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A Robust Inverse Method Based on Least Square Support
Vector Regression for Johnson-cook Material Parameters
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Abstract: The purpose of this study is to propose a robust inverse method for
estimating Johnson–Cook material parameters. The method is shown through il-
lustrative examples for two different advanced high strength steel (AHSS) materi-
als (DP980 and TRIP780) using set of data from impact experiments with differ-
ent velocities. Compared with widely mixed numerical experimental methods, the
suggested inverse method has the capability to guarantee the robustness of the ob-
tained parameters by considering uncertainties. The inverse problem is converted
into multi-objective optimization problems. Furthermore, in order to improve the
performance in efficiency and accuracy, metamodeling techniques and global opti-
mization method are integrated. The final results demonstrate that the experimental
and simulation curves are well matched based on identified by the suggested robust
inverse method.

Keywords: Robust inverse method, John-Cook model, metamodel, least square
support vector regression

1 Introduction

The lightweight of auto bodies is becoming the popular tendency in the automobile
design to respond the world-wide consciousness of environmental protection. The
advanced high strength steels (AHSS), which have good performance and low cost
compared to the other light weighting materials, have been extensively used in the
auto bodies. The experimental results for AHSS at high strain rates show that the
yields and plastic hardened process are obviously different from those at low strain
rates [Mangono(1999)]. Therefore, identification the accurate material parameters
might pose a challenge. The most common method to evaluate the material param-
eters is by standard tensile tests. However, the simple experiments don’t consider
the complex loading conditions and the strain rate is not uniform during loading
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procedure [Langrand et al(1999)]. In order to identify the material parameters of
the AHSS model accurately, an inverse method by combining experiments with
FE simulations as the mixed numerical experimental methods (MNEM) [Ghouati
and Gelin (1997, 2001); Kajberg and Lindkvist(2004)] has now become possible
to characterize the deformation behavior under complex loading conditions with
much higher accuracy than ever. These inverse methods offer a powerful tool to
identify all kinds of unknown parameters in a numerical model, e.g. a FE model.
In the past several attempts have been made to identify material parameters based
on inverse modeling of different experimental set-ups. Some scholars have used a
transversely loaded rectangular plate, a circular disk under diametrical compression
and the displacement information around a hole in a biaxial loaded plate to iden-
tify the material parameters [Molomard et al.(2005); Wang and Kam(2004); Wang
et al.(2005); Cardenas-Garcia et al.(2005)]. Furthermore, others use the boundary
element method (BEM) [Huang et al. (2004)] or the virtual field method (VFM)
[Grediac (2005)] instead of the finite element method (FEM), but the overall prin-
ciple remains identical.

Although different implementations of inverse methods have corresponding advan-
tages and characterizes, in most of them the (material) parameters can be iteratively
determined by minimizing a cost function which expresses the difference between
the experimental and computed response of the physical system under study, e.g. by
comparing displacement fields, strain fields, resonant frequencies, etc.[Langrand et
al (1999); Dey et al.(2007)]. These inverse methods commonly don’t consider the
uncertain factors, such as experimental environment, accuracy of simulation pro-
cedure, especially for high strain rate cases. Thus, the MNEMs can successfully
obtain the material parameters by considering the complex loading, the robustness
of the material parameters cannot be guaranteed. According to the reports from dif-
ferent research organizations, the material parameters related dynamical test are far
from homogenous, even if the test specimen are from the same batch. It is necessary
to establish a robust inverse method for high strain related material identification.

In this study, we focus the identification of parameters of Johnson–Cook (JC) ma-
terial model [Johnson and Cook (1983)]. This material model is one of the most
widely used models because it takes on a simple, yet effective. The key issue of this
study is to develop a robust inverse method. In order to consider uncertainties dur-
ing identification, the inverse method is moved from a single objective optimization
to a multi-objective optimization. Furthermore, for the sake of accuracy and effi-
ciency, some strategies, such as global optimization and metamodeling techniques,
are also employed. The rests of this paper is organized as follows. The JC model is
introduced in Section 2. In section 3, a robust inverse method is presented. Some
important issues, least square support vector regression (LS-SVR), intelligent sam-
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pling strategy and multi-objective optimization are also suggested in Section 3.1,
3.2, 3.3 and 3.4, respectively. In section 4, the proposed inverse method is applied
for the material parameters of AHSS.

2 Johnson-Cook model

The JC material model is one amongst many other semi-empirical constitutive mod-
els which describe the plastic material behavior at high strains, at high strain rates
and at high temperatures. Using the JC model, the flow stress can be expressed as:

σ = (A+Bε
n
pl)
(

1+C ln
ε̇p

ε̇0

)
[1− (T ∗)m] (1)

whereσ is the equivalent stress response; εp and ε̇p are the equivalent plastic strain
and strain rate, respectively; ε̇0 is a normalizing reference strain rate; A and B are
the strain hardening parameters, where C is a dimensionless strain rate hardening
coefficient. Parameters n and m are power exponents of the strain hardening and
thermal softening terms; T ∗ is a normalized temperature as

T ∗ =
T −Troom

Tmelt −Troom
(2)

where T is the current temperature of the material, Tmelt is the melting point of the
material and Troom is the room temperature.

3 Robust inverse method

It is well known, the performance of MNEM is heavily relies on the efficiency,
accuracy and stability of FE simulation. There are three challenges for construction
of a robust inverse method, global optimum, efficiency and reliability.

For searching the global optimum results, the heuristic search method based on
the evolution algorithms (EA), such as genetic algorithms (GAs) was introduced to
overcome local convergence several decades ago [Holland(1975), Goldberg(1989)].
Despite the fact that the use of EA is not novel with regard to the cited literature,
it is still considered as an attractive way in solving several problems related to en-
gineering design and material parameter identification. However, the well-known
weakness is that they require a high number of evaluations and are difficult to use
for real engineering problems. A way for keep cost as low as possible is through the
use of surrogate evaluation tool, so called metamodel. Therefore, the metamodel-
based optimization which can be applied for global optimization with limited time-
consuming evaluation is introduced for inverse method. Compared with traditional
EA strategy, the computational cost should be reduced significantly. However, the
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metamodel would decrease the accuracy of optimization. Furthermore, the robust-
ness of the metamodel should be considered simultaneously. Since the metamodel-
based optimization is used for inverse method, the accuracy and robustness of the
FE simulation and metamodel should be addressed.

Due to the defects of the numerical algorithm and uncertain factors of the simu-
lation, noisy and outlier points might approach during inversion procedure. Thus,
interpolation-based metamodeling techniques, such as Kriging and RBF which pass
through all sample points, cannot screen out the noise and outliers. Although the
RS-based metamodel can construct smooth models, the drawback of using second-
order RS models is that they may not be appropriate for building global models over
the entire design space for highly nonlinear problems. They might not be effective
or appropriate for material parameter identification. Therefore, the metamodel-
based inverse method requires behaving the capability for filter the interference of
noise.

 
Figure 1: The basic flowchart of the robust inverse method

In summary, the robust metamodel-based inverse method should have following
properties as: high efficiency, accuracy and robustness. Based on these require-
ments, the flowchart of the robust inverse method is suggested as Fig.1. The basic
frame of the suggested method is described as:

1. The Latin hypercube design (LHD) is used for generating the initial samples
for construction of metamodel;

2. The initial samples are substituted into FE model and evaluated by FE simu-
lations;

3. The LS-SVR is used for construction of the robust model based on generated
samples;



A Robust Inverse Method 125

4. The multi-objective particle swarm optimization with the robust model is
used for determining the material parameters;

5. The obtained material parameters should be substituted into the FE model to
obtain the corresponding response;

6. Checking the convergence condition;

7. If procedure converges, the new sample should be generated by the boundary-
based neighbor sampling strategy and procedure goes to Step 3.

According to the robust method, several techniques are used for improving the ac-
curacy, efficiency and robustness of the proposed method. The details and reasons
are presented as following sections.

3.1 Least square support vector regression (LS-SVR)

In order to achieve the robust and accurate model, least square support vector re-
gression (LS-SVR) is employ to construct model. Compared with empirical risk
minimization (ERM)-based approximation techniques (such as Kriging, LS, mov-
ing least square methods), the LS-SVR is based on the structure risk minimization
(SRM) and derived from support vector regression (SVR). Unlike traditional meth-
ods which minimize the empirical training error, the SVR aims to minimize the up-
per bound of the generalization error through maximizing the margin between the
separating hyperplane and data. Recently, several studies [Yang H et al. (2002a,
2002b); Wu et al. (2003); Cherkassky and Ma (2004)] have successfully applied the
SVR to the function estimation. Recently, a least squares version of the SVR called
as least square SVR (LS-SVR) technique has received some attention for curve es-
timation. In the LS-SVR, Vapnik’s ε-insensitive loss function has been replaced by
a sum-squared error (SSE) cost function. Moreover, the LS-SVR considers equal-
ity type constraints instead of inequalities as in the traditional SVR approach. This
reformulation greatly simplifies a problem such that the LS-SVR solution follows
directly from solving a set of linear equations rather than from a convex quadratic
program (QP) [Suykens and Vandewalle (1999)]. For these reasons, the LS-SVR
approximation can achieve more robust and objective stress-strain curve theoreti-
cally [Wang et al. (2010)]. The details of the LS-SVR are described as follows.

Considering a given training set of N sample points {xi,yi}N
i=1 with the input data

xi and output data outputyipresented as

D = {(x1,y1) ,(x2,y2) · · ·(xi,yi) · · ·(xN ,yN)} ,xi ∈ Rn,yi ∈ R. (3)
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The optimization problem in primal weight space is expressed as

Min
w,ε

J(w,ε) =
1
2

wT w+
1
2

γ

N

∑
i=1

ε
2
i (4)

subjected to the constraint

yi = wT
ϕ(xi)+b+ εi, i = 1,2, . . .N (5)

where ϕ(·) is a kernel function that maps the input space into a so-called higher
dimensional feature space. Here, w denotes the weight vector in primal space, εi

is error variable and b is the bias term. The cost function J consists of a sum
squared error (SSE) fitting error and regulation term. The relative importance of the
empirical risk minimization and structural risk minimization terms is determined by
the positive constant γ .

The model of primal space is presented as follows

y(x) = wT
ϕ(x)+b. (6)

The weight vector w can be of infinite dimension, which makes a calculation of
w from Eq.4 impossible in general. Therefore, we can compute the model in the
dual space instead of the primal space. Then, the Lagrangian multiplier expression
applied to Eqs.(4-6) is obtained as

`(w,b,ε,a) = J(w,ε)−
N

∑
i=1

ai{wT
ϕ(xi)+b+ εi− yi} (7)

with ai being the Lagrangian multipliers. The criteria satisfied by the optimal solu-
tion can be given as

∂ (`(w,b,ε,a))
∂w = 0→ w =

N
∑

l=1
aiϕ(xi)

∂ (`(w,b,ε,a))
∂b = 0→

N
∑

i=1
ai = 0

∂ (`(w,b,ε,a))
∂ε

= 0→ ai = γεi
∂ (`(w,b,ε,a))

∂a = 0→ wT ϕ(xi)+b+ εi− yi = 0

(8)

Eliminating of w and ε , the solution is determined by[
0 IT

I Γ+ 1
γ
I

][
b
a

]
=
[

0
y

]
, (9)
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where

y = [y1;y2; . . .yN ], (10)

I = [1;1; . . .1], (11)

a = [a1;a2; . . .aN ], (12)

Γi, j = ϕ(xi)T
ϕ(x j) f or i, j = 1,2, . . .N. (13)

The resulting LS-SVR model for the function estimation is then

y(x) =
N

∑
i=1

alK(x,xi)+b, (14)

where ai and b are the solutions of Eq.(9). For K(·, ·), we typically has the following
choices, K(x,xi) = xT

i x(linear), K(x,xi) = (xT
i x +1)m (polynomial with degree m),

K(xi,x) = exp
(
−‖xi− x‖2/σ2

)
(RBF). This study focuses on the selection of RBF

kernel map.

When solving large linear systems, it is often necessary to apply iterative methods
to Eq.(9). However, the matrix in Eq.(9) is not positive definite. It is required to
transform the system into a positive definite matrix, and iterative methods (conju-
gate gradient, successive over relaxation or others) can be applied to it. However,
the conjugate gradient method for solving a linear system has high computational
complexity. The speed of convergence depends on the condition number of ma-
trix. In the case of the LS-SVR, the accuracy of approximation is influenced by the
choice of γ and σ when using an RBF kernel.

3.2 Intelligent sampling strategy

In order to further control the computational cost, an intelligent sampling strategy
is integrated with the LS-SVR. Sampling strategy actually is design of experiment
(DOE). The intelligent design of experiments (DOE) is used to control the num-
ber of sample points and reduce initial design space. An active branch of research
in metamodeling techniques is online sampling strategies that can reduce design
space to improve the accuracy of metamodels. Box and Draper (1969) suggested
a method to refine the response surface to capture real function by screening out
unimportant variables. Chen, et al (1997) suggested heuristics to lead the surface
refinement to a smaller design space. Wujek and Renaud(1998a, 1998b) compared
several move-limit strategies that focus on controlling function approximation in
a more meaningful design space. Toropov and his cooperators (1996) suggested
a sequential metamodeling approach. This method is integrated with move limits
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and trust regions strategies by Alexandrov (1998). Wang (2001) advanced fuzzy
clustering based hierarchical metamodeling for design space reduction and opti-
mization. Wang and Li (2008a, 2008b) developed particle swarm optimization in-
telligent sampling (PSOIS) and boundary and best neighbor sampling (BBNS) for
enhancing the accuracy and efficiency of metamodel respectively. In this work, the
BBNS is integrated with the suggested inverse method for material identification.
The details of the BBNS are presented as

Commonly, bounds of design variables can be well defined according to rich en-
gineering experience. The characteristic of the BBNS is to use bounds of design
variables and better sample points of design space to generate new sample points.
Firstly, initial sample points should be generated by popular DOEs, such as full
factorial (FF), D-optimum (D-OPT), LHS, etc. To save computational expense of
evaluations, the initial sample points should be sparsely distributed. Sequentially,
experiments should be performed with the existing sample points and values of cor-
responding objective functions should be obtained. And then, the sample points are
sorted according to the descending order of their objective functions. The several
sample points which are on the top of the sorted list are collected as a new initial
sample set. The new initial sample point is used to position the new sample point
based on the nearest boundary sample point and the best neighbor sample point till
convergence. The BBNS searching pattern is illustrated in Fig.2.

The details of the BBNS are described as follows:

Step 1. Choose a popular DOE (such as LHS) to generate a sparsely distributed
initial sample set. The boundary sample points are also created.

Step 2. Perform preliminary design evaluations (simulations) with the initial sam-
ple points. In this step, the boundary sample points do not require evaluation. The
evaluations with the boundary sample points should be performed in Step 4 when
the closest boundary sample points are assigned.

Step 3. Sort the sample points in descending order based on objective functions.
Collect the top of several sample points on the sorted list. The collected sample
point can then be called a “better sample” and a set of better sample points can be
called a “better-sample-set” (as Figure.2 shows).

Step 4. Generate the new sample point according to Eq. (15-16)

Step 4.1 The value of the new sample point is then given by

X1,2,···n =

(
XCurrent

1,2,···n +XBoundary(Nearest)
1,2···n

m11,2,···n

)
c1 +

(
XCurrent

1,2,···n +XBest(Nearest)
1,2,···n

m21,2,···n

)
c2 (15)

whereX is the coordinate vector of sample point, n denotes the number of design
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Figure 2: An illustration of BBNS searching pattern [Wang et al.(2008b)]

variables, m1, and m2 are determined by
m11,2,···n =

R(xCurrent
1,2,···n )+R

(
xBoundary(Nearest)

1,2,···n

)
R
(

xBoundary(Nearest)
i

)
m21,2,···n =

R(xCurrent
1,2,···n )+R

(
xBest(Nearest)

1,2,···n

)
R
(

xBest(Nearest)
1,2,···n

) (16)

c1, c2 denote acceleration weight coefficient vectors, which are determined byc1 =
R(XCurrent

1,2,···n )+R
(

XBoundary(Nearest)
1,2,···n

)
(

R(XCurrent
1,2,···n )+R

(
XBoundary(Nearest)

1,2,···n

))
+
(

R(XCurrent
1,2,···n )+R

(
XBest(Nearest)

1,2,···n

))
c1 = 1− c2

(17)

where R(·) denotes the response of the objective function, such as vBest
1,2,···n, vBoundary(Nearest)

1,2,···n

and vBest(Nearest)
1,2,···n .

The meaning of superscripts is as follows:
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Current the current sample in the better sample set

Nearest the nearest sample from the current sample point

Boundary boundary of the intervals (constraints)

Best the sample which has the best value of objective function

Boundary (nearest) boundary sample point closest to the nearest one

Best (nearest) sample closest to the best sample set

Step 4.2 If the position of the new sample point is duplicated (occupies an existing
one) or is located outside of the design space, substitute the best sample point of
last iteration with the current assigned one, and return to Step 4.1 in the procedure;

Step 4.3 Perform the evaluations (simulations) with the new sample points;

Step 4.4 Update the best sample set.

Step.5 If∣∣R(vBest
new
)
−R

(
vBest

old

)∣∣
|R(vBest

new )|
≤ η ,η ∈ (0,1), (18)

then procedure ends. If not, proceed to Step 3, whereη is the threshold which can
be set by the user, with the default value given as 0.1.

 
Figure 3: Schematic of robust inverse method
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3.3 Robust inverse method

For material parameter identification, the objective function of the inverse method
is to minimize the gap between the experimental and the numerical results. The
popular inverse method does not consider influence due to the uncertainties of the
experimental environment. The robust inverse method develops a solution that is
insensitive to variations of the nominal design and is feasible in an uncertainty
range around the nominal design. As shown in Fig.3, the X-axis represents the
uncertainty factors, involving parameters need to obtain and noise factors, and the
vertical axis represents the value of objective function f (x) to be minimized (such as
the gap between the experimental and the numerical results). According to Fig.3,
solution C of the A, B, and C should be considered robust one as a variation of
±∆x in unknown parameter does not alter the objective function too much and
maintains the solution within the design space when the unknown parameters are
perturbed. Although Solution B is also within the design space when the design
variables vary in±∆x, the perturbation causes a larger change in objective function.
Solution A is highly sensitive to the parameter perturbation and often cannot be
recommended in practice, even though it has a better mean value than Solutions A
and B. It is noted that there are more robust solutions than solution C on the right
of solution C, but the objective performance must be compromised. Therefore, the
robustness and objective performance should be taken into account simultaneously
in the mathematical formulation and corresponding general robust inverse problem
can be presented as

min
{

f1(Yµ(X),Yσ (X)), f2(Yµ(X),Yσ (X)) · · · fn(Yµ(X),Yσ (X))
}

s.t. gµ j(X)+ηgσ j(X)≤ 0
XL +ηXσ ≤ Xµ ≤ XU −ηXσ

(19)

where n is the number of objective functions, Yµ(X) and Yσ (X) denote the mean
values and standard deviations (STD) of objective functions, respectively. gµ j(X)
and gσ j(X) denote the mean value and STD of the jth constraint, respectively. XL

and XU are the lower and upper bounds of the vectorX ,Xµ and Xσ are mean value
and STD OF X , and η=6 denotes the six sigma design.

For the minimization problem aiming to minimize the function mean by expressing
the objective function as follow.

fi(Yµ(X),Yσ (X)) = wY 2
µ (X)+(1−w)Y 2

σ (X) (20)

where w denotes the weight to emphasize the mean or STD values.
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3.4 Multi-objective particle swarm optimization method

The PSO is a stochastic optimization technique recently introduced by Kennedy
and Eberhart(1995), which is inspired by social behavior of bird flocking and fish
schooling [Kennedy and Eberhart (1995)]. The PSO is a population-based search
method, which exploits the concept of social sharing of information.

This means that each individual (called particle) of a given population (called
swarm) can profit from the previous experiences of all other individuals from the
same population. During the search process in the solution space, each particle
(i.e., candidate solution) will adjust its flying velocity and position according to its
own flying experience as well as the experiences of the other companion particles
of the swarm. PSO has been shown to be promising for solving various engineering
problems.

In the PSO, each particle has a position X = (x1,x2,x3, · · · ,xD) and a velocity V =
(v1,v2,v3, · · · ,vD) in the variable space. In generation t+1, the updated velocity and
position should be as follows:

vt+1
id = wvt

id + c1r1(pt
id− xt

id)+ c2r2(pt
gd− xt

id) (21)

xt+1
id = xt

id + vt+1
id (22)

where i = 1,2,. . . ,N and N is the population size; d = 1,2,. . . ,D and D denotes the
dimension of the search space; w is the inertia weight factor; c1 and c2 are two pos-
itive constants; r1 and r2 are random uniformly distributed in the range [0,1]; pt

gd
and pt

id denote the global and the personal best of the population, respectively. The
performance of each particle is measured according to a pre-defined fitness func-
tion which relates to the problem concerned. The inertia weight w is employed to
control the impact of the previous velocities on the current one; hence it influences
the trade-off between the global and the local exploration abilities of the particles
[Shi and Eberhart (1998)]. In this work, the inertia weight w is set as 0.4[Coello
(2004)].

According to Eq.(19), the objective function can be transformed to multi-objective
function as

min
{

f1(Y 2
µ (X),Y 2

σ (X)), f2(Y 2
µ (X),Y 2

σ (X)) · · · fn(Y 2
µ (X),Y 2

σ (X))
}

(23)

Therefore, the robust inverse method should be regarded as multi-objective opti-
mization method.

As an extension to the PSO, the multi-objective particle swarm optimization incor-
porating the mechanism of crowding distance computation (MOPSO-CD)[ Raquel
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and Naval (2005)] has drawn some attention recently as it exhibits a relatively fast
convergence and well-distributed Pareto front compared with other multi-objective
optimization algorithms, the most recent techniques like NSGA-II [Deb et al. (2002)],
SPEA-2 [Zitzler et al.(2001)] and PESA-II [Corne et al. (2001)]. Therefore, The
MOPSO-CD is used to obtain the robust material parameters in this work. A dia-
gram of the MOPSO-CD is presented in Fig.4. The details of MOPSO-CD can be
consulted in Ref. )[ Raquel and Naval (2005)].

Specify the parameters for MOPSO-CD

Randomly initialize population positions, velocities, pbest and gbest

For each particle

Evaluate the fitness values

Store new nondominated solution into A and remove all 
dominated solutions from A

A is the external archive that 
stores Nondominated solutions

Calculate the crowding distance values of each 
nondominated solution in A

Sort the nondominated solutions in A in descending
crowding distance values

Is the A full

Update pbest and gbest

Update particle position and velocity

Randomly select the global best guide for particle set 
from a specified top portion (e.g. top 10%) of the 
sorted archive A and store its position to gbest.

Yes

No

Stop?

Output the Pareto solution set

Yes

Generate next swarm of particles

 
Figure 4: An illustration of MOPSO-CD algorithm
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4 Applications for advanced high strength stiffness steels

This work is concerned about two types of AHSS; Dual Phase (DP) steels and
Transformation-Induced Plasticity (TRIP) steels. The microstructure of DP steels
is composed of ferrite and martensite, while the microstructure of TRIP steels is
a matrix of ferrite, in which martensite and/or bainite, and more than 5% retained
austenite exist.

4.1 Experiment

A square cylinder impacting experiment with the initial velocity of 5m/s, 10m/s,
15m/S and 20m/s is considered as shown in Fig.5. The values of geometry and re-
lated parameters shown in Fig.5 are listed in Tab.1. The evaluation is performed by
commercial FEM analysis code LS-DYNA970. The FE model of the tube impact
system as shown in Fig.6 consists of 2128 shell elements representing the cubic
cylinder and 60 mass elements the sum of 600kg representing the concentrated
mass attached to the end of the cylinder. Rigid wall is represented by stonewall
feature of LS-DYNA. Numerical solutions in the progress of optimization are per-
formed on IBM AIX5 computing platform. A single FE analysis of the cylindrical
tube takes about 2.8 min with 8 processors.

 
Figure 5: Experimental implementation of impacting initiators and corresponding
sizes

Table 1: The parameters for impacting experiment

Parameter R1 b2 b2 t v
Value 3mm 60mm 60mm 1.2mm 15m/s
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Figure 6: FE model of impacting experiment

( ( , , , , ))sim
i if x A B C m n

( ( , , , , ))exp
i if x A B C m n

 
Figure 7: Definition Objective function

4.2 Objective function

According to Eq.(1), there is a set of five model parameters that need to be iden-
tified: X = (A,B,C,m,n). This is normally done through an inverse identification
method by fitting the model to sets of experimental data. That is to minimize the
Euclidean distance between the experimental data and those predicted by the mate-
rial model via the FE solution as shown in Fig.7. As shown in Fig.7, the displace-
ment can be divided into several uniformly pieces. Ten sample points are selected
to estimate objective functions as

RSS j
Dyna = min

1
k

(
k

∑
i=1

(
f exp
i (X)− f sim

i (X)
)2

)
(24)

where k denotes the total number of observations(sample points); RSS is the mini-
mum value of one of the objective function which corresponds to the residual sum
of squares of the fit. The subscript ‘Dyna’ refers to the rate and temperature depen-
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dence of the response and j is the jth experiment. The multi-objective function can
be expressed as

min(RSS1
Dyna,RSS2

Dyna · · ·RSSn
Dyna). (25)

Table 2: Performance criterions of inverse method for DP980
Performance criterions Value
Initial sample points 15
Sum of number of samples 824
Number of samples evaluated by FE simula-
tion

112

Number of samples predicted by the LS-SVR 712
Accurate criterions for the LS-SVR-based
metamodel

R2 0.932
RAAE 0.082
RMAE 0.356
Variance of R2 0.141

Pareto solution number 41
Convergence measure ϒ 0.0872
Diversity measure δ 0.6834
Purity P 0.9213
SM 0.1043

By consideration of reliability and according to Eq.(23), the Eq.(25) can be ex-
tended as

min
n

∑
j=1

{
f j

(
(RSS j

Dyna)µ ,(RSS j
Dyna)σ

)}
. (26)
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4.3 DP980 parameter identification

According to Eq.(21), the updated multiobjective function for DP980 is formulated
as

min
4
∑
j=1

{
f j

(
(RSS j

Dyna)µ ,(RSS j
Dyna)σ

)}

s.t.



300MPa < A < 600MPa
800MPa < B < 1600MPa
0.003 < C < 0.050
0.30 < m < 3.00
0.10 < n < 0.85

(27)

According to algorithm presented in Fig.1, the impacting experiment is carried out.
Ten sample points are extracted from displacement-contact force curve as shown
in Fig.7. Additionally, four experiments with different velocities, 5m/s, 10m/s,
15m/S and 20m/s, are implemented. Finally, 41 Pareto frontier sample points are
generated. The performance related with metamodel are several statistic metrics
R Square (R2), relative average absolute error (RAAE), relative mean absolute er-
ror (RMAE) and variance of R2[Jin et al.(2001)]. The performance of the multi-
objective algorithms is evaluated with respect to one or more of the four perfor-
mance measures: the convergence measure ϒ [Bandyopadhyay et al. (2004)], di-
versity measure δ [Deb et al. (2002)], purity P [Bandyopadhyay et al. (2004)] and
minimal-spacing (SM) [Bandyopadhyay et al. (2004)]. For DP980 identification
procedure, the performance criterions of inverse method are listed in Tab.2.

As we know, the final solution for material parameter identification is not unique.
To extract the best solution from Pareto frontier, we substitute the Pareto solu-
tion into FE model and selected the best fit compared with simulation solution as
shown in Tab.3. The comparisons between the FE simulations and experiments
are demonstrated in Fig.8 and the crashed piece with 15m/s is illustrated in Fig.9.
Moreover, in order to verify the accuracy of the identified material parameters,
simple experiments are also carried out, the strain-stress curve on strain-rate 15s−1,
200s−1, 400s−1 are also obtained and compared with JC-model with identified by
the proposed method as shown in Fig.10. It is obvious that the curves on different
strain-rates are nearly matched.

4.4 TRIP780 parameter identification

In order to verify the performance of the proposed inverse method, material param-
eters of TRIP590 are identified in this way. The obtained material parameters are
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Velocity 5m/s 

 

Velocity 10m/s 
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Velocity 15m/s 

 

Velocity 20m/s 

 Figure 8: Comparisons between simulations and experiments based on 5m/s,
10m/s, 15m/s and 20m/s
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Table 3: Performance criterions of inverse method for DP980
Performance criterions Value
Initial sample points 15
Sum of number of samples 824
Number of samples evaluated by FE simula-
tion

112

Number of samples predicted by the LS-SVR 712
Accurate criterions for the LS-SVR-based
metamodel

R2 0.932
RAAE 0.082
RMAE 0.356
Variance of R2 0.141

Pareto solution number 41
Convergence measure ϒ 0.0872
Diversity measure δ 0.6834
Purity P 0.9213
SM 0.1043

 

a). Simulation 

 

b). Experiment 

 Figure 9: Comparison between simulation and experiment based on 15m/s
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Figure 10: Comparisons between the JC-model and experiments for DP980

Table 4: The identified material parameters for DP980

JC parameters A B n C m

Value 285.035 1127.94 0.128 0.0021 2.6215

presented in Tab.4. Four experiments with different velocities, 5m/s, 10m/s, 15m/s
and 20m/s, are also implemented. We also compare the strain-stress curve between
JC-model and simple experiments with 15s−1, 200s−1 and 400s−1. According to
Fig.11, It is obvious that the curves on different strain-rates are nearly matched.

Table 5: The final identified material parameters for TRIP780

JC parameters A B n C m

Value 438.67 1323.56 0.493 0.0122 2.6215
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Figure 11: Comparisons between the JC-model and experiments for TRIP780

5 Conclusions

The purpose of this study is to propose a robust inverse method for material param-
eters of the AHSS. The characteristics of the suggested inverse technology can be
summarized as follows.

1. Compared with the popular hybrid numerical methods, the mean values and
standard deviations of the differences between the simulated and experimen-
tal data are used. Multi-samples are also used in identification. Therefore, the
inverse method actually converted into a multi-objective optimization prob-
lem. Due to this feature, both robustness of the inverse method can be guar-
anteed;

2. In order to construct the global inverse method, the PSO is used for global
searching. Considering the computational cost due to expensive evaluations,
the metamodel technique is integrated with the PSO, that means the proposed
inverse method actually is a metamodel-based inverse method;

3. Since the inverse method is based on metamodel technique, the robustness is
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also determined by the characteristic of the model. Therefore, a robust model
based on the SRM is proposed. The LS-SVR is used for constriction of the
robust model.

Acknowledgement: This work is supported by Project of National Science Foun-
dation of China (NSFC) under the grant number 11172097,10902037; the National
973 Program of China under the grant number 2010CB328005; Program for New
Century Excellent Talents in University (NCET-11-0131); Hunan Provincial Natu-
ral Science Foundation of China under the grant number 11JJA001; Fundamental
Research Funds for the Central Universities, Hunan University.

References

Alexandrov N, Dennis J. E. J., Lewis R.M., Torczon V. (1998): A trust region
framework for managing the use of approximation models in optimization. Struct.
Optim. 1, vol.15, no.1, pp: 16–23.

Bandyopadhyay S., Pal S.K., Aruna B.(2004): Multi-objective GAs quantitative
indices and pattern classification. IEEE Transaction on Systems Man and Cyber-
netics – Part B: Cybernetics, vol. 34, pp. 2088–2099.

Box G. P., Draper N. R.(1969): Evolutionary operation: A statistical method for
process management. Wiley, New York.

Cardenas-Garcia, J. F., Ekwaro-Osire, S., Berg, J. M., Wilson, W. H.(2005):
Non-linear least-squares solution to the Moire’ hole method problem in orthotropic
materials Part II: Material elastic constants, Experimental Mechanics, vol. 45, no.
4, 314–324.

Chen W, Allen J K, Schrage D. P., Mistree F.(1997) Statistical experimentation
methods for achieving affordable concurrent systems design. AIAA J. vol. 35, no.
5, pp.893–900.

Cherkassky V, Ma Y.(2004): Comparison of loss functions for linear regression.
Proceedings of the 2004 IEEE International Joint Conference on Neural Networks,
vol. 1, no.25-29, pp.400–405.

Coello C., Pulido G., Lechuga M.(2004): Handling multiple objectives with par-
ticle swarm optimization, IEEE Transactions on Evolutionary Computation, vol. 8,
no. 3, pp. 256–279.

Corne D.W., Jerram N.R., Knowles J.D., Oates M.J.(2001): PESA-II: region-
based selection in evolutionary multiobjective optimization. Proceedings of the
Genetic and Evolutionary Computing Conference (GECCO-2001), Morgan Kauf-
man, pp. 283–290.



144 Copyright © 2012 Tech Science Press CMC, vol.28, no.2, pp.121-146, 2012

Deb K., Pratap A., Agarwal S., Meyarivan T.(2002): A fast and elitist multi-
objective genetic algorithm: NSGA-II, IEEE Transactions On Evolutionary Com-
putation, vol. 6, no. 2, pp. 182–197.

Deb K., Pratap A., Agarwal S., Meyarivan T.(2002): A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions On Evolutionary Com-
putation, vol. 6, no. 2, pp. 182–197.

Dey S, Børvik T, Hopperstad O. S., Langseth M.(2007): On the influence of
constitutive relation in projectile impact of steel plates, International Journal of
Impact Engineering, vol. 4, no. 3, pp. 464–86.

Ghouati, O., Gelin, J.C. (1997): An inverse approach for the identification of com-
plex material behaviours. In: Sol, H., Oomens, C.W.J. (Eds.), Material Identifica-
tion using Mixed Numerical Experimental Methods. Kluwer Academic Publishers,
Dordrecht, pp. 93–102.

Ghouati, O., Gelin, J.C.(2001): A finite element-based identification method for
complex metallic material behavior, Computational Materials Science, vol. 21, no.
1, pp. 57–68.

Goldberg D.(1989): Genetic algorithms in search, optimisation, and machine
learning. New York: Addison-Wesley.

Grediac, M.(2005): The use of full-field measurement methods in composite mate-
rial characterization: interest and limitations, Composites: Part A vol. 35, pp.751–
761.

Holland J.H.(1975): Adaptation in natural and artificial systems. Ann Arbor (MI):
University of Michigan Press.

Huang, L., Sun, X., Liu, Y., Cen, Z.(2004): Parameter identification for two-
dimensional orthotropic material bodies by the boundary element method, Engi-
neering Analysis with Boundary Elements, vol. 28, pp. 209–221.

Jin R., Chen W, Simpson T.W.(2001): Comparative studies of metamodeling
techniques under multiple modeling criteria. Structural and Multidisciplinary Op-
timization, vol. 23, no. 1, pp. 1-13.

Johnson G.R., Cook W.H.(1983): A constitutive model and data for metal sub-
jected to large strains, high strain rates and high temperatures. In: Proceedings of
the Seventh Symposium on Ballistics, Hague, Netherlands, pp.541–47.

Kajberg, J., Lindkvist, G.(2004): Characterization of materials subjected to large
strains by inverse modelling based on in-plane displacement fields, International
Journal of Solids and Structures, vol. 41, no. 13, pp. 3439–3459.

Kennedy J., Eberhart R.(1995): Particle swarm optimization, Proceedings of the
IEEE International Conference on Neural Networks, vol. 4, pp.1942–1948.



A Robust Inverse Method 145

Langrand B, Geoffroy P, Petitniot J-L, Fabis J, Markiewicz E, Drazetic P.
(1999): Identification technique of constitutive model parameters for crashwor-
thiness modelling. Aerospace Science and Technology, vol. 4, no. 3, pp. 215–27.

Langrand B., Geoffroy P., Petitniot J. L., Fabis J., Markiewicz E., Drazetic
P.(1999): Identification technique of constitutive model parameters for crashwor-
thiness modelling. Aerospace Science and Technology, vol 4, pp. 215–27.

Mangono P. L. (1999): The principles of materials selection for engineering de-
sign. New Jersey: Prentice Hall.

Molomard, J., Le Riche, R., Vautrin, A., Lee, J.R.(2005): Identification of the
four orthotropic plate stiffnesses using a single open-hole tensile test, Experimental
Mechanics, vol. 45, no. 5, pp. 404–411.

Raquel C, Naval P.(2005): An effective use of crowding distance in multiobjective
particle swarm optimization, Proceedings of the 2005 conference on genetic and
evolutionary computation, Washington (DC, USA).

Shi Y., Eberhart R.(1998): Parameter selection in particle swarm optimization,
Proceedings of Evolutionary Programming, pp. 591–600.

Suykens J. A. K., Vandewalle J.(1999): Least Squares Support Vector Machine
Classifiers. Neural Processing Letters, 1999; vol. 9, no. 3, pp. 293-300.

Toropov V, van Keulen F, Markine V, de Doer H. (1996): Refinements in the
multi-Point approximation method to reduce the effects of noisy structural responses.
Proceedings 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Anal-
ysis and Optimization, Vol. 2, Bellevue, WA.

Wang G.G, Dong Z., Aitchison P.(2001): Adaptive response surface method-a
global optimization scheme for computation-Intensive design problems. Eng. Op-
tim. ,vol. 33, no. 6, pp.707–734.

Wang, W.T., Kam, T.Y.(2004): Material characterization of laminated composite
plates via static testing, Composite Structures, vol 50, pp. 347–352.

Wang, Z., Cardenas-Garcia, J. F., Han, B.(2005): Inverse method to determine
elastic constants using a circular disk and Moire’ interferometry. Experimental
Mechanics, vol. 45, no. 1, 27–34.

Wang H., Li E., Li G. Y.(2010): Probability-based least square support vec-
tor regression metamodeling technique for crashworthiness optimization problems.
Computational Mechanics, vol. 47, no. 3, pp. 251-263.

Wang, H, Li GY, Zhong Z. H.(2008a): Optimization of sheet metal forming pro-
cesses by adaptive response surface based on intelligent sampling method, J. Mater.
Process. Tech. vol, 197, no, 1-3, pp. 77-88.

Wang H, Li E, Li GY, Zhong ZH.(2008b): Development of metamodeling based



146 Copyright © 2012 Tech Science Press CMC, vol.28, no.2, pp.121-146, 2012

optimization system for high nonlinear engineering problems. Adv Eng Softw, vol.
39, no. 8., pp.629-645.

Wu C. H., Ho M.J., Lee D.T.(2003): Travel time prediction with support vector
regression. IEEE Transactions on Intelligent Transportation Systems vol. 5. pp.
276–81.

Wujek B.A, Renaud J.E.(1998a): New adaptive move-limit management strategy
for approximate optimization Part 1. AIAA J., vol. 36, no. 10, pp.1911–1921.

Wujek B.A, Renaud J.E.(1998b): New adaptive move-limit management strategy
for approximate optimization Part 2, AIAA J, vol. 36, no. 10, 1922–1934.

Yang H, Chan L, King I.(2002a): Support vector machine regression for volatile
stock market prediction. IDEAL 2002, Lecture notes in Computer Science, vol.
2412. Berlin: Springer, pp. 391–6.

Yang H, King I, Chan L.(2002b): Non-fixed and asymmetrical margin approach to
stock market prediction using support vector regression. Proceedings of the inter-
national conference on neural information processing (ICONIP2002), Singapore.

Zitzler E., Laumanns M., Thiele L.(2001): SPEA2: Improving the strength
Pareto evolutionary algorithm. Technical report TIK-103, Computer Engineering
and Network Laboratory (TIK), Swiss Fedral Institute of Technology (ETH), Glo-
riastrasse 35, CH-8092 Zurich, Swidzerland, May 2001.


