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A Local Adaptive Differential Quadrature Method for
Multi-Dimensional Inverse Scattering Problem of Wave

Propagation
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Abstract: In this paper, we use the Local adaptive differential quadrature method
(La-DQM) to solve multi-dimensional inverse scattering problem (ISP) of wave
propagation. The La-DQM uses fictitious points to tackle the high-order differen-
tial equations with multi-boundary conditions and numerical results can be obtain
directly in the calculation process. Six examples show the effectiveness and accu-
racy of the La-DQM in providing excellent estimates of unknown wave propagation
from the given data. We think that the scheme is applicable to the ISP of wave prop-
agation. Numerical results show that the La-DQM is powerful method for solving
the inverse scattering problem of wave propagation.
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1 Introduction

An Inverse problems is important in many practical application fields such as mate-
rials science, it needs to find the material parameter from the known data. However,
it is usually difficult to get the material parameter. The inverse problem is compli-
cated for solving process because it is often unstable and produces an ill-pose ma-
trix. Therefore, many researchers put forward a plan for improving various kinds of
ill-posed inverse problems. Alifanov, Artyukhin and Rumyantsev (1995) employed
the iterative regularization method to resolve the inverse heat transfer problems.
Then, the inverse problems can consult from Gottfried (1990) proposed a book
for Inverse problems in differential equations. There have been many numerical
methods to tackle the identification of parameters in inverse problems. Various nu-
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merical methods have been developed for determining the material properties. For
example, Bond, Punjani and Saffari (1988) use explicit finite difference method to
solve Ultrasonic wave propagation and scattering. Tadi (1997) apply an explicit
method for inverse wave scattering in solids. Later, Tadi (1998) uses an explicity
method to solve elastic property. Tadi (1999) used an iterative algorithm for inverse
wave scattering in 2-D elastic solids and obtained good results. Guzina, Fata and
Bonnet (2003) use a regularized boundary integral equation method to study the
inverse scattering problem for elastic half-space housing an internal void. Later,
Telejko and Malinowski (2004) employed the finite element to tackle the thermal
conductively identification. Thereafter, Char, Chang, Tai (2008) apply the DQM to
resolve the inverse determination of thermal conductivity in one-dimensional slab
and obtain good results. Liu (2010) propose a Lie-group adaptive method to solve
inverse scattering problem through iterations and then the scheme is special char-
acter that it needn’t any extra information from the wave equation. Recently, Wu
and Chang (2011) use the DQM to solve multi-dimensional inverse heat conduc-
tion problem of heat source and obtain good results. Even thoug the noise is added
to the exact temperature, the DQM is still robust against disturbance.

The differential quadrature method (DQM) was proposed by [Bellman and casti
(1971); Bellman, Kashef and Casti (1972)], this method is widely used in solving
various engineering and scientific problems, such as vibration mechanics [Choi,
Wu and Chou (2000); Malekzadeha and Vosoughic (2009)], fluid mechanics [Shu,
Chew and Richards (1995); Tai and Char (2010)]. The DQM has some oscillation
problem when the domain uses a lot of grid points. Then, Wang, Zhao and Wei
(2003) proposed to improve the DQM by using fictitious points. The La-DQM
is mainly for solving high-order differential equations that arise in an eigenvalue
problem and a boundary value problem. Recently, Char and Tai (2009) use the
La-DQM to solve the effects of viscous dissipation on slip-flow heat transfer in a
micro annulus.

In this paper, we considered with an inverse problem for multi-dimensional wave
equation and employed the La-DQM to solve multi-dimensional inverse scattering
problem of wave propagation. We find that the scheme is applicable to the multi-
dimensional inverse scattering problem of wave propagation and obtain accuracy of
the results. We thought that the La-DQM has been successfully to solve the inverse
wave scattering problem. The paper is summarized as follows. In section 2, we
presented the multi-dimensional inverse wave scattering problems (IWSP). Then,
we explain the La-DQM theory in Section 3, and use the La-DQM to discretize the
governing equation. Section 4 shows six examples to estimate the unknown wave
propagation item. Finally, we draw some important conclusions in Section 5.
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2 Formulation of the wave scattering problems

First, we consider the one-dimensional inverse scattering problem (ISP) is respec-
tively given by the following equations:

∂ 2u(x, t)
∂ t2 =

∂

∂x
(α(x)

∂u(x, t)
∂x

)+h(x, t) in Ω, (x, t) ∈Ω := [0, `]× [0,T ]. (1)

Second, we contemplate the two-dimensional IWSP:

∂ 2u(x,y, t)
∂ t2 =

∂

∂x
(α(x,y)

∂u(x,y, t)
∂x

)+
∂

∂y
(α(x,y)

∂u(x,y, t)
∂y

)+h(x,y, t) (2)

in Ω, (x,y, t) ∈Ω := [0,a]× [0,b]× [0,T ].
Third, the following three-dimensional IWSP is deliberated:

∂ 2u(x,y,z, t)
∂ t2 =

∂

∂x
(α(x,y,z)

∂u(x,y,z, t)
∂x

)+
∂

∂y
(α(x,y,z)

∂u(x,y,z, t)
∂y

)

+
∂

∂ z
(α(x,y,z)

∂u(x,y,z, t)
∂ z

)+ h(x,y,z, t) (3)

in Ω, (x,y,z, t) ∈Ω := [0,a]× [0,b]× [0,c]× [0,T ].

u = uB on ΓB, (4)

u = ui on Γi, (5)

where h(x, t) and u(x, t)are given functions, and α(x) is to be determined. We take
a bounded domain D in R j, j = 1, 2, 3 and a spacetime domain Ω = D× (0, t) in
R j+1 for a time t > 0, and write two surfaces ΓB = ∂D× [0, t] and Γi = ∂D×{t} of
the boundary ∂Ω. While Eqs. (1)-(5) constitute a j-dimensional HCP for the given
boundary data uB: ΓB 7→ R and the initial data ui: Γi 7→ R.

3 Differential quadrature method

Pondering a one-dimensional function f (x) on the area a≤ x ≤ b. To approximate
the derivate of a smooth function at a discrete point xi in the domain, the DQM
employs the weighted linear sum of all function values at all discrete points in the
x direction. Then, the mth-order derivatives f (x) with respect to xi at point i can be
formulated as

dm f (xi)
dxm =

N

∑
i=1

Cm
i, j f (x j), i = 1, ...,N, (6)
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where f (x j) are the function values at the jth sampling point x j, N is the number
of discrete points, and Cm

i, jare the unknown weighting coefficients of the mth order
derivative at discrete point xi, in which m≤ N−1.

Shu and Richards (1995) provided a convenient and recurrent formula for deter-
mining the following these derivative weighting coefficients:

C1
i, j =

M(xi)
(xi− x j) ·M(x j)

, for i 6= j, and i, j = 1, ....,N, (7)

Cm
i, j = m ·

[
Cm−1

i, j ·C
1
i, j−

Cm−1
i, j

(xi− x j)

]
, for 2≤ m≤ N−1, i 6= j, and i, j = 1, ....,N,

(8)

Cm
i, j =−

N

∑
j = 1
i 6= j

Cm
i, j, for 1≤ m≤ N−1 and i = 1, ....N, (9)

where

M(xi) =
N

∏
j=1,i 6= j

(xi− x j). (10)

Note that in accordance with the principle of the DQM, the locations of the sam-
pling grid point xi can be arbitrarily determined. The La-DQM of conception is as
follows:

The weighting coefficients of the first derivatives is given by

C[1]
i, j = g[1]

i, j(xi) for j = −Li, ....,Ri; j 6= 0. (11)

and for j = 0

C[1]
i,0 =−

Ri

∑
j=−Li, j 6=0

C[1]
i, j (12)

where

gi, j(x) =
i+Ri

∏
k=i−Li,k 6=i+ j

x− xk

xi+ j− xk
for j =−Li, ....,Ri (13)
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We can computer the weighting coefficients of the higher-order derivatives by a
recurrence formula:

C[m]
i, j = m(C[1]

i, jC
(m−1)
i, j −

C(m−1)
i, j

xi− xi+ j
), j =−Li, ....,Ri; j 6= 0 (14)

and for j = 0

C[m]
i,0 =−

Ri

∑
j=−Li, j 6=0

C[m]
i, j (15)

4 Numerical examples

We employ the DQM to solve multi-dimensional ISP with wave propagation through
six examples. We apply the quadrature rule to get a vector matrix form:

{A}{α}= {B}. (16)

4.1 Example 1

Let us ponder another one-dimensional ISP [Liu (2010)]:

α(x) = 1+ sin(3πx) 0 < x < `, (17)

h(x, t) = e(x+t)−3cos(3πx)πe(x+t)−{1+ sin(3πx)}e(x+t), (18)

with the boundary conditions

α(0) = 1, α(1) = 1, (19)

The exact solution is given by

u(x, t) = e(x+t) 0 < x < `, 0 < t < T. (20)

we use chain rule for the equation (1) and obtain as follow

∂ 2u(x, t)
∂ t2 =

∂α(x)
∂x

∂u(x, t)
∂x

+α(x)
∂ 2u(x, t)

∂x2 +h(x, t) (21)

Using the quadrature rule for the equation (1) is to obtain the following algebraic
equations:

M

∑
m=1

D[2]
j,mu(xi, tm) =

N

∑
n=1

C[1]
i,nα(xi)

N

∑
n=1

C[1]
i,nu(xn, tm)+α(xi)

N

∑
n=1

C[2]
i,nu(xn, tm)

+ h(xi, t j) (22)
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Under the following parameters: ` = 1, N = 31, ∆x = 1/30, T = 1, and ∆t = 1/20.
Fig. 1 displays the numerical and the exact solution. The maximal absolute error
is about 6.52 × 10−7 and the RMSE is about 1.96 × 10−7. The present results are
also better than that calculated by Liu (2010), of which the maximum error is about
5.02× 10−2. To the authors’ best knowledge, there has been no open literature that
the numerical methods can calculate this inverse problem well as the La-DQM.

 
Figure 1: Comparisons of the exact solutions and numerical solutions for Example
1 and the corresponding numerical errors.
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4.2 Example 2

We considered the one-dimensional ISP with one hump function [Liu (2010)]:

α(x) = 2+ e{−
(x−0.5)2

0.05 } 0 < x < `, (23)

h(x, t) = (x−3)2e−t−2(−40x+20) e−20(x−0.5)2
(x−3)e−t−2(2+e−20(x−0.5)2

)e−t ,

(24)

with the boundary conditions

α(0) = 2+ e−5, α(`) = 2+ e{−
(`−0.5)2

0.05 } , (25)

The exact solution is given by

u(x, t) = (x−3)2e−t 0 < x < `, 0 < t < T. (26)

Under the following parameters: ` = 1, N = 31, ∆x = 1/30, T = 1, and ∆t = 1/20.
Fig. 2 displays the numerical and the exact solution. The maximal absolute error
is about 2.22 × 10−6 and the RMSE is about 5.10 × 10−7. The present results are
also better than that calculated by Liu (2010), of which the maximum error is about
5.89× 10−2. We think that the La-DQM is accuracy and effectiveness of numerical
method by this example.

4.3 Example 3

We considered the one-dimensional ISP with two hump functions [Tadi (1998); Liu
(2010)]:

α(x) = 1+ e{−
(x−0.26)2

0.02 }+ e{−
(x−0.74)2

0.02 } 0 < x < `, (27)

h(x, t) = (x−3)2e−t

−2{(−100x+26)e−50(x−0.26)2
+(−100x+74)e−50(x−0.74)2}(x−3)e−t

−2(1+ e−50(x−0.26)2
+ e−50(x−0.74)2

)e−t ,

(28)

with the boundary conditions

α(0) = 1+ e{−
(−0.26)2

0.02 }+ e{−
(−0.74)2

0.02 } , α(`) = 1+ e{−
(`−0.26)2

0.02 }+ e{−
(`−0.74)2

0.02 } , (29)
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Figure 2: Comparisons of the exact solutions and numerical solutions for Example
2 and the corresponding numerical errors.
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The exact solution is given by

u(x, t) = (x−3)2e−t 0 < x < `, 0 < t < T. (30)

Under the following parameters: ` = 1, N = 31, ∆x = 1/30, T = 1, and ∆t = 1/20.
Fig. 3 displays the numerical and the exact solution. The maximal absolute error
is about 2.77 × 10−4 and the RMSE is about 6.28 × 10−5. The present results are
also better than that calculated by [Tadi (1998); Liu (2010)]. We get good results
even though the problem has two hump functions.

 
Figure 3: Comparisons of the exact solutions and numerical solutions for Example
3 and the corresponding numerical errors.
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4.4 Example 4

The following two-dimensional ISP is pondered:

α(x) = 1+ ycos(πx) 0 < x < a, 0 < y < b, (31)

h(x, t) = (x−3)2(y−3)2e−t

+2ysin(πx)π(x−3)(y−3)2e−t −2(1+ ycos(πx))(y−3)2e−t

−2cos(πx)(x−3)2(y−3)e−t −2(1+ ycos(πx))(x−3)2e−t ,

(32)

with the boundary conditions

α(0,y) = 1+ y , α(a,y) = 1+ ycos(πa),

α(x,0) = 1 , α(x,b) = 1+bcos(πx) (33)

The exact solution is given by

u(x, t) = (x−3)2(y−3)2e−t 0 < x < a, 0 < y < b, 0 < t < T. (34)

We use chain rule for the equation (2) and obtain as follow:

∂ 2u(x,y, t)
∂ t2 =

∂α(x,y)
∂x

∂u(x,y, t)
∂x

+α(x,y)
∂ 2u(x,y, t)

∂x2

+
∂α(x,y)

∂y
∂u(x,y, t)

∂y
+α(x,y)

∂ 2u(x,y, t)
∂y2 +h(x,y, t) (35)

Using the quadrature rule for the equation (3) is to obtain the following algebraic
equations:

P

∑
p=1

E [2]
k,pu(xi,y j, tp)=

N

∑
n=1

C[1]
i,nα(xn,y j)

N

∑
n=1

C[1]
i,nu(xn,y j, tk)+α(xi,y j)

N

∑
n=1

C[2]
i,nu(xn,y j, tk)

+
M

∑
m=1

D[1]
j,mα(xi,ym)

M

∑
m=1

D[1]
j,mu(xi,ym, tk)+α(xi,y j)

M

∑
m=1

D[2]
j,mu(xi,ym, tk) (36)

Under the following parameters: a = b = 1, N = M = 21, ∆x =∆y = 1/20, T = 1,
and ∆t = 1/20. Fig. 5 displays the numerical and the exact solution. The maximal
absolute error is about 1.17 × 10−8. In addition, at the point y = 0.8, the error is
plotted with respect to x in Fig. 4(a), and at the point x = 0.2, the error is plotted
with respect to y in Fig. 4(b). The exact solutions and numerical solutions are
drawn in Figs. 5(a)-(b) sequentially.
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Figure 4: The numerical errors of La-DQM solutions for Example 4 are plotted in
(a) with respect to x at fixed y = 0.8, and in (b) with respect to y at fixed x = 0.2.
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Figure 5: The exact solution for Example 4 of two-dimensional inverse problem is
shown in (a), and in (b) the La-DQM solution result.
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4.5 Example 5

Let us further consider the two-dimensional IWSP:

α(x) = x+ y 0 < x < a, 0 < y < b, (37)

h(x, t) = (x−3)2(y−3)2e−t −2(x−3)(y−3)2e−t −2(x+ y)(y−3)2e−t

−2(x−3)2(y−3)e−t −2(x + y)(x−3)2e−t , (38)

with the boundary conditions

α(0,y) = y , α(a,y) = a+ y,

α(x,0) = x , α(x,b) = x+b (39)

The exact solution is given by

u(x, t) = (x−3)2(y−3)2e−t 0 < x < a, 0 < y < b, 0 < t < T. (40)

Under the following parameters: a = b = 1, N = M = 21, ∆x =∆y = 1/20, T = 1, and
∆t = 1/20. Fig. 7 displays the numerical and the exact solution, with the maximal
absolute error is about 3.6 × 10−7. In addition, at the point y = 0.8, the error is
plotted with respect to x in Fig. 6(a), and at the point x = 0.2, the error is plotted
with respect to y in Fig. 6(b). For this difficult problem, the La-DQM proposed
here is still a good result.

4.6 Example 6

We deliberate a three-dimensional IWSP:

α(x,y,z) = x+ y+ z 0 < x < a, 0 < y < b, 0 < z < c, 0 < t < T (41)

h(x, t) = (x2 + y2 + z2)e−t −2xe−t −6(x+ y+ z)e−t −2ye−t −2ze−t (42)

with the boundary conditions

α(0,y,z) = y+ z , α(a,y,z) = a+ y+ z,

α(x,0,z) = x+ z , α(x,b,z) = x+b+ z,
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Figure 6: The numerical errors of La-DQM solutions for Example 5 are plotted in
(a) with respect to x at fixed y = 0.8, and in (b) with respect to y at fixed x = 0.2.
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Figure 7: The exact solution for Example 5 of two-dimensional inverse problem is
shown in (a), and in (b) the La-DQM solution result.
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α(x,y,0) = x+ y, α(x,y,c) = x+ y+ c, (43)

The exact solution is given by

u(x,y,z, t) = (x2 + y2 + z2)e−t , (44)

We use chain rule for the equation (3) and obtain as follow:

∂ 2u(x,y,z, t)
∂ t2 =

∂α(x,y,z)
∂x

∂u(x,y,z, t)
∂x

+α(x,y,z)
∂ 2u(x,y,z, t)

∂x2

+
∂α(x,y,z)

∂y
∂u(x,y,z, t)

∂y
+α(x,y,z)

∂ 2u(x,y,z, t)
∂y2

+
∂α(x,y,z)

∂ z
∂u(x,y,z, t)

∂ z
+α(x,y,z)

∂ 2u(x,y,z, t)
∂ z2 +h(x,y,z, t), (45)

Using the quadrature rule for the equation (3) is to obtain the following algebraic
equations:

Q

∑
q=1

F [2]
s,q u(xi,y j,zk, tq) =

N

∑
n=1

C[1]
i,nα(xn,y j,zk)

N

∑
n=1

C[1]
i,nu(xn,y j,zk, ts)+α(xi,y j,zk)

N

∑
n=1

C[2]
i,nu(xn,y j,zk, ts)

+
M

∑
m=1

D[1]
j,mα(xi,ym,zk)

M

∑
m=1

D[1]
j,mu(xi,ym,zk, ts)+α(xi,y j,zk)

M

∑
m=1

D[2]
j,mu(xi,ym,zk, ts)

+
P

∑
p=1

E [1]
k,pα(xi,y j,zp)

P

∑
p=1

E [1]
k,pu(xi,y j,zp, ts)+α(xi,y j,zk)

P

∑
p=1

E [2]
k,pu(xi,y j,zp, ts).

(46)

Under the following parameters: a = b = c = 1, N =M = H = 11, ∆x = ∆y =∆z =
1/10, T = 1, and ∆t = 1/10. Fig. 9 exhibits the numerical and exact solution. In
addition, at fixed points y = 0.8 and z = 0.5, the error is plotted with respect to x in
Fig. 8(a), and at fixed points x = 0.3 and z = 0.5, the error is plotted with respect to y
in Fig. 8(b), and at fixed points x = 0.3 and y = 0.8, the error is plotted with respect
to z in Fig. 8(c). For this high dimensional problem, the La-DQM proposed here
is still good with a maximum error 1.13 × 10−7. To the authors’ best knowledge,
there has been no open report that the numerical methods can calculate this inverse
problem well as the La-DQM.
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Figure 8: The numerical errors of La-DQM solutions for Example 6 are plotted in
(a) with respect to x at fixed y = 0.8 and z = 0.5, (b) with respect to y at fixed x =
0.3 and z = 0.5, and (c) with respect to z at fixed x = 0.3 and y = 0.8.
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Figure 9: The exact solution for Example 6 of three-dimensional inverse problem
is shown in (a), and in (b) the La-DQM solution result.
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5 Conclusions

In this paper we estimate inverse scattering problem of wave Propagation by em-
ploying the La-DQM. The La-DQM is quite simple and straightforward that is no
literature process, no regularization process and can determine directly to the in-
verse problem. While we work through these examples, we think that the La-DQM
is powerful numerical method for solving the multi-dimensional inverse scattering
problem. From the present study, we can estimate the unknown parameter of wave
propagation that is very well with high order accuracy. The numerical errors of our
scheme are in the order of O(10−4)£O(10−8). Therefore, it can be concluded that
the La-DQM is stable, accurate, and effective.
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