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Eigenvalue Analysis of MEMS Components with
Multi-defect using Infinite Element Method Algorithm

De-Shin Liu1,2, Chin-Yi Tu1 and Cho-Liang Chung3

Abstract: Manufacturing defects in the membrane of MEMS (Micro-Electro-
Mechanical-Systems) structures have a significant effect on the sensitivity and work-
ing range of the device. Thus, in optimizing the design of MEMS devices, it is
essential that the effects of membrane defects (e.g., cracks) can be predicted in ad-
vance. Accordingly, this study proposes the detailed two-dimensional Infinite El-
ement Method (IEM) formulation with Infinite Element (IE)-Finite Element (FE)
coupling scheme for analyzing the out-of-plane vibration of isotropic MEMS mem-
branes containing one or more tip cracks. In the proposed approach, a degenerative
computation scheme is used to condense the multiple element layers of the IEM
domain to a single layer with master nodes at the boundary only. The validity of
the proposed algorithm is demonstrated by comparing the results obtained for the
vibration of a rectangular membrane with the analytical solutions and the solutions
obtained using the conventional Finite Element (FE) method, respectively. The
validated IEM algorithm is then coupled with an FE scheme to analyze various
cracked membrane vibration problems. The results show that the fundamental fre-
quency of the membrane changes in accordance with the membrane thickness, but
is unaffected by the number of cracks. However, it is shown that a change in the
location of the cracks may cause a shift or rotation of the wave peaks of the struc-
tural mode shape. In general, the IEM algorithm presented in this paper provides
a fast modeling, direct, and accurate tool to simulate the effects of cracks on the
dynamic response of MEMS membranes. Furthermore, the algorithm can be easily
integrated with experimental methods in order to test for the presence of cracks as
part of the MEMS membrane quality control process.
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1 Introduction

Many MEMS (Micro-Electro-Mechanical-Systems) devices utilize some form of
membrane structure to transmit mechanical energy or electronic signals. The per-
formance of such devices is seriously degraded if the membrane contains manu-
facturing defects such as cracks. Accordingly, reliable methods are required to
check the mechanical integrity of the membrane during the quality control process.
The dynamic characteristics of MEMS components are commonly evaluated us-
ing non-destructive test methods such as the resonant frequency method [Zhang,
Uttamchandani, Culshaw and Dobson (1990); Tanner, Walraven and Helgensen
(2000)]. The resonant frequency method can also be used to measure the mechani-
cal properties (e.g., Young’s modus and internal stress) of silicon micro-resonators
in a non-destructive manner. It was shown that a single defect in the membrane
affects the structural mode shape, but has no significant effect on the resonant fre-
quency [Gerbach, Ebert and Brokmann (2010)]. In addition to resonance tests, the
effects of artificial membrane defects such as sharp cracks are also commonly eval-
uated by performing Vickers indenter tests [Pugno, Peng and Espinosa (2004)]. In
characterizing the response of membrane-based MEMS devices, it is desirable to
produce a large number of membranes with identical defect characteristics such
that the dynamic response of the device can be reliably determined. However,
in practice, making reproducible samples with identical cracks is extremely diffi-
cult. As a result, the use of simulation methods to evaluate the frequencies and
frequency response of MEMS membranes has become increasingly common in re-
cent years [Ebert, Naumann, Gerbach and Bagdahn (2007); Ricart, Blokhina and
Gorreta (2010)]. Simulation methods are relatively straightforward for membranes
containing a single crack. However, modeling the dynamic response of membranes
with multiple cracks is far more challenging. A method was presented for charac-
terizing the wafer-level membrane structure parameters in the early stages of the
MEMS manufacturing process [Michael, Hering, Holzer, Polster, Hoffmann and
Albrecht (2006-2007)]. In the proposed approach, the modal response of the mem-
brane structure was measured optically, and the measurement data were then pro-
cessed by an inverse identification algorithm based on a Finite Element (FE) model
in order to identify the membrane parameters (e.g., the membrane thickness). Also,
several investigations focus on the improvement of numerical method to predict the
effect of the multi-crack problems (e.g., FEM, MFEM and MLPG) [Ramakrishnan,
Rao(2005); Nishioka, Tchouikov, Fujimoto (2006); Liu, Long, Li (2008)]. How-
ever, it still lack of an efficient modeling process to calculate dynamic response of
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membrane with multi-crack.

In this paper, the algorithms derived in previous studies [Ying (1995); Han (1982-
1983)] are worked out in detail to construct an IEM numerical procedure, which
is extended in combination with FEM for analyzing the out-of-plane vibration of
isotropic MEMS membranes with multi-crack. In the proposed approach, a de-
generative computation algorithm is used to condense the mass and stiffness ma-
trices of the individual elements around the defect into equivalent global mass and
stiffness matrices. Moreover, the individual element layers are consolidated into
a single IE super element with master node at the boundary only [Liu and Chiou
(2003-2005); Liu, Zhuang, Chung and Chen (2009); Ying (1992)]. The IE super
element is applicable to all cracks having the same characteristics (i.e., width and
length). Thus, the need to re-mesh the entire problem domain each time an addi-
tional crack is introduced to the model is potentially removed. Consequently, the
time and complexity of the analysis procedure are significantly reduced. The valid-
ity of the proposed approach is confirmed by comparing the results obtained for the
vibration of a rectangular membrane with the analytical solutions and the solutions
obtained using the conventional FE method, respectively. The applicability of the
proposed method is then demonstrated by evaluating the dynamic response of rect-
angular and circular membranes with and without cracks, respectively. In practice,
wave shape may change in accordance with the size, position and number of the
membrane defects. In the present study, the change in the wave shape is quantified
using a MAC-value parameter (see Eq. (1)), which essentially compares the eigen-
vectors of the crack-free reference structure (vr) and the cracked sample structure
(vs), respectively.

MAC(%) =

(
vT

s vr
)2

(vT
s vs)(vT

r vr)
×100% (1)

2 Formulation

2.1 Out-of-plane vibration of rectangular membrane

Consider a rectangular membrane extending over a domain D (0 < x < a, 0 < y < b)
and having a thickness h (see Fig. 1). Assuming that the mass density ρ of the
membrane is constant, the governing equation for the vibration of the membrane
has the form shown in Eq. (2), where T is the tension force per unit length of the
membrane edge. The Laplacian equation can be expressed in rectangular coordi-
nates as shown in Eq. (3). Meanwhile, the boundary conditions at the fixed edges
of the membrane have the forms shown in Eqs. (4) & (5). The differential equa-
tion and corresponding boundary conditions collectively constitute the eigenvalue
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problems. The solution of this eigenvalue problem consists of the eigenvalues βm,n

(defined in Eq. (6) and the natural frequency ωm,n (given in Eq.(7)).

−T ∇
2W = ρh

∂ 2W
∂ t2 (2)

∇
2 =

∂ 2

∂x2 +
∂ 2

∂y2 (3)

W (0,y) = 0, W (a,y) = 0 (4)

W (x,0) = 0, W (x,b) = 0 (5)

βm,n = π

√[(m
a

)2
+
(n

b

)2
]

m,n = 1,2, · · · (6)

ωm,n = π

√[(m
a

)2
+
(n

b

)2
]

T
ρh

(7)
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Figure 1: Schematic illustration of rectangular membrane clamped at all four edges

2.2 IEM-FEM coupled scheme

When the problem domain (i.e., membrane) contains multiple cracks, modeling the
entire domain using IEM is laborious and computationally complex. Therefore, the
present study proposes an IEM-FEM coupled scheme in which the neighborhood
region of each crack is sub-divided into similar elements using IEM, while the
remainder of the problem domain is meshed using the conventional FE method.

To illustrate the proposed scheme, consider the single crack problem shown in Fig.
2. As shown, the problem domain is partitioned into two sub-domains, Ω and D,
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separated by a coupling interface, Γ0, and modeled by FEM and IEM, respectively.
The algebraic assembled element equation for the FE sub-domain is given as fol-
lows.

[M]
{

Ẍ
}

+[K]{X}= 0 (8)

where M/K is the mass/stiffness matrix of the FE sub-domain and X is the nodal
displacement. Furthermore, Eq. (8) could be written as Eq.(11). Note that the M/K
matrix is formulated in Eqs.(9) & (10).

[Me] = ρh
{∫

D
φiφ jdet [J]dξ dη

}
(9)

[ke] = T
{∫

D

∂φi

φξ

∂φ j

φξ
det [J]dξ dη +

∫
D

∂φi

φη

∂φ j

φη
det [J]dξ dη

}
(10)[

Mcouple MT
c f

Mc f MFEM

]{
Ẍ0

ẌFEM

}
+
[

Kcouple KT
c f

Kc f KFEM

]{
X0

XFEM

}
= 0 (11)

X0 and XFEM are the vectors of the IE/FE interface and non-interface nodal dis-
placements, respectively. From Eq. (11), the following equations can be derived:

Mcouple
{

Ẍ0
}

+MT
c f
{

ẌFEM
}

+Kcouple {X0}+KT
c f {XFEM}= 0 (12)

Mc f
{

Ẍ0
}

+M f em
{

ẌFEM
}

+Kc f {X0}+KFEM {XFEM}= 0 (13)

2.3 Eigenvalue problem formulation of Infinite Element Method

Utilizing the IEM approach, a very fine mesh pattern can be established around each
tip crack without increasing the degree of freedom of the global FEM solution.

For element I, (xi,yi) denotes the global coordinates of node i, Taking the global
origin O and c as the center of the similarity and the proportionality ratio, respec-
tively, a second element (element II) can be created whose nodal coordinate values
are similar to those of element I (see Fig. 3).

The relationship between the physical coordinates of the two elements is shown in
Eq.(14).(
xII

i ,yII
i
)

= c(xi,yi) (14)

Equations (15) - (17) show that shape functions are used to express the coordinates
of a point within elements I and II in terms of the nodal coordinates.{

xI = ∑
4
i=1 φixI

i

yI = ∑
4
i=1 φiyI

i
(15)
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Figure 2: Schematic representation of IE-FE coupled scheme
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Figure 3: Schematic illustration of similar 2-D elements
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xII = cxI = ∑

4
i=1 φixII

i = c∑
4
i=1 φixI

i

yII = cyI = ∑
4
i=1 φiyII

i = c∑
4
i=1 φiyI

i
(16)

det[J]II = c2det[J]I (17)

The relationship between the stiffness and mass matrices of elements I and II, re-
spectively, is shown in Eq.(18). The stiffness matrix of element I can be expressed
as shown in Eq.(19).{

kII = kI

MII = c2MI (18)


[k]I =

[
K0 −AT

−A K′0

]

[M]I =

[
L0 −DT

−D L′0

] (19)

The first layer eigenvalue formulation of IEM is defined in the Eq. (20)

{[k]−λ [M]}{X}= 0 (20)

where

{X}=
{

δ0
δ1

}
δ0: the outermost element layer’s displacements of IEM.

In general, the stiffness matrix for k-th layer is shown in Eq. (21)[
K0 −AT

−A K′0

]
−λc2(k−1)

[
L0 −DT

−D L′0

]
(21)

Expanding and arranging the equations for all the layers, the formulations shown
in Eq. (22) are obtained. If λ is not an eigenvalue of domain D, then there exists a
matrix X(λ ) which is a transformation matrix between δ0 and δ1, as shown in Eq.
(23).

(K0−λL0)δ0−
(
AT −λDT )

δ1 = 0

−(A−λD)δ0 +(K−λL)δ1−
(
AT −λDT )

δ2 = 0

. . . . . . . . .
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−
(

A−λc2(k−1)D
)

δk−1+
(

K− c2(k−1)L
)

δk = 0(
−AT +λc2kDT

)
δk+1 = 0 (22)

where K = K0 +K′0, L = c2L0 +L′0.

δ1 = X (λ )δ0. δk+1 = X
(
λc2k

)
δk. where

X (λ ) = X0 +λX1 + · · ·+λ
mXm + . . . . (23)

Substituting Eq. (23) into Eq. (22)1 yields the formulation shown in Eq.(24).
Arranging the terms in Eq. (24) according to the power of λ , the system shown in
Eq. (25) is obtained.

−(A−λD)+(K−λL)X (λ )−
(
AT −λDT )X

(
λc2)X (λ ) = 0 (24)

−A+KX0−AT X2
0 = 0

D+KX1−LX0−AT (X0X1 + c2X1X0
)
+ c2DT X2

0 = 0 (25)

. . . . . . . . .

In general

KXm−LXm−1−AT
∫ m

i=0
c2iXiXm−i + c2DT

∫ m−1

i=0
c2iXiXm−i−1 = 0

where m = 2,3, . . . .

All the coefficient terms of X(λ ) can be solved using MATLAB. The combined
stiffness matrix Kz shown in Eq. (26) is then obtained for domain D.

Kz (λ ) = (K0−λL0)−
(
AT +λDT )X (λ )

KIEM (λ ) = K0−AT X(λ )

MIEM (λ ) = L0−DT X(λ ) (26)

The algebraic assembled element equations for the IE sub-domain are given as
follows:

[MIEM]
{

Ẍ0
}

+[KIEM]{X0}= 0

MIEM = L0−DT X (λ )

KIEM = K0−AT X (λ ) (27)



Eigenvalue Analysis of MEMS Components 105

where MIEM and KIEM denote the combined mass and stiffness matrices of the IEM
sub-domain, respectively.

Clearly, the displacement compatibility condition must be satisfied along the IE-FE
interface. Therefore, Eqs.(12) and (27) should be combined as follows:[
Mcouple +MIEM

]{
Ẍ0
}

+MT
c f
{

ẌFEM
}

+
[
Kcouple +KIEM

]
{X0}+KT

c f {XFEM}= 0

(28)

Equations (13) and (28) can then be combined to form the following IE-FE coupled
equation:[

Mcouple +MIEM MT
c f

Mc f MFEM

]{
Ẍ0

ẌFEM

}
+
[

Kcouple +KIEM KT
c f

Kc f KFEM

]{
X0

XFEM

}
= 0. (29)

For multiple crack problems, each tip crack can be modeled using an infinite el-
ement, which can then be assembled into the global mass and stiffness matrices
formed from the FE sub-domain. Significantly, all tip cracks with the same dimen-
sions have the same mass and stiffness matrices. Consequently, the IE matrices
need be calculated only once, but can be applied multiple times as required by the
number of cracks within the problem domain. In other words, the computational
cost and effort of the modeling process are significantly reduced compared to con-
ventional FE methods.
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Figure 6: 2-D and 3-D FE modal analysis results for reference rectangular mem-
brane

3 Numerical Case Study I: rectangular membrane

3.1 IE-FE analysis of eigenvalue problem of reference rectangular membrane
and center-crack membrane

Consider a rectangular silicon MEMS structure with the following properties: a =
1000 µm, b = 1000 µm, thickness h = 25 µm, tension force per unit edge length
T = 3.3 N/mm, and mass density ρ = 2330 kg*m−3. Assume that the membrane is
rigidly clamped on all four sides (see Fig. 4) and has natural frequencies and mode
shapes. The frequencies of the first four vibration modes can be estimated using
the linear theory of transversal vibrations for an elastic membrane (see Eq. (7)).
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The Finite Element (FE) method is one of the most commonly used numerical
methods for predicting the solution of engineering problem. Fig. 6 shows the 2-D
and 3-D FE modal analysis results for the wave distribution of the first vibration
mode of the reference (i.e., crack-free) membrane shown in Fig. 4. Note that
the corresponding FE mesh is shown in Fig. 7. Note also that for convenience,
the remaining FE modal analyses presented in this paper are confined to the 2-D
view. For example, Fig. 8 presents 2-D views of the first four mode shapes of the
reference rectangular membrane. Fig. 5 shows the center-crack membrane model,
in which a tip crack with a length of r=50 µm and a width of w=5 µm is positioned
symmetrically in the center of the rectangular membrane. The corresponding FE
mesh pattern is shown in Fig. 9, while the FE results for the first four mode shapes
are shown in Fig. 10.

 

Figure 9: FE mesh for center-crack 
rectangular membrane 

 

Figure 10: First four mode shapes of 
center-crack rectangular membrane 
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Figure 11: IE and FE mesh pattern for 
the center crack model 

 

Figure 12: First four mode shape by proposed 
method of center-crack rectangular membrane 
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Figure 12: First four mode shape by proposed 
method of center-crack rectangular membrane 
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The proposed method solved the central crack problem by coupling the IE and FE
method. The mesh pattern is shown in Fig. 11, while the numerical results for
the first four mode shapes are shown in Fig. 12. The fundamental frequency is
converged in 169.9 kHz. Tab. 1 shows the first four natural frequencies of the
reference membrane and center-crack membrane, respectively. It is seen that the
FE results for the reference membrane are in close agreement with the theoretical
results. In addition, it is observed that there is very little difference in the FE results
for the reference model and the center-crack model, respectively. In other words,
the presence of a single symmetrical center crack has no obvious effect on the
vibration response of the clamped membrane. The proposed scheme is validated
by comparing the fundamental frequency (169.6 kHz) with the conventional FE
method and theoretical result.

Table 1: Comparison of theoretical and FE results for frequency response of non-
cracked and cracked rectangular MEMS membranes (kHz)

Mode Theory FEM Error (%) Crack Error (%)
1 168.940 169.636 0.412 169.436 0.294
2 267.118 270.871 1.405 269.694 0.964
3 267.118 270.871 1.405 270.568 1.292
4 337.880 343.462 1.652 343.573 1.685

3.2 IE-FE analysis of frequency response of rectangular membrane with mul-
tiple cracks

First, decide the tip crack size and create an infinite element by IEM on the domain
which consist of the crack region such like Fig. 13. In accordance with the element
similarity concept proposed by Ying, the layered elements within the IE model can
be consolidated to a form a “super element” with a combined stiffness matrix of Kz
(see Eq. (26)) in section 2-3).

The combined stiffness matrix Kz can then be assembled into the global FE formu-
lation and the corresponding eigenvalue problem solved. As discussed in Section
2-3, the IE stiffness and mass matrices for the super element need be computed
only once, but can be applied for every crack in the membrane having the same
dimensions.

Fig. 14.1-4a show defect membrane models containing 1, 2, 3 and 4 identical
cracks, respectively. Fig. 14.1-4b show the IE-FE analysis results for the first
four mode shapes of each model. Tab. 2 shows the first natural frequencies of the
reference model and four defect models, respectively. Tab. 3 compares the first four
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mode shapes of each of the four defect models with those of the reference model in
terms of the MAC-value parameter defined in Eq.(1). The results presented in Tab.
2 and Tab. 3 are consistent with those presented by Brokmann.

Specifically, the number of cracks has no obvious effect on the resonant frequency
of the membrane, but crack position impacts the mode shape. That is, the vibration
waveform rotates or shifts as the number and position of cracks varies.

 1 
Figure 13: IE model of the tip crack membrane

Table 2: IE-FE results for fundamental frequencies of reference (non-cracked)
rectangular MEMS membrane and rectangular MEMS membranes with multiple
cracks (kHz).

Mode Reference One crack Two cracks Three cracks Four cracks
1 169.6 169.2 168.8 168.5 167.6

3.3 Eigenvalue analysis of multi-crack membranes with different thickness

The thickness of MEMS membranes typically varies in the range of 15 ˜ 65 µm.
Fig. 15 shows the IE-FE analysis results for the first four mode shapes of each
model. Top side of the figure is the result of the reference model, and the bottom
side of the figure is the result of the four-crack model varies in the range of 15 ˜
65 µm. Tab. 4 compares the results obtained using the FE method and the IE-
FE method, respectively, for the fundamental frequency of the four-crack model
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Figure 14: (a) FE meshes for rectangular MEMS membranes with multiple corner
cracks. (b) First four mode shapes of rectangular MEMS membranes with multiple
corner cracks.
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Table 3: Comparison of mode shapes of rectangular MEMS membranes with mul-
tiple cracks with mode shapes of reference (non-cracked) rectangular MEMS mem-
brane (MAC-value, %).

Mode Reference One crack Two cracks Three cracks Four cracks
1 100 99.976 99.984 99.984 99.974
2 100 88.308 63.592 88.326 65.426
3 100 84.608 80.720 86.278 65.173
4 100 95.570 93.881 89.473 97.706

given membrane thicknesses of 15, 25, 35, 45, 55 and 65 µm, respectively. From
inspection, the difference between the two sets of results is no more than 1.6%.
Tab. 5 compares the mode shapes of the first four vibration modes of the four-crack
model with the mode shapes of the reference model given membrane thicknesses
ranging from 15 ˜ 65 µm. In general, it is difficult to determine the parameters
(e.g., thickness) of MEMS devices using direct experimental methods. However,
the results presented in Tab. 4 suggest that the IE-FE scheme presented in this study
enables the thickness to be inversely (Eq.(30)) derived from the measured values of
the resonant frequency given knowledge of the number of cracks in the membrane.

h =
π2

ω2

[(m
a

)2
+
(n

b

)2
]

T
ρ

(30)

Table 4: Comparison of FE and IE-FE results for fundamental frequencies of four-
crack rectangular MEMS membranes of different thicknesses (kHz).

Thickness h (µm) 15 25 35 45 55 65
FEM 218.1 169.6 142.7 125.9 113.8 104.7

IEM/ FEM 216.9 167.6 140.8 124.3 112.6 103.4

4 Numerical Case Study II: hollow circular membrane

4.1 Eigenvalue analysis of hollow circular membrane with multiple cracks

Consider the hollow circular membrane model shown in Fig. 16.0a. Assume that
the material properties of the membrane are the same as those of the rectangular
membrane considered above. Assume also that a fixed boundary condition is ap-
plied at all of the outer nodes. The IE-FE analysis results for the first four mode
shapes are shown in Fig. 16.0b.
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Table 5: Comparison of mode shapes of four-crack rectangular MEMS membranes
of various thicknesses with corresponding mode shapes of reference (non-cracked)
rectangular MEMS membranes (MAC-value, %).

Mode Reference 15 25 35 45 55 65
1 100 99.980 99.974 99.968 99.984 99.953 99.963
2 100 71.648 65.426 56.012 65.985 42.497 77.134
3 100 65.763 65.173 43.536 45.483 49.080 70.604
4 100 98.207 97.706 97.168 97.243 98.087 97.835

 
Fig. 15.5 (55μm) Fig. 15.6 (65μm) 

 
Figure 15: First four mode shapes of four-cracks rectangular MEMS membranes
with various thickness

Fig. 16.1-4a show IE-FE defect membrane models containing 1, 2, 3 and 4 identical
cracks, respectively. Fig. 16.1-4b show the IE-FE results for the first four mode
shapes of each defect model.

Tab. 6 compares the estimated fundamental frequencies of the four defective mem-
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branes shown in Fig. 16 with the fundamental frequency of the reference (non-
crack) membrane. As for the rectangular membrane, it is seen that the fundamental
frequency of the circular membrane is independent of the number of cracks. Tab. 7
compares the first four mode shapes of the four defect membrane models with the
corresponding mode shapes of the reference model in terms of the MAC-value.

Table 6: IE-FE results for fundamental frequencies of reference (non-cracked) hol-
low circular MEMS membrane and hollow circular MEMS membranes with mul-
tiple cracks (kHz).

Mode Reference One crack Two cracks Three cracks Four cracks
1 102.2 102.0 101.7 101.5 101.2

Table 7: Comparison of mode shapes of hollow circular MEMS membranes
with multiple cracks with mode shapes of reference (non-cracked) hollow circu-
lar MEMS membrane (MAC-value, %)

Mode Reference One crack Two cracks Three cracks Four cracks
1 100 99.989 99.977 99.982 99.992
2 100 99.280 88.384 99.174 65.284
3 100 99.224 88.794 99.234 65.644
4 100 96.794 96.696 96.831 96.928

4.2 Eigenvalue analysis of hollow circular membrane containing single crack
with different orientations

Consider a hollow circular membrane containing a single crack (i.e., the scenario
shown in Fig. 16.1a in the previous section). In contrast to the conventional FE
method, the IE-FE method proposed in this study enables the effect of the crack
angle on the frequency response of the membrane to be analyzed without the need
to reconstruct the numerical model. Specifically, changes in the crack angle can be
modeled simply by rotating the reference point of the super element, as shown in
Fig. 17. Fig. 18.1-5a show the IE-FE models for circular membranes with crack
rotation angles of 30◦, 60◦, 90◦, 120◦ and 150◦, respectively. The IE-FE results for
the first four mode shapes of each model are presented in Fig. 18.1-5b.

Tab. 8 compares the fundamental frequencies of the five crack models shown in Fig.
18 with that of the reference (crack-free) model shown in Fig. 16.0a. It is seen that
the crack angle has no obvious effect on the fundamental frequency of the hollow
membrane. Tab. 9 compares the mode shapes of the first four frequency modes of
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Fig. 16.4a 

 
Fig. 16.4b 

 
Figure 16: (a): mesh pattern of the multi-crack on the hollow circular membrane
(b): first four mode shapes of the hollow circular membrane model

each crack model with the equivalent mode shapes of the crack-free model. The
results show that the angle of the crack has no significant effect on the mode shape
for any of the considered frequency modes.

 

 
 

Θ

Reference point 

Figure 17: Schematic illustration showing use of reference point rotation in mod-
eling different crack orientations.

Table 8: IE-FE results for fundamental frequencies of reference (non-cracked) hol-
low circular MEMS membrane and hollow circular MEMS membranes with single
cracks orientated at different angles (kHz)

Mode Reference 30˚ 60˚ 90˚ 120˚ 150˚
1 102.2 101.9 101.9 101.9 101.9 101.9
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Fig. 18.5a  θ=150° 

 
Fig. 18.5b 

 
Figure 18: (a) FE mesh patterns for hollow circular MEMS membrane contain-
ing single crack with different orientations. (b) First four mode shapes of hollow
circular MEMS membrane containing single crack with different orientations.

Table 9: Comparison of mode shapes of hollow circular MEMS membranes with
single cracks orientated at different angles with mode shapes of reference (non-
cracked) hollow circular MEMS membrane (MAC-value, %)

Mode Reference 30˚ 60˚ 90˚ 120˚ 150˚
1 100 99.984 99.981 99.986 99.969 99.978
2 100 98.004 97.713 98.967 99.807 99.846
3 100 97.968 97.666 98.861 99.920 99.776
4 100 96.274 96.142 96.690 97.768 97.489

5 Conclusion

This paper has presented an elegant algorithm based on the Infinite Element Method
(IEM) for analyzing the out-of-plane vibration response of MEMS membranes con-
taining one or more cracks. In the proposed approach, a similarity-based partition-
ing method is used to generate a multi-layered arrangement of infinitesimal ele-
ments positioned symmetrically around a central reference point in the IE domain.
The individual element layers are then condensed to form a single IE super element
with master nodes at the boundary only. Significantly, the IE super element can
be applied to all regions of the problem domain containing a crack of the same
dimensions and orientation. In other words, there is no need to re-mesh the prob-
lem domain each time an additional crack is considered. Consequently, the time
and cost of the modeling and analysis processes are significantly reduced. The
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proposed IEM algorithm has been coupled with an FE scheme to analyze various
cracked membrane vibration problems. The numerical results have shown that the
magnitude of the MAC-value provides an effective means of locating the position
of the cracks in the membrane. Furthermore, the thickness of the membrane can be
inversely derived from the measured fundamental frequency of the membrane.

Overall, the results presented in this study show that the proposed IEM method
provides a rapid and efficient means of predicting the effects of manufacturing de-
fects (i.e., cracks) on the dynamic response of MEMS membranes. Furthermore,
the algorithm can be easily integrated with experimental frequency measurement
methods in order to inversely detect the presence of defects within MEMS mem-
brane structures.
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