the hinge in compliant
mechanisms is an open topic, and other approaches are still being explored. Some
recent developments on this topic can refer to [Luo, Luo, Chen, Tong and Wang
(2008); Sigmund (2009); Wang (2009); Kang and Wang (2011)].

3 Convex Programming Approach

Mathematical programming schemes, such as Sequential Linear Programming (SLP),
Sequential Quadratic Programming (SQP), and Sequential Convex Programming
(SCP) are the commonly used gradient-based approaches for solving topological
optimization problems. Considering such large-scale optimization problems with
multi-criterion objective functions and multiple constraints, mathematical program-
ming methods based on sequential convex programming are more flexible and
theoretically well-founded for advanced optimization applications. The convex
programming methods based on approximations of the MMA family [Bruyneel
and Fleury (2002)] have been applied to solve topology optimizations of compli-
ant mechanisms. There is no explicit updating scheme for the design variables.
The MMA approach solves a sequence of linearized, convex, and separable sub-
problems, and the approximation of a design function is computed based on the
function value and the first or second derivatives at the current design point. In
each step, several approaches, such as the dual approach and primal-dual interior-
point approach, can be applied for solving the sub-problem.

The original MMA approximation is based on the CONLIN (Convex Lineariza-
tion Method) of Fleury and Braibant (1986), which was developed based on the
first-order Taylor expansions at current design point. Svanberg (1987) had gen-
eralized CONLIN to MMA by introducing two moving sets of lower and upper
asymptotes to adjust the convexity of the approximations. The process of MMA
approximation has the monotonous characteristic because for each design point
only one asymptote is used in terms of the sign of the first-order derivative. In
addition, the approximations for all the design functions use the same asymptote,
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which will limit the flexibility for adjusting the approximation of each of the struc-
tural response functions according to their natural characteristics. Svanberg (2002)
extended the original MMA to GCMMA method, where two asymptotes are used at
the same time to generate the approximation by using a heuristic non-monotonous
parameter, and the approximation thus has a non-monotonous character. The cur-
vature of MMA approximation is approximated by using non-mixed second-order
derivatives instead of non-monotonous parameter.

1v v= +

1k k= +

 

Figure 6: GCMMA approximation

X SwitchΔ ≤

1k k= +

 

Figure 7: GCMMA and GBMMA ap-
proximation
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The use of second sensitivity information may enhance the reliability and the effi-
ciency of the optimization process. Instead of using the non-monotonous parameter
or non-mixed second-order derivatives in GCMMA, [Bruyneel and Fleury (2004);
Bruyneel and Duysinx (2004)] developed the gradient-based GBMMA1 to improve
the MMA by matching the first-order information from two successive iterations,
and GBMMA2 method to employ a kind of approximated scheme by replacing
the second-order derivatives used in the MMA method. In this context, we use a
GCMMA-GBMMA approximation based on the works of [Bruyneel and Duysinx
(2004)] and [Svanberg (2002)]. It is expected that the computational efficiency can
be improved when the solution is carried out using the GBMMA instead of the
GCMMA approximation. In the work of Svanberg (2002), the GCMMA method
has revealed several characteristics, such as some theoretical properties concerning
existence of optimal solutions and optimality conditions, a strictly feasible solution
with global convergence, and is reasonably efficient compared with the other MMA
methods. Here, the mixed approximation approach is expected to characterize the
advantages of both the GCMMA method and the GBMMA approximation. Read-
ers can refer to the relevant works for more details about GCMMA and GBMMA
approximations. The flowchart of this scheme is sketched as Fig. 7.

4 Numerical Applications

Two typical examples are used to demonstrate the optimal design of compliant
micro-mechanisms using the proposed multi-criteria topology optimization formu-
lation. In the first example, the filtering effect of the density method [Luo, Chen,
Zhang, Yang and Abdel-Malek (2005)] upon the multi-criteria is illuminated by
using a micro-inverter mechanism with different input and output displacements.
In the second example, the influence of dynamic constraint on the optimum mecha-
nism is displayed by a micro-gripper mechanism, where both mechanical efficiency
and strain energy objectives are considered by using the mixed convex approach
with or without a dynamic constraint.

Example one: micro-inverter mechanisms
The design domain of a micro-inverter is shown in Fig. 8 with the volume constraint
27.5%. Applying symmetry, the lower half of the design domain is considered with
5000 elements. Supposing the material Young’s Modulus is 210GPa, the Poisson
Ratio is 0.31. fin = 0.1mN and fout = 0.25mN. An artificial spring with stiffness
Kin is attached to the input port with an actuation force fin simulating the input
work, and an artificial spring with stiffness Kout at the output port simulates the
resistance from a work-piece. The input displacement is limited to Uin ≤ 35µm.

The optimization problem is illustrated as Eq.1 with three constraints and solved
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Figure 8: Design domain of compliant micro-inverter

using the mixed convex programming method. The optimal results in Fig. 9 show
that different stiffness amounted at the input port can be used to adjust the allowable
input displacements. The stress will reach to a higher level when a larger input
displacement is produced. For a distributed compliant micro mechanism, a higher
stress level will speed up the fatigue failure. Similarly, the spring attached to the
output port can also be used to simulate the action of the work-piece (different
stiffness) at the output port. Smaller spring stiffness can lead to a larger output
displacement and a higher stress level in the resulting mechanism, as shown in
Fig. 10. Therefore, in a practical design, there is just a matter of experience to
determine the appropriate maximal input and output displacement levels. If the
original sensitivity filtering scheme [Sigmund (2001)] is used with the new multi-
criteria formulation. The results in Figs 9 and 10 show that checkerboards can
actually be eliminated, but the one-node connected hinges still occur when a larger
output is expected.

The density filtering method (Luo and et al. 2005) has been introduced into the
multi-criteria formulation. The results in Figs. 11 and 12 show that the density fil-
tering method is more capable of preventing one-node connected hinges appearing
in optimum mechanisms than the sensitivity filtering method. In addition, the stress
level in the optimum mechanisms is also further reduced compared to the stress
level regularized by the sensitivity filtering method. Therefore, the new multi-
criteria formulation coupled with the density filtering approach can be beneficial
for preventing numerical instabilities as well as for controlling the maximal stress
level. However, as denoted in the previous research (Luo and et al. 2005), the
density filtering scheme cannot be used to totally eliminate the de-facto hinges,
although the improvement can be actually expected compared to the widely used
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sensitivity filtering scheme.

For simplicity, in this section we limit our discussion only to the cases show in Fig.
11. Here the values, mechanical efficiency, and the strain energy obtained by us-
ing the multi-criteria topology formulation are compared with the results gained by
using only the traditional optimization formulation, in which the functional speci-
fication such as mechanical efficiency is mostly adopted as the objective function
(Sigmund 1997; Wang and et al. 2005; Luo and et al. 2007). Within the proposed
multi-criteria formulation, one key factor is related to the new multi-criterion objec-
tive of the mechanical efficiency and the strain energy. On the one hand, the single
individual objective of mechanical efficiency in the proposed formulation for the
cases in Fig. 11, which are calculated as 0.1046, 0.3257, 0.6181 and 0.7211, respec-
tively, compared to 0.1305, 0.4701, 0.7103 and 0.8152 obtained by only using the
mechanical efficiency as the objective. Although the performance of the mechani-
cal efficiency in the multi-criteria formulation is slightly decreased, it still remains
in a reasonable and acceptable scope. On the other hand, structural strain energy
related to the cases expressed in Fig. 11 is characterized by the value 10.3418
compared to 55.7046 obtained only by using mechanical efficiency to formulate
the problem, where the SE has not been considered in the optimization problem,
which reveals the fact that the structural stiffness is obviously enhanced by using
the new multi-criteria formulation. During the optimization, it can be found that
the convergence of the algorithm is good and the volume constraint is conservative.

             

(a)                 (b)                    (c)                 (d) 
(a) inK =0.2 /N mm , outK =2 /N mm , ME =0.0917, maxσ =9.5 2N mm  

(b) inK =0.02 /N mm , outK =2 /N mm , ME =0.2021, maxσ =21.8 2N mm  
(c) inK =0.002 /N mm , outK =2 /N mm , ME =0.4650, maxσ =54.6 2N mm  

(d) inK =0.0002 /N mm , outK =2 /N mm , ME =0.7861, maxσ =87.3 2N mm  
 

Figure 9: Different input stiffness using the sensitivity filtering method

Example two: micro-gripper mechanisms
The size of the design domain is 800µm× 600µm, as shown in Fig. 13. Apply-
ing symmetry, the lower half of the design domain is initially discretized using
4800 elements. The input displacement is limited to uin ≤ 40µm and the volume
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(a)                 (b)                    (c)                 (d) 
(a) inK =2 /N mm , outK =0.2 /N mm , ME=0.0883, maxσ =9.5 2N mm  

(b) inK =2 /N mm , outK =0.02 /N mm , ME=0.3890, maxσ =26.8 2N mm  
(c) inK =2 /N mm , outK =0.002 /N mm , ME=0.5181, maxσ =58.1 2N mm  

(d) inK =2 /N mm , outK =0.0002 /N mm , ME=0.7571, maxσ =89.6 2N mm  
 

Figure 10: Different output stiffness using the sensitivity filtering method

             
(a)                 (b)                    (c)                 (d) 

(a) inK =2 /N mm , outK =0.2 /N mm , ME =0.1046, maxσ =9.3 2N mm  
(b) inK =2 /N mm , outK =0.02 /N mm , ME =0.3257, maxσ =16.8 2N mm  
(c) inK =2 /N mm , outK =0.002 /N mm , ME =0.6181, maxσ =45.1 2N mm  

(d) inK =2 /N mm , outK =0.0002 /N mm , ME =0.7211, maxσ =58.2 

Figure 11: Different output stiffness using the density filtering method

             
(a)                 (b)                    (c)                 (d) 

(a) inK =0.2 /N mm , outK =2 /N mm , ME =0.0975, maxσ =9.2 2N mm  
(b) inK =0.02 /N mm , outK =2 /N mm , ME =0.2921, maxσ =21.8 2N mm  
(c) inK =0.002 /N mm , outK =2 /N mm , ME =0.5344, maxσ =49.6 2N mm  

(d) inK =0.0002 /N mm , outK =2 /N mm , ME =0.6605, maxσ =61.4 2N mm  
 

Figure 12: Different input stiffness using the density filtering method
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constraint is 25%. Young’s Modulus is 200MPa, Poisson Ratio is 0.31, and applied
force at the input port is fin=0.25mN. An artificial spring with stiffness Kin attached
to the input port to simulate the input work, and Kout simulates the resistance from
a work-piece.

inK

Design Domain

i nf

outf

outK

 
Figure 13: Design domain of compliant micro-gripper

In this example, the optimization problem is first developed by using the proposed
multi-criteria formulation without imposing the dynamic constraint, and the den-
sity filtering method is also applied to handle numerical instabilities occurring in
the optimal compliant mechanism. The computational model is solved by using
the proposed convex programming method. In Fig. 14, when the spring stiffness
attached at the output port is reduced, such as from 0.2N/mm to 0.0002N/mm,
the mechanical efficiency increases from 0.0981 to 0.7271. Although the maximal
stress level also increases from 10.5N/mm2 to 58.8N

/
mm2, it still remains in an ac-

ceptable scope when the input displacement is bounded. From the point of view of
optimization, a larger mechanical efficiency is achieved, but a too large mechanical
efficiency may result in a higher stress level in the resulting mechanism. In practi-
cal designs, the trade-off of the mechanical efficiency of mechanism and the strain
energy of structure are required to be considered at the same time. Mechanical ef-
ficiencies without dynamic constraint are calculated (Fig. 14), and strain energies
corresponding to all cases in Fig. 14 have the same value 30.1165. For the designs
given in Fig. 15, the similar conclusion can be obtained.

In Figs. 16 and 17, the optimal mechanisms are obtained by employing the new
formulation expressed in Eq. 1 with the dynamic constraint, and the maximal
stress levels with different Kin and Kout are also calculated. When the spring stiff-
ness simulating the reaction of the work-piece at the output port is reduced (e.g.
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from 0.2N/mm to 0.0002N/mm), the mechanical efficiency gradually increases
from 0.0823 to 0.7512 (Fig. 16), and the stress level increases from 9.3N

/
mm2 to

40.1N/mm2, simultaneously. Both ME and the stress level stay within a reasonable
scope; as a result, the new multi-criteria formulation can actually meet the design
requirements of compliant mechanisms.

To investigate more detailed information about the mechanical efficiency in the
new problem formulation, the mechanical efficiencies listed in Fig. 16 are given
as 0.0823, 0.2232, 0.5651 and 0.7512 compared to 0.1026, 0.2904, 0.6011 and
0.8089 calculated via the traditional optimization formulation where only ME is
considered as the sole objective. Strain energy in Fig. 16 is 4.8908 compared to the
value 13.6637 obtained by only using the traditional optimization formulation. It is
obvious that the structural stiffness increases using the new objective formulation.
With careful investigation, the optimal topologies shown in Figs. 16 and 17 are
somewhat different from those topologies without using the dynamic constraint in
Fig. 14 and 15. The performance characteristics of the designed mechanisms (me-
chanical efficiencies and maximal stress levels) might be different for cases with
and without eigenvalue constraint, respectively. For the case with Kin=0.2N/mm
and Kout=0.2N/mm, the proposed GCMMA-GBMMA algorithm is converged af-
ter 245 iterations, compared to 501, 372, 302 iterations for MMA, GCMMA and
GBMMA approximations, respectively, with the change tolerance 0.001. From this
example, the proposed method has shown to be beneficial for producing compliant
mechanisms that simultaneously satisfy the requirements of mechanism problems
as well as structure problems.

          
(a)                 (b)                    (c)                 (d) 

(a) inK =0.2 /N mm , outK =0.2 /N mm , ME=0.0981, maxσ =10.5 2N mm  
(b) inK =0.2 /N mm , outK =0.02 /N mm , ME=0.1544, maxσ =21.8 2N mm  
(c) inK =0.2 /N mm , outK =0.002 /N mm , ME=0.5511, maxσ =31.3 2N mm  

(d) inK =0.2 /N mm , outK =0.0002 /N mm , ME=0.7271, maxσ =58.8 2N mm  
 

Figure 14: Different output stiffness without dynamic constraint
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(a)                 (b)                    (c)                 (d) 

(a) inK =0.2 /N mm , outK =0.2 /N mm , ME =0.0981, maxσ =10.5 2N mm  
(b) inK =0.02 /N mm , outK =0.2 /N mm , ME =0.1128, maxσ =19.8 2N mm  

(c) inK =0.002 /N mm , outK =0.2 /N mm , ME =0.4663, maxσ =26.6 2N mm  
(d) inK =0.0002 /N mm , outK =0.2 /N mm , ME =0.6354, maxσ =51.4 2N mm  

 

Figure 15: Different input stiffness without dynamic constraint

          
(a)                 (b)                    (c)                 (d) 

(a) inK =0.2 /N mm , outK =0.2 /N mm , ME =0.0823, maxσ =9.3 2N mm  
(b) inK =0.2 /N mm , outK =0.02 /N mm , ME =0.2232, maxσ =20.6 2N mm  
(c) inK =0.2 /N mm , outK =0.002 /N mm , ME =0.5651, maxσ =28.3 2N mm  

(d) inK =0.2 /N mm , outK =0.0002 /N mm , ME =0.7512, maxσ =40.1 2N mm  
 

Figure 16: Different output stiffness with dynamic constraint

          
(a)                 (b)                    (c)                 (d)  

(a) inK =0.2 /N mm , outK =0.2 /N mm , ME =0.0823, maxσ =9.3 2N mm  
(b) inK =0.02 /N mm , outK =0.2 /N mm , ME =0.1544, maxσ =15.5 2N mm  
(c) inK =0.002 /N mm , outK =0.2 /N mm , ME =0.5032, maxσ =20.6 2N mm  

(d) inK =0.0002 /N mm , outK =0.2 /N mm , ME =0.6967, maxσ =38.3 2N mm  
 

Figure 17: Different input stiffness with dynamic constraint

5 Prototype Manufacturing

A procedure has been developed to perform prototype manufacturing according to
the optimal design compliant mechanism using the proposed topological optimiza-
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tion. Here the resulting mechanisms in Fig. 14 (d) and Fig. 16 (d) are used to
explore the detailed prototype manufacturing procedure.

The optimal topological contours are actually the grey-white plotting of material
density distribution. Reconstruction technologies can be used to convert them into
the parametric models that can be read by a general CAD/CAM/CAE system, such
as UG-NX, HYPERWORKS or NASTRAN. If needed, the more detailed designs
such as shape and size optimization can also be carried out based on these para-
metric models to further improve the structural performance. Generally, the solid
model can be obtained either by the procedure of converting the topologies into a
solid model with the designer redrawing these topologies using a CAD software, or
by using an automatic conversion procedure with software packages. Here, the for-
mer case is adopted to convert topologies into solid models, and the corresponding
solid models achieved by using UG-NX are show in Fig. 18. Then the parametric
models are imported into the HYPERWORKS through the IGES data file, and the
finite element models are formulated in Fig. 19.

The macro size for prototype manufacture is 80mm× 60mm× 2.5mm with in-
put force fin=0.25mN, the density 1.95× 10−9kg/mm3, and the elastic modulus
200MPa. The maximal allowable stress is 70-80MPa. The mechanical efficiency,
strain energy, and maximal stress level and eigenvalues of free vibration are the key
factors in the prototype design. The finite element analysis of prototype design is
then carried out to show these characteristics. It can be found that the maximum
displacements are, 26.1µm and 44.5µm (Fig. 20), respectively, and the Von Mises
stresses inside these models are 19.5 MPa and 14.6 MPa (Fig. 21), respectively,
which are well below the maximum allowable stress. In addition, eigenvalues (1∼7
order) corresponding to two prototypes are obtained via the calculation of the finite
element model. The eigenvalues are listed in Table 1, and the corresponding modes
are given in Fig. 22. From Table 1, it can be concluded that the mechanical per-
formance of compliant mechanisms can be improved with the dynamic constraint.
The solid models are imported in STL formats, and two compliant grippers have
been manufactured in macro-scale at the Molding Centre of HUST, the prototype
pictures are shown in Fig. 23.

6 Conclusions

This paper proposes a new topology optimization method for the optimal design
of distribute compliant mechanisms. The design problem is expressed by using an
alternative multi-criteria objective function considering the strain energy of struc-
tures and mechanical efficiency of mechanisms, simultaneously, together with three
external design constraints. It can be found that it is reasonable to explore design
requirements of compliant mechanisms by using the continuum topological op-
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Figure 18: Reconstruction solid model

      
(a) With 8744 elements   (b) With 9072 elements 

 
Figure 19: Finite element model

      
 

Figure 20: Displacement fields

      
 

Figure 21: Von Mises stress fields
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(a) Mode related to the first eigenvalue 

     
(b) Mode related to the second eigenvalue 

     
(c) Mode related to the third eigenvalue 

     
(d) Mode related to the forth eigenvalue 

     
(e) Mode related to the fifth eigenvalue 

     
(f) Mode related to the sixth eigenvalue 

     
(g) Mode related to the seventh eigenvalue 

 
Figure 22: Left side: without eigenvalue constraint, Right side: with eigenvalue
constraint
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Figure 23: Prototype design

timization approach. The advantages of the proposed methodologies have been
demonstrated via numerical applications, and the optimal mechanisms developed
by adopting the new formulation can meet the demands of both maximizing the
work ratio of mechanism designs and minimizing of the structural compliance.
The mixed mathematical programming approximation is desirable for solving the
topology optimization problem of compliant mechanisms. It is straightforward to
extend the proposed method to more advanced structural optimization problems
[e.g. Li, Li, Sun, Luo and Zhang (2007); Luo and Tong (2008); Kang and Luo
(2009)].

Acknowledgement: This research is supported in part by Chancellor’s Research
Fellowship 2011 (The University of Technology, Sydney, 2032063), National Natural-
Science-Foundation of China (51105229, 51175197), Open Research Foundation
(GZ1007) of State Key Lab. of Structural Analysis for Industrial Equipment, Dalian
University of Technology, China, and Open Research Foundation (DMETKF2010004),
and Open Research Foundation (DMETKF2010004) of “State Key Lab. of Digi-
tal Manufacturing Equipment & Technology”, Huazhong University of Science &
Technology, China. The author would like to thank Prof. K. Svanberg for providing
his MMA and GCMMA codes.

References

Allaire, G., Jouve, F., Toader, A.M. (2004): Structural optimization using sensi-
tivity analysis and a level-set method, Journal of Computational Physics, vol. 194,
pp. 363-393.

Ananthasuresh,G.K., Howell, L.L. (2005): Mechanical design of compliant microsystems-
a perspective and prospects, Journal of Mechanical Design, vol. 127, pp. 736-738.

Ananthasuresh, G.K., Kota, S., Gianchandani, Y. (1994): A methodical ap-
proach to the design of compliant micro-mechanisms. In Solid-State Sensor and



A Multi-Criteria Topology Optimization 53

Actuator Workshop, pp. 189-192.

Bendsøe, M.P., Kikuchi, N. (1988): Generating optimal topology in structural
design using a homogenization method, Computer Methods in Applied Mechanics
and Engineering, vol. 71, pp. 197-224.

Bendsøe, M.P., Sigmund, O. (1999): Material interpolation schemes in topology
optimization, Archive of Applied Mechanics, vol. 69, pp. 635-654.

Bendsøe, M.P., Sigmund, O. (2003): Topology optimization: Theory, Methods,
and Applications, Springer, Berlin Heidelberg.

Bruyneel, M., Duysinx, P. (2004): Note on topology optimization of Continuum
Structures including self-weight, Structural and Multidisciplinary Optimization,
vol. 29, pp. 245-256.

Bruyneel, M., Fleury, C. (2002): Composite structures optimization using sequen-
tial convex programming, Advances in Engineering Software, vol. 33, pp. 697-711.

Diaz, A.R., Sigmund, O. (1995): Checkerboard patterns in layout optimization,
Structural and Multidisciplinary Optimization, vol. 10, pp. 40-45.

Eschenauer, H.A., Olhoff, N. (2001): Topology optimization of continuum struc-
tures: a review, Applied Mechanics Review, vol. 54, pp. 331-390.

Fleury, C., Braibant, V. (1986): Structural optimization: a new dual method using
mixed variable, International Journal of Numerical Method in Engineering, vol.
23, pp. 409-428.

Frecker, M., Ananthasuresh, G.K., Nishiwaki, S., Kikuchi, N., Kota, S. (1997):
Topological synthesis of compliant micromechnisms using multi-criteria optimiza-
tion, Journal of Mechanical Design, vol. 119, pp. 238-245.

Kang, Z., Luo, Y. (2009): Non-probabilistic reliability-based topology optimiza-
tion of geometrically nonlinear structures using convex models, Computer Methods
in Applied Mechanics and Engineering, vol. 198, pp. 3228-3238.

Kang, Z., Wang, Y.Q. (2011): Structural topology optimization based on non-local
Shepard interpolation of density field. Computer Methods in Applied Mechanics
and Engineering, vol. 200; pp. 3515-3525.

Larsen, U., Sigmund, O., Bouuwstra, S. (1997): Design and fabrication of com-
pliant micro-mechanisms and structures with negative Poisson’s ratio, Journal of
Microelectromechanical Systems, vol. 6, pp. 99-106.

Luo, J., Luo, Z., Chen, S., Tong, L., Wang, M.Y. (2008): A new level set method
for systematic design of hinge-free compliant mechanisms, Computer Methods in
Applied Mechanics and Engineering, vol. 198, pp. 318-331.

Luo, Z., Chen, L., Yang, J., Zhang, Y., Abdel-Malek, K. (2005): Compliant



54 Copyright © 2012 Tech Science Press CMC, vol.28, no.1, pp.27-55, 2012

mechanism design using multi-objective topology optimization scheme of contin-
uum structures, Structural and Multidisciplinary Optimization, vol. 30, pp. 142-
154.

Luo, Z., Yang, J., Chen, L., Zhang, Y., Abdel-Malek, K. (2005): A new hybrid
fuzzy-goal programming scheme for multi-objective topological optimization of
static and dynamic structures under multiple loading conditions, Structural and
Multidisciplinary Optimization, vol. 31, pp. 26-29.

Luo, Z., Tong, L., Wang, M.Y., Wei, P. (2008): Shape and topology optimization
of compliant mechanisms using a parameterization level set method, Journal of
Computational Physics, vol. 227, pp. 680-705.

Luo, Z., Tong, L. (2008): A level set method for shape and topology optimization
of large-displacement compliant mechanisms, International Journal for Numerical
Methods in Engineering, vol. 76, pp. 862-892.

Li, F., Li,G.Y., Sun, G.Y., Luo, Z., Zhang, Z. (2010): Multi-disciplinary opti-
mization for multi-objective uncertainty design of thin walled beams, CMC: Com-
puters Materials & Continua, vol.19, pp.37-56.

Howell, L.L., Midha, A. (1994): A method for design of compliant mechanisms
with small length flexural pivots, Journal of Mechanical Design, Vol. 116, pp. 280
(11 pages).

Howell, L.L. (2011): Compliant mechanisms. John Wiley & Sons, Inc., New York,
2001.

Nathan, D., Howell, L.L. (2003): A self-retracting fully compliant bistable mi-
cromechanism, Journal of Microelectromechanical Systems, vol. 12, pp. 273-280.

Nishiwaki, S., Frecker, M.I., Min, S., Kikuchi, N. (1998): Topology optimization
of compliant mechanisms using the homogenization method, International Journal
for Numerical Methods in Engineering, vol. 42, pp. 535-559.

Sethian, J.A., Wiegmann, A. (2000): Structural boundary design via level set
and immersed interface methods, Journal of Computational Physics, vol. 163, pp.
489-528.

Saxensa, A., Ananthasuresh, G.K. (2001): Topology synthesis of compliant mech-
anisms for nonlinear force-deflection and curved path specifications, Journal of
Mechanical Design, vol. 123, pp. 33-42.

Seyranian, A.P., Lund, E., Olholff, N. (1994): Multiple eigenvalues in structural
optimization problems, Structural and Multidisciplinary Optimization, vol. 81, pp.
261-284.

Sigmund, O. (1997): On the design of compliant mechanisms using topology op-
timization, Mechanics of Structures and Machines, 1997; 25(4): 493-524.



A Multi-Criteria Topology Optimization 55

Sigmund, O. (2001): A 99 line topology optimization code written in Matlab,
Structural and Multidisciplinary Optimization, vol. 21, pp. 120-127.

Sigmund, O. (2009): Manufacturing tolerant topology optimization, Acta Mechan-
ica Sinica, vol. 25, pp. 227-239.

Svanberg, K. (1987): The method of moving asymptotes: a new method for struc-
tural optimization, International Journal for Numerical Method in Engineering,
vol. 24, pp. 359-373.

Svanberg, K. (2002): A class of globally convergent optimization methods based
on conservative convex separable approximations, SIAM Journal on Optimization,
vol. 12, pp. 555-573.

Wang, M.Y., Wang, X.M., Guo, D.M. (2003): A level set method for structural
topology optimization, Computer Methods in Applied Mechanics and Engineering,
vol. 192, pp. 227-224.

Wang, M.Y., Chen, S., Wang, X.M., Mei Y. (2005): Design of multi-material
compliant mechanisms using level set methods, Journal of Mechanical Design,
Vol. 127, pp. 941 (16 pages).

Wang, M.Y. (2009): A kinetoelastic formulation of compliant mechanism opti-
mization, Journal of Mechanisms and Robotics, Trans. of ASME, vol. 1, pp.
021011 (1-10).

Yin, L., Ananthasuresh, G.K. (2003): Design of distributed compliant mecha-
nism, Mechanics Based Design of Structures and Machines, vol. 31, pp. 269-279.

Zhou, M., Rozvany, G.I.N. (1991): The COC algorithm, Part II: topological, ge-
ometry and generalized shape optimization, Computer Methods in Applied Me-
chanics and Engineering, vol. 89, pp. 197-224.




