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Nonlinear Dynamic Analysis of Three-Dimensional
Elasto-Plastic Solids by the Meshless Local

Petrov-Galerkin (MLPG) Method
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Abstract: The meshless local Petrov-Galerkin approach is proposed for the non-
linear dynamic analysis of three-dimensional (3D) elasto-plastic problems. Galerkin
weak-form formulation is applied to derive the discrete governing equations. A
weak formulation for the set of governing equations is transformed into local inte-
gral equations on local sub-domains by using a unit test function and local weak-
form formulation in three dimensional continua for the general dynamic problems
is derived. Three dimensional Moving Least-Square (MLS) approximation is con-
sidered as shape function to approximate the field variable of scattered nodes in
the problem domain. Normality hypothesis of plasticity is adopted to define the
stress-strain relation in elasto-plastic analysis and the unknown plastic multiplier
is obtained by the consistency condition. Von Mises yield criterion in three di-
mensional space is used as a yield function to determine whether the material has
yielded. The Newmark time integration method in an incremental form is used to
solve the final system of nonlinear second order Ordinary Differential Equations
(ODEs). Several numerical examples are given to demonstrate the accuracy and
effectiveness of the present numerical approach.

Keywords: Meshless Local Petrov-Galerkin method, Three Dimensional Mov-
ing Least Square approximation, Nonlinear Dynamic Analysis, Normality Hypoth-
esis of Plasticity.

1 Introduction

For realistic simulation of engineering phenomena, exact modeling of the material
behaviour to obtain a reliable and accurate design is necessary. In this regard, con-
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sidering nonlinearities, due to inelasticity of material, play an important role in ac-
curate response of engineering structures under large dynamic loading conditions.
In recent decades, significant researches have been carried out to investigate non-
linear behaviour of structures under transient dynamic loading with applications to
nuclear reactors, ship structures and multistory buildings subjected to earthquake
loadings.

Despite the widespread applications of finite element method (FEM) in solution of
engineering problems, new advanced methods, such as meshless approaches, have
attracted considerable attention owing to their high adaptivity, low cost to prepare
input data for numerical analysis and some advantages which overcome difficulties
associated with the FEM. A variety of these meshless methods have been developed
which include element-free Galerkin method [Belytschko, Lu and Gu (1994)], the
reproducing kernel particle method [Liu, W. K., Jun and Zhang (1995)], hp-clouds
[Duarte and Oden (1996)], the partition of unity method [Babuska and Melenk
(1997)], meshless Galerkin using radial basis functions [Wendland (1995)], the
diffuse element [Nayroles, Touzot and Villon (1992)], the natural element [Suku-
mar, Moran and Belytschko (1998)], the smoothed particle hydrodynamics [Lucy
(1977)], the collocation technique employing radial basis functions [Fasshauer (1997)]
and the modified smoothed particle hydrodynamics [Zhang, G. M. and Batra (2004)].
Some of them are derived from weak form formulation on global domain in which
require the generation of background cells for the integration of the weak form and
the others, are based on local weak form and no cells are required for integration of
governing equations.

The Meshless Local Petrov–Galerkin (MLPG) method developed by Atluri et al.
[(1998); (1999); (2002b); (2002a)] is a truly meshless method which is based on
the local weak rather than the global weak forms. In the MLPG method, the trial
and test functions are totally independent and can be chosen in different functional
spaces and domain sizes. Based on the concept of the MLPG, six different meth-
ods have been introduced, which are labeled as MLPG1–MLPG6 [Atluri and Shen
(2002b)] . Difference between These six methods is due to the type of test func-
tion considered in the weak formulation. The MLPG methods have been used
to solve various problems in wide range of applications, including the works on
elasto-statics [Atluri and Zhu (2000)], elasto- dynamics [Batra and Ching (2002)],
fluid mechanics [Lin and Atluri (2001)], convection–diffusion problems [Lin and
Atluri (2000)], thermoelasticity [Sladek, Sladek and Atluri (2001)], beam prob-
lems [Atluri, Cho and Kim (1999); Gu and Liu (2001)], plate problems [Gu and
Liu (2001); Long, S. and Atluri (2002); Qian, L. F, Batra and Chen (2003); Soric,
Li, Jarak and Atluri (2004); Li, Soric, Jarak and Atluri (2005); Sladek, Sladek, Kri-
vacek, Wen and Zhang (2007); Xiao, Batra, Gilhooley, Gillespie Jr. and McCarthy
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(2007)], fracture mechanics [Kim and Atluri (2000); Ching and Batra (2001)],
strain gradient theory [Tang, Shen and Atluri (2003)] and FGM problems [Qian,
L. F., Batra and Chena (2004); Ching and Yen (2005); Sladek, sladek and Zhang
(2005); Ching and Yen (2006); Gilhooley, Batra, Xiao, McCarthy and Gillespie
Jr. (2007); Sladek, Sladek and Solek (2009); Rezaei Mojdehi, Darvizeh, Basti
and Rajabi (2011)] . All of these wide ranges of applications demonstrate that the
MLPG method is one of the most promising alternative methods for computational
mechanics.

The majority of papers in which MLPG methods are applied are confined to the
elastic analysis. There are a few works carried out with MLPG method for analysis
of elasto-plastic materials and material nonlinearities, which most of them are lim-
ited to two-dimensional analysis. Zhang et al. (2006) presented two-dimensional
large deformation analysis of hyper-elastic and elasto-plastic materials based on
MLPG method. Gu et al. (2007) extended MLPG method for two-dimensional
analysis of material nonlinear problems based on deformation theory of plastic-
ity. Long et al. (2008) developed MLPG method for elasto-plastic fracture prob-
lems. Heaney et al. (2009) demonstrated modeling of elasto-plastic materials
by the MLPG method with application to problems in geomechanics. Soares et
al. (2009) presented nonlinear dynamic analysis of two-dimensional solids based
on Newmark/Newton-Raphson method. After many pioneering research studies
were successfully performed based on 2D analysis, the MLPG methods, because
of its distinct advantages over the element-based methods Atluri and Shen (2002b);
(2002a); Han and Atluri (2004), are becoming more attractive for solving 3D prob-
lems. After a search of published literature, it has been revealed that there are only
two papers in which performed three-dimensional analysis of material nonlinear
problems by the MLPG methods. Han et al. (2005) developed MLPG mixed finite
volume method for the large deformation analysis of static and dynamic problems
with application to 3D high speed impact problems. Rezaei Mojdehi et al. (2011)
also extended MLPG method for static analysis of 3D elasto-plastic problems based
on deformation theory of plasticity. Up to now, to the authors’ knowledge, there is
no work dealing with the transient dynamic analysis of 3D elasto-plastic solids by
the MLPG methods. The purpose of the present paper is to fill this apparent void
by the implementation of MLPG method in 3D dynamic elasto-plastic problems.
Accordingly, meshless local Petrov-Galerkin method is extended for the nonlinear
analysis of 3D elasto-plastic problems under dynamic loading.

The organization of the present paper is as follows: In Section 2, local weak-form
formulation of the governing equilibrium equations in three dimensional continua
for the general dynamic problems is derived. Nodal points are distributed in the 3D
analyzed domain and each node is surrounded by a cubic sub-domain to which a
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local integral equation is applied. Three dimensional Moving Least-Square (MLS)
approximation is presented as shape function to approximate the field variable of
scattered nodes in the problem domain. Fourth-order spline function is used as the
weight function as well as the test function. In Section 3, stress-strain relation in
elasto-plasticity problems is represented based on normality hypothesis of plastic-
ity and the unknown plastic multiplier is obtained by the consistency condition.
Von Mises yield criterion in three dimensional space is used as a yield function
to determine whether the material has yielded. In Section 4, the obtained equa-
tions are discretized by the MLS shape function and the final Ordinary Differential
Equations (ODEs) of the problem domain are demonstrated. The Newmark time
integration method in an incremental form is used to solve the obtained system of
nonlinear second order ODEs. Several numerical examples are presented to illus-
trate the accuracy and effectiveness of the present meshless formulation.

2 MLPG formulation for 3D dynamic problems

Based on equilibrium equations in three-dimensional continua, for a domain of the
volume Ω, which is bounded by the surface Γ, we have;

σi j, j(x, t)+bi(x, t) = ρ üi(x, t), in Ω (1)

where σi j, j (x, t) are the components of the symmetric stress tensor which corre-
spond to the displacement field ui(x, t), bi (x, t) are the body force, ρ is the mass
density and üi(x, t) the acceleration. The indices i, j which take the values 1, 2 and
3 refer to the coordinates x, y, z on the boundary Γ, respectively. The following
boundary conditions are considered;

ui(x, t) = ui(x, t), on Γu (2a)

ti(x, t) = σi j(x, t)n j(x) = t i(x, t), on Γt (2b)

where ui(x, t) and t i(x, t) are the prescribed displacements and surface tractions, on
the displacement boundary Γu and on the traction boundary Γt , respectively. n j(x)
are the components of a unit outward normal to the global boundary Γ.

The corresponding initial conditions are;

ui (x, t)|t=0 = ui (x,0) x ∈Ω (3a)

u̇i (x, t)|t=0 = u̇i (x,0) x ∈Ω (3b)

where ui (x,0) and u̇i (x,0) are the values of the initial displacements and velocities,
respectively.
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The weak form of governing equations can be obtained over the local sub-domains,
which are located entirely inside the global domain Ω. The local sub-domains may
overlap with each other and must cover the whole global domain. Various arbitrary
shapes, with different sizes, such as spheres, cubes and ellipsoids can be chosen as
sub-domains in 3D domains. In the present work, cubic domains are considered as
local sub-domain and support domain which can be seen in Fig. 1.

 
Figure 1: Local sub-domains used in the MLPG method

2.1 Local weak form of 3D solids

Based on the local Petrov-Galerkin approaches, a generalized local weak form of
the equilibrium equation over a local sub-domain Ωq, can be written as;∫

Ωq
(σi j, j (x, t)+bi (x, t)−ρ üi (x, t)) i(x)dΩ = 0 (4)

herein ui (x, t) is the trial function describing the displacement field, while νi (x) is
the test function.

Unlike the conventional Galerkin method in which the trial and test functions are
chosen from the same space, the Petrov-Galerkin method uses the trial and the test
functions from different spaces. In particular, the test functions do not need to
vanish on the boundary where the essential boundary conditions are specified. By
applying the divergence theorem, Eq. 4 may be rewritten as;

σi j, j (x, t)νi(x) = (σi j (x, t)νi (x)), j−σi j (x, t)νi, j(x) (5)
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by imposing the natural boundary conditions in Eq. 2b one obtains;∫
Γqi

ti(x, t)ν i(x)dΓ+
∫

Γqu

ti(x, t)ν i(x)dΓ+
∫

Γqt

t i(x, t)ν i(x)dΓ

−
∫

Ωq

(σi j(x, t)νi, j(x)+ρ üi(x, t)νi(x)−bi(x, t)νi(x))dΩ = 0 (6)

where Ωq has composed by three parts, i.e. Γq = Γqi∪Γqu∪Γqt , in which Γqi is the
internal boundary of the local sub-domain, which does not intersect with the global
boundary Γ; Γqt is the part of the natural boundary that intersects with the local
sub-domain and Γqu is the part of the essential boundary that intersects with the
local sub-domain. Fig. 1, shows the local sub-domain used in the MLPG method.

Eq. 7 can be rewritten as;∫
Ωq

(σi j(x, t)νi, j(x)+ρ üi(x, t)νi(x))dΩ−
∫

Γqi

ti(x, t)ν i(x)dΓ−
∫

Γqu

ti(x, t)ν i(x)dΓ

=
∫

Γqt

t i(x, t)ν i(x)dΓ +
∫

Ωq

bi(x, t)νi(x)dΩ (7)

which represent a set of three equations for each local sub-domain. In the present
implementation, the local domain is chosen as a cube, centered at a node xi. The
test function νi (x) is chosen such that it is positive inside the local sub-domain Ωq

and vanishes outside of Ωq.

2.2 3D approximation using Moving Least Square (MLS) approximation

The trial function for the displacement at each point can be approximated by the
MLS shape function.

The MLS approximation of u(x, t) is defined at x as;

uh (x, t) =
∫ m

i=1
pi (x)ai (x, t) = p

T
(x)a(x, t) ∀x ∈Ω (8)

where pT (x) = [p1 (x) , p2 (x) , . . . , pm(x)] is a vector of complete basis functions
of order m and a(x) is a vector containing the coefficients ai (x) , i = 1, 2, . . . , m,
which are functions of the space coordinates x = [x, y, z]T . In 3D problems, the
linear basis is defined as;

pT (x) = [1,x,y,z] ; m = 4 (9)

and the quadratic basis is defined as;

pT (x) =
[
1,x,y,z,x2,y2,z2,xy,yz,xz

]
; m = 10 (10)
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The coefficient vector function ai (x) is obtained by minimizing a weighted discrete
L2 norm, which is defined as;

J (x) =
∫ N

I=1
wI (x) [pT(xI)a(x, t)− ûI(t)]

2
(11)

where ûI(t) are the fictitious nodal values and wI(x) is the weight function associ-
ated with the node I. N is the number of nodes in the support domain for which the
weight function wI(x) > 0 and xI denotes the value of x at node I. A fourth-order
spline weight function is considered in the present work. This weight function
corresponding to node I for a one-dimensional domain may be written as;

wI (x) =

1−6
(

dI(x)
rx

I

)2
+8
(

dI(x)
rx

I

)3
−3
(

dI(x)
rx

I

)4
0≤ dI(x)≤ rx

I

0 dI(x) > rx
I

(12)

where dI(x) = x− xI is the distance from node xI to point x in x direction; while
rI(x) is the size of the support for the weight function wI(x) defined as rx

I = αsdx
I

which the weight function wI(x) associated with node xI is non-zero and αs is the
dimensionless size of the support domain. Using the cubic support domain, the
weight function for the 3D problem can be obtained by a simple extension of the
one-dimensional function of Eq. 13 as follows;

wI (x) = wI (x,y,z) = wI (x)wI (y)wI (z) (13)

where functions wI (y) and wI (z) are obtained by replacing x with y and z in Eq.
13, respectively. In this regard, the parameters dI (y) = y− yI and dI (z) = z− zI

are the distances from node xI to point x in y and z direction, respectively.

The stationary condition of J in Eq. 12 with respect to a(x, t),

∂J/∂a = 0 (14)

leads to the following linear relation between fictitious (û) and approximated (uh)
nodal displacements.

uh (x, t) =
∫ N

I=1
Φ

I (x) ûI(t) = ΦΦΦ
T (x) û(t) (15)

where ΦΦΦ
T (x) can then be introduced as the shape function associated with the

nodes and is given as;

ΦΦΦ
T (x) = PT (x)A−1 (x)B(x) (16)
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where,

A(x) =
∫ N

I=1
wI (x)p(xI)pT (xI) = PTWP (17)

B(x) = [w1 (x)p(x1) , w2 (x)p(x2) , . . . , wN (x)p(xN)] = PTW (18)

herein,

P =

 pT (x1)

pT (x2)
...

pT (xN)


N×m

(19)

and,

W =

w1(x) · · · 0
...

. . .
...

0 · · · wN(x)


N×N

(20)

The partial derivatives of the trial function are presented as follows;

uh
,x (x, t) =

∫ N

I=1
Φ

I
,x (x) ûI(t) (21)

where ΦI
,x are derivatives of the MLS shape function and can be obtained as;

Φ
I
,x (x) =

∫ m

j=1

[
p j,x
(
A−1B

)
jI + p j

(
A−1B,x +A−1

,x B
)

jI

]
(22)

where A−1
,x =−A−1A,xA−1 represents the derivative of the inverse of matrix A with

respect to x.

2.3 Test function

Atluri and Shen (2002b) have proposed six different choices for test functions and
labeled the corresponding formulations as MLPG1 through MLPG6. Here we take
the test function to be a fourth-order spline weight function. The corresponding
MLPG formulation is called MLPG1. Cubic sub-domain is also chosen for the sup-
port of the test function. The test function for the cubic sub-domain is constructed
following the same procedure as mentioned in the previous section for constructing
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the weight function. Therefore, the test function for MLPG1 in node xI is defined
as;

νi (x) = νi (x)νi (y)νi (z)

=

1−6
(

dI(x)
rx

q

)2
+8
(

dI(x)
rx

q

)3
−3
(

dI(x)
rx

q

)4
0≤ dI(x)≤ rx

q

0 dI(x) > rx
q

(23)

where dI(x) = x−xI and rx
q is the size of the support for the test function νI defined

as rx
q = αqdx

I which the test function νi(x) associated with node xI is non-zero and
αq is the dimensionless size of the support for the test function domain.

3 Stress-strain relation in elasto-plasticity

According to the classical additive decomposition of strain, total strain can be writ-
ten as summation of elastic strain and plastic one in the incremental form as follow;

dεεε = dεεε
e +dεεε

p (24)

Elastic strain is related to the stress tensor by Hook’s law for isotropic material as;

dσσσ = Ddεεε
e = D(dεεε−dεεε

p) (25)

where D is the three-dimensional elastic stress-strain matrix as;

D = D0



1 ν

1−ν

ν

1−ν
0 0 0

ν

1−ν
1 ν

1−ν
0 0 0

ν

1−ν

ν

1−ν
1 0 0 0

0 0 0 1−2ν

2(1−ν) 0 0
0 0 0 0 1−2ν

2(1−ν) 0
0 0 0 0 0 1−2ν

2(1−ν)


(26)

D0 =
E(1−ν)

(1+ν)(1−2ν)
(27)

In which E and ν are Young’s modulus and Poisson’s ratio, respectively.

Based on normality hypothesis of plasticity, the increment in the plastic strain ten-
sor is in a direction which is normal to the tangent to the yield surface at the load
point. It can be written in terms of the yield function, f, as;

dεεε
p = dλ

∂ f
∂σσσ

(28)
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where von Mises yield function can be defined as;

f = σe−σy =
(

3
2

σ́i jσ́i j

)1/2

−σy (29)

where σe, σ́i j and σy are effective stress, deviatoric stress and yield stress, respec-
tively. dλ is called plastic multiplier and can be obtained by consistency condition.

In general case, the yield stress in Eq. 30 is a function of effective plastic strain, p,
which can be written in the incremental form as;

d p =
(

2
3

dε
p
i jε

p
i j

)1/2

(30)

Therefore, the yield criterion for the plastic deformation can be written as;

f(σσσ , p) = 0 (31)

The consistency condition for an incremental change in stress and effective plastic
strain is defined as;

f(σσσ +dσσσ , p+d p) = 0 (32)

We can expand this as;

f(σσσ +dσσσ , p+d p) = f(σσσ , p)+
∂ f
∂σσσ

dσσσ +
∂ f
∂ p

d p (33)

By using Eqs. 26-32 we can obtain the plastic multiplier, dλ , as;

dλ =
(∂ f /∂σσσ)Ddεεε

(∂ f /∂σσσ)D(∂ f /∂σσσ)−(∂ f /∂ p)((2/3)(∂ f /∂σσσ)(∂ f /∂σσσ))1/2 (34)

Therefore, by having dλ from Eq. 35, the increment in plastic strain tensor can be
obtained.

4 Discretization and time integration

The discretization of the problem’s geometry is performed by the nodes located on
the 3D problem domain. By using the test function in the MLPG method, only three
linear equations of û will yield for each point and/or its local domains. The nodal
variables are three fictitious displacement components in the Cartesian coordinate
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system x, y, z. Therefore, we need as many local domains Ωq as the number of nodes
in the global domain to obtain as many equations as the number of unknowns.

The stress tensor components σ i j can be written in a Cartesian coordinate system
as;

σσσ
T(x, t) = [σx (x, t) σy (x, t) σz (x, t) τxy (x, t) τyz (x, t) τzx (x, t)] (35)

The strain-displacement relation can also be written as;

εεε (x, t) =
∫ N

j=1
B j(x)u j(x, t) (36)

where B(x) denotes the strain-displacement matrix obtained by differentiation of
the shape function in a three dimensional space;

B(x) =



∂Φ1(x)
∂x 0 0 . . . ∂ΦN(x)

∂x 0 0
0 ∂Φ1(x)

∂y 0 . . . 0 ∂ΦN(x)
∂y 0

0 0 ∂Φ1(x)
∂ z . . . 0 0 ∂ΦN(x)

∂ z
∂Φ1(x)

∂y
∂Φ1(x)

∂x 0 . . . ∂ΦN(x)
∂y

∂ΦN(x)
∂x 0

0 ∂Φ1(x)
∂ z

∂Φ1(x)
∂y . . . 0 ∂ΦN(x)

∂ z
∂ΦN(x)

∂y
∂Φ1(x)

∂ z 0 ∂Φ1(x)
∂x . . . ∂ΦN(x)

∂ z 0 ∂ΦN(x)
∂x


(37)

The surface traction components t(x, t) may also be expressed in a vector form by
the relation;

t(x, t) = N(x)σσσ(x, t) (38)

which N(x) is the matrix describing the outward normal on Γq,

N(x) =

 nx (x) 0 0 ny (x) 0 nz (x)
0 ny (x) 0 nx (x) nz (x) 0
0 0 nz (x) 0 ny (x) nx (x)

 (39)

By substituting fourth-order spline test function from Eq. 24 into Eq. 8 and by
means of Eqs. 16, 26, 37 and 39, governing equations are transformed in the dis-
cretized system of ordinary differential equations which may be written in the ma-
trix form as;

M(x) ¨̂u(t)+K(x) û(t) = F(x, t) (40)
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where, M(x), K(x) and F(x,t) are equivalent mass, stiffness and force matrix, re-
spectively which are described in the following;

MIJ(x) =
∫ N

J=1

∫
Ωq

ρΦJ (x)VI(x)dΩ (41)

KIJ(x) =
∫ N

J=1

∫
Ωq

ŴT
I (x)DBJ(x)dΩ−

∫
Γqi

VI (x)N(x)DBJ(x)dΓ

−
∫

Γqu

VI (x)N(x)DBJ(x)dΓ (42)

F(x, t) = Fe (x, t)+Fp (x, t) (43)

where Fe (x, t) is the external force and Fp (x, t) is the internal force resulted in
from plastic strain, respectively;

Fe
I (x, t) =

∫
Ωq

bI (x, t)VI (x)dΩ+
∫

Γqt

tI(x, t)VI (x)dΓ (44)

Fp
I (x, t) =

∫
Ωq

ŴT
I (x)Dε

p (x, t)xdΩ−
∫

Γqi

VI (x)N(x)Dε
p (x, t)xdΓ

−
∫

Γqu

VI (x)N(x)Dε
p (x, t)xdΓ (45)

where VI (x), ŴT
I , bI (x, t) and tI(x, t) are the test function, test function derivatives,

body force and surface traction matrices, corresponding to node i, respectively.

VI =

 ν(x,xI) 0 0
0 ν(x,xI) 0
0 0 ν(x,xI)

 (46)

ŴI =

 ν,x(x,xI) 0 0 ν,y(x,xI) 0 ν,z(x,xI)
0 ν,y(x,xI) 0 ν,x(x,xI) ν,z(x,xI) 0
0 0 ν,z(x,xI) 0 ν,y(x,xI) ν,x(x,xI)

 (47)

Equations similar to Eq. 41 with mass, stiffness and force matrix (as Eqs. 42-46)
are obtained for each cubic local sub-domain Ωq, whose centre is at the node xI .
The Gauss quadrature rule of an appropriate order is employed to evaluate integrals
over each local sub-domain.

The Newmark β method [Newmark (1959)], well known and commonly applied
in computations, is used in the present study to integrate the governing equations
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in time. This method assumes that the acceleration varies linearly within the time
interval of (t, t + ∆t). The recursive relation among displacements, velocities and
accelerations at times t and t +∆t are;

ût+∆t = ût +∆t ˙̂u
t
+

∆t2

2

[
(1−2β ) ¨̂u

t
+2β ¨̂u

t+∆t
]

(48)

˙̂u
t+∆t

= ˙̂u
t
+∆t

[
(1− γ) ¨̂u

t
+ γ ¨̂u

t+∆t
]

(49)

Where û, ˙̂u, ¨̂u are the fictitious nodal displacements, velocities and accelerations,
respectively. β and γ are constant, for zero damping system, this method is uncon-
ditionally stable if;

2β ≥ γ ≥ 1
2

(50)

and conditionally stable if;

γ ≥ 1
2

β ≥ 1
2

(51)

∆t≤ 1

ωmax

√
γ

2 −β

(52)

where ωmax is the maximum frequency at the quadrature points. The value of
ωmaxdepends on the size of local support domains and the size of local quadrature
domains [Belytschko, Guo, Liu and Xiao (2000)] .

It can be seen that the response at time t +∆t is obtained by evaluating the equation
of motion at time t + ∆t, therefore, the Newmark method is an implicit method.
By setting β = 1/4γ = 1/2 it results in the constant acceleration scheme. It is
non-dissipative, second-order accurate and unconditionally stable. Writing Eq. 41
at time t + ∆t, and substituting from Eqs. 49 and 50 give the following system of
algebraic equations;

K̂(x, t) ût+∆t = F̂t+∆t(x, t) (53)

where,

K̂(x, t) = K(x)+
4

∆t2
M(x) (54)
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and,

F̂(x, t) =Ft+∆t(x, t)+M(x)
(

4
∆t2 ût +

4
∆t

˙̂u
t
+ ¨̂u

t
)

(55)

having computed ût+∆t from Eq. 54, ˙̂u
t+∆t

and ¨̂u
t+∆t

are obtained from;

¨̂u
t+∆t

=
4

∆t2

(
ût+∆t − ût)− 4

∆t
˙̂u

t − ¨̂u
t

(56)

˙̂u
t+∆t

= ˙̂u
t
+

δ t
2

(
¨̂u

t
+ ¨̂u

t+∆t
)

(57)

To enforce essential boundary conditions, the direct interpolation method is used
[Liu, G. R. and Gu (2005)] . Note that, in MLPG, the system equation is constructed
node by node. There are only three rows in the global stiffness matrix and the
global force vector that are related to each field node in 3D formulation. With this
structural feature of the system equation of MLPG, the following procedure can be
implemented.

Assume the displacements at the Ith field node on the essential boundary are pre-
scribed as;
[
uh

x(x, t)
]I = uI

x(x, t)[
uh

y(x, t)
]I = uI

y(x, t)[
uh

z (x, t)
]I = uI

z(x, t)

(58)

where uh
x(x, t) uh

y(x, t) and uh
z (x, t) are approximated displacements in x, y and z

direction, respectively. Using the MLS approximation, one has,

[
uh(x, t)

]I
=


[
uh

x(x, t)
]I[

uh
y(x, t)

]I[
uh

z (x, t)
]I



=

 Φ1(x) 0 0
0 Φ1(x) 0
0 0 Φ1(x)

. . . Φn(x) 0

. . . 0 Φn(x)

. . . 0 0

0
0

Φn(x)




û1
x(t)

û1
y(t)

û1
z (t)
...

ûn
x(t)

ûn
y(t)

ûn
z (t)


= ΦΦΦ(x) û(t) =

 uI
x (x, t)

uI
y (x, t)

uI
z (x, t)

 (59)
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where n is number of nodes in the support domain of the Ith node. Equation (60)
produces three linear equations for the Ith field node, and can be rewritten explicitly
as;

Φ1 (x) û1
x(t)+Φ2 (x) û2

x(t)+ · · ·+Φn (x) ûn
x(t) = uI

x (x, t)
Φ1 (x) û1

y(t)+Φ2 (x) û2
y(t)+ · · ·+Φn (x) ûn

y(t) = uI
y (x, t)

Φ1 (x) û1
z (t)+Φ2 (x) û2

z (t)+ · · ·+Φn (x) ûn
z (t) = uI

z (x, t)

(60)

Equation (61) is assembled directly into the system equations for the field nodes to
obtain the modified global system equations of,

K̂c (x, t) ût+∆t = F̂t+∆t
c (x, t) (61)

where K̂c (x, t) and F̂t+∆t
c (x, t) are modified global stiffness matrix and force vector,

respectively.

Due to the nonlinearities involved in the internal force resulted in from plastic
strain, Eq. 62 cannot be solved directly. Accordingly, an incremental approach
is implemented to solve the mentioned equation. Thereby, the displacement, plas-
tic strain and external force terms are written as increments so that;

K̂c (x, t)dût+∆t = dF̂t+∆t
c (x, t) (62)

ûk+1 = ûk +dûk+1 (63)

ε
p
k+1 = ε

p
k +dεεε

p
k+1 (64)

σσσ k+1 = σσσ k +dσσσ k+1 (65)

where in each time increment, displacement, plastic strain and stress will be up-
dated iteratively.

5 Numerical examples

Several numerical examples are considered to illustrate the accuracy and efficiency
of the present method. In all the cases, results obtained from present MLPG for-
mulation are compared with those of finite element solution from ABAQUS.

Gauss quadrature is implemented for numerical integration of governing equations.
For each Gauss quadrature point xq, the MLS shape functions are constructed in



30 Copyright © 2012 Tech Science Press CMC, vol.29, no.1, pp.15-39, 2012

the domain of Ωq to obtain the integrand. Cubic quadrature domain is used to
integrate the integral equations. For node xI , the size of quadrature domain in x
direction can be determined by rx

q = αqxdx
I , where those for y and z directions are

obtained by substituting x with y and z, respectively. Herein, αqx is dimensionless
size of the local quadrature domain in the x direction. Accordingly, αqy and αqz

are dimensionless sizes of the local quadrature domain in the y and z directions,
respectively.

The local support domain for a Gauss quadrature point xq can be arbitrary in shape.
In this paper, a cubic support domain is used. The size of the local support domain
in x direction is determined by rx

s = αsxdx
I , where those for y and z directions are

obtained by substituting x with y and z, respectively. Herein, αsx is dimensionless
size of the local support domain in the x direction. Accordingly, αsy and αsz are
dimensionless sizes of the local support domain in the y and z directions, respec-
tively.

where dx
I , dy

I and dz
I are the local nodal spacing in x, y and z directions, respectively.

In this regard, the dimensions of the local quadrature domain and local support do-
main used for Gauss quadrature and constructing the MLS shape functions become
(2αqxdx

I )× (2αqydy
I )× (2αqzd

z
I ) and (2αsxdx

I )× (2αsydy
I )× (2αszd

z
I ), respectively.

In the present study, for the local support domain, αsx = αsy = αsz = 2.7 and for the
local quadrature domain, αqx = αqy = αqz = 0.8 are used.

5.1 Dynamic analysis of a 3D cantilever plate

A 3D cantilever plate subjected to an instantaneously uniformly distributed step
load 600g(t) is analyzed. Fig. 2 shows the geometry and 3D discretization of
the plate. The applied loading history can be seen in Fig. 3a. The linear work
hardening stress-strain relation is considered for the plate’s material (Fig. 3b). The
plate thickness to span ratio is h/a=0.1. In the present example, the following
material constants are considered: Young’s modulus E=2.1×1011 pa, Poisson’s
ratio ν=0.3, mass density ρ=1000 kg/m3, yield stress σ0=1.7×105pa and work
hardening modulus ET =2×1010 pa. Due to symmetry, only one half of the plate is
discretized by the 7×3×3 uniformly distributed nodal points on the domain of the
plate.

Fig. 4 depicts the elasto-plastic time history of the transverse displacement at the
end point on the mid-line of the plate. In this figure the results obtained from the
present method are compared with those computed from finite element commercial
software ABAQUS with 6250 C3D8R elements in one half of plate. It can be seen
that the obtained results from the present meshless method are in good agreement
with those of FEM with much lesser number of nodes in the problem domain.
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Figure 2: Geometry and discretization of the cantilever plate.

 
Figure 3: a) Applied load history, b) linear work hardening stress-strain curve.

Elastic and elasto-plastic time history of the plate are also exhibited in the Fig. 5.
In this figure, the permanent effects of plastic strains are clearly demonstrated.

5.2 Dynamic analysis of a 3D fully clamped plate

Consider a fully clamped square plate of length a and thickness h made of linear
work hardening material subjected to a suddenly applied uniform loads 8000g(t)
and 10000g(t). The plate thickness to span ratio is 0.1 and its material properties
are E=10×105 pa, ν=0.3, ρ=1000 kg/m3, σ0=2.7×104pa and ET =1×105pa . Due
to symmetry, only one quarter of the plate is discretized by 9×9×3 nodes on the
problem domain and is shown in Fig. 6.

Fig. 7 and 8 present elasto-plastic time history of the transverse displacement at
the midpoint of the plate for applied loads of 8000g(t) and 10000g(t), respectively.
It is clear that with the increase of applied loading amplitude, the permanent ef-
fects of plastic strains on the plate deflection are enhanced. In this example, the



32 Copyright © 2012 Tech Science Press CMC, vol.29, no.1, pp.15-39, 2012

 
Figure 4: Elasto-plastic time history of the transverse displacement at the end point
on the mid-line of the plate.

 
Figure 5: Elastic and elasto-plastic response of the cantilever plate.
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Figure 6: Discretization of one quarter of the plate with 9×9×3 nodes.

results obtained from present meshless method are also compared with those of
FEM from ABAQUS with 6250 C3D8R elements in one quarter of plate and are in
good agreement with them. Fig. 9 shows the elastic and elasto-plastic time history
of the transverse displacement of the plate with applied load of 10000g(t).

 
Figure 7: Elasto-plastic time history of the transverse displacement of the fully
clamped plate at its midpoint with applied load of 8000g(t).
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Figure 8: Elasto-plastic time history of the transverse displacement of the fully
clamped plate at its midpoint with applied load of 10000g(t).

6 Conclusion

The meshless local Petrov-Galerkin method is developed for nonlinear dynamic
elasto-plastic analysis of 3D problems. Based on local Petrov-Galerkin approach,
weak form of equilibrium equation is obtained. Nodal points are distributed in the
3D analyzed domain and each node is surrounded by a cubic sub-domain to which a
local integral equation is applied. Three dimensional Moving Least-Square (MLS)
approximation is used as shape function to get the meshless discrete system of
equations. Numerical integration is performed using Gauss quadrature method. A
weak formulation for the set of governing equations is transformed into local in-
tegral equations on local sub-domains by using a unit test function. Fourth-order
spline function is used as the weight function as well as the test function. Stress-
strain relation in elasto-plasticity problems is represented based on normality hy-
pothesis of plasticity and the unknown plastic multiplier is obtained by the con-
sistency condition. Von Mises yield criterion in three dimensional space is used
as a yield function to determine whether the material has yielded. The final non-
linear Ordinary Differential Equations (ODEs) of the problem domain are solved
by the Newmark time integration method in an incremental form. Several numeri-
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Figure 9: Elastic and elasto-plastic response of the fully clamped plate with applied
load of 10000g(t).

cal examples are presented to illustrate the effectiveness of present formulation for
the elasto-plastic analysis of 3D solids subjected to dynamic loading. It has been
found that this meshless method is very effective with much lesser number of nodes
in comparison to FEM.
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