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Local Buckling Delamination of a Rectangular Sandwich
Plate Containing Interface Embedded Rectangular Cracks

and Made From Elastic and Viscoelastic Materials

S.D. Akbarov1,2, N. Yahnioglu1 and A. Tekin1

Abstract: A three-dimensional buckling delamination problem for a rectangular
sandwich plate made from elastic and viscoelastic materials is studied. It is sup-
posed that the plate contains interface embedded rectangular cracks and that the
edge-surfaces of these cracks have initial infinitesimal imperfections. The evolu-
tion of these initial imperfections with an external bi-axial compressed force (for
the case where the materials of the layers of the plate are elastic) or with duration
of time (for the case where the materials of the layers of the plate are viscoelastic)
is investigated. The corresponding boundary value problem is formulated within
the framework of the piecewise homogeneous body model with the use of three-
dimensional geometrically nonlinear field equations of the theory of viscoelastic
bodies. This problem is solved by employing boundary form perturbation tech-
niques, Laplace transform and FEM. According to the initial imperfection crite-
rion, the values of the critical parameters are determined. Numerical results on
the critical force and critical time are presented and discussed. In particular, it is
established that the values of the critical forces obtained for the buckling delami-
nation around the rectangular embedded interface cracks are significantly greater
than those obtained for the corresponding edge and band cracks.

Keywords: Buckling delamination, sandwich plate, embedded interface crack,
viscoelastic material, critical time, 3D FEM.

1 Introduction

Local buckling delamination of laminated composite materials is one of the com-
mon failure mechanisms in compression. This delamination takes place around the
zones in which two adjacent layers are partially debonded at their interface. These
debonded zones are formed as a consequence of various impact events, poor fabri-
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cation process and fatigue and, as a result, they reduce several times the compres-
sive strength of the structures fabricated from the composed materials. Note that
in the related research the mentioned debonded zones are modeled as cracks and
the regions bounded by the cracks and the laminate free surface are liable to buckle
locally under compressive loads, thereby creating conditions conductive to delam-
ination growth and consequent global failure of the structure. A review of these
researches is detailed in recent papers by Akbarov, Yahnioglu and Karatas (2010)
and Akbarov, Yahnioglu and Tekin (2010). Nevertheless, here we reconsider a
brief review, all of which are made within the scope of the Three-Dimensional Lin-
earized Theory of Stability (TDLTS) of deformable solid body mechanics. Guz and
Nazarenko (1985a, 1985b) made the first attempts in this field. Note that a detailed
description of the field equations and relations of the TDLTS are given in many
references, for instance in the monograph by Guz (1999) and a detailed descrip-
tion of some early results is given in other monographs by Guz (2008a, 2008b).
The present level of these investigations is detailed in a paper of Bogdanov, Guz
and Nazarenko (2009). However, in all these investigations it was assumed that
the materials of the composites are time independent. Development of the TDLTS
based on the initial imperfection stability loss criterion by Hoff (1954) for time de-
pendent materials was proposed and employed in papers by Akbarov (1998, 2007),
Akbarov, Sisman and Yahnioglu (1997), Akbarov and Yahnioglu (2001) and others.
Consideration of some related results is also given in the monograph by Akbarov
and Guz (2000). Development and application of the aforementioned version of
the TDLTS on the study of the buckling delamination problems of the plate-strip
and circular disc type elements of constructions fabricated from viscoelastic ma-
terials were made in the papers by Akbarov and Rzayev (2002a, 2002b, 2003),
Rzayev and Akbarov (2002), Rzayev (2002) and others. A systematic review of
these studies was considered in the survey paper by Akbarov (2007). However, in
these studies, the two-dimensional (with respect to the space coordinates) problems
were analyzed for a plate-strip containing a crack whose edges are parallel to the
face planes of the plate and a circular plate containing a penny-shaped crack, the
edge faces of which are also parallel to the plate’s upper and lower face planes.
Furthermore, these investigations were carried out by utilizing 2D FEM modeling.
In papers by Akbarov and Yahnioglu (2010) and Akbarov, Yahnioglu and Karatas
(2010) an attempt is made to develop the approach proposed in other papers by Ak-
barov and Rzayev (2002a, 2002b, 2003) for the three-dimensional buckling delam-
ination problems for an anisotropic (transversal-isotropic) viscoelastic rectangular
plate containing a band (Akbarov and Yahnioglu (2010)) and also for a rectangular
edge crack under uniaxial compression (Akbarov, Yahnioglu and Karatas (2010)).
Moreover, in a paper by Akbarov, Yahnioglu and Tekin (2010) this development
was extended for a rectangular sandwich plate containing an interface band and
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edge cracks. However, up to now there has not been any investigation on buckling
delamination around the embedded cracks. Therefore, in the present paper the lo-
cal buckling delamination problem for a sandwich plate containing two symmetric
(with respect to the middle plane of the core layer of the plate) embedded inter-
face rectangular cracks is studied under bi-axial compression. In other words, in
the present work the investigation carried out in a paper by Akbarov, Yahnioglu
and Tekin (2010) is developed for the sandwich plate containing two rectangular
embedded cracks under bi-axial compression.

2 Formulation of the problem

Consider a thick rectangular sandwich plate, which contains two interface rectan-
gular embedded cracks. The geometry of the plate and cracks are shown in Fig. 1a.
The Cartesian coordinate system Ox1x2x3 is associated with the plate so as to give
Lagrange coordinates of the points on the plate in the natural state. Assume that
the plate occupies the region V = V (r1)∪V (r2)∪V (r3) where:

V (r1) = {0≤ x1 ≤ `1; 0≤ x2 ≤ hF ; 0≤ x3 ≤ `3} ,

V (r2) = {0≤ x1 ≤ `1; hF ≤ x2 ≤ hF +hC; 0≤ x3 ≤ `3} ,

V (r3) = {0≤ x1 ≤ `1; hF +hC ≤ x2 ≤ h; 0≤ x3 ≤ `3} . (1)

We suppose that the plate contains two embedded rectangular interface cracks, one
of which is at:

Ω1 =
{(`1− `10)/2≤ x1 ≤ (`1 + `10)/2; x2 = hF ; (`3− `30)/2≤ x3 ≤ (`3 + `30)/2} ,

(2)

and the other one is at:

Ω2 = {(`1− `10)/2≤ x1 ≤ (`1 + `10)/2;

x2 = hF +hC; (`3− `30)/2≤ x3 ≤ (`3 + `30)/2} . (3)

In Eqs. (2) and (3) `10 (`30) is the length of the crack along the axis Ox1(Ox3).
It is assumed that the edge surfaces of the cracks have an insignificant initial im-
perfection and this imperfection is symmetric with respect to the interface planes
and with respect to the x1 = `1/2 and x3 = `3/2 planes. The equations of the edge
surfaces of the lower and upper cracks can be written as follows:

x±2 = hF + ε f±(x1,x3), x±2 = hF +hC + ε f±(x1,x3),
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 Figure 1: The geometry of the sandwich plate and interface rectangular embedded
cracks

(`1− `10)/2≤ x1 ≤ (`1 + `10)/2, (`3− `30)/2≤ x3 ≤ (`3 + `30)/2 (4)

where ε is the dimensionless small parameter (ε << 1) which characterizes the
degree of the initial imperfection of the crack edge-surfaces, hF (hC) is the thickness
of each face layer (core layer) and the upper index “+” (“−”) represents the upper
(the lower) surface of the considered cracks. The function f (x1,x3) satisfies the
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following relations:

f +(x1,x3) =− f−(x1,x3),

f± ((`1− `10)/2,x3)
∣∣
(`3−`30)/2≤x3≤(`3+`30)/2

= f± ((`1 + `10)/2,x3)
∣∣
(`3−`30)/2≤x3≤(`3+`30)/2 = 0,

∂ f± ((`1− `10)/2,x3)
∂x1

∣∣∣∣
(`3−`30)/2≤x3≤(`3+`30)/2

=
∂ f± ((`1 + `10)/2,x3)

∂x1

∣∣∣∣
(`3−`30)/2≤x3≤(`3+`30)/2

= 0,

f± (x1,(`3− `30)/2)
∣∣
(`1−`10)/2≤x1≤(`1+`10)/2

= f± (x1,(`3 + `30)/2)
∣∣
(`1−`10)/2≤x1≤(`1+`10)/2 = 0,

∂ f± (x1,(`3− `30)/2)
∂x3

∣∣∣∣
(`1−`10)/2≤x1≤(`1+`10)/2

=
∂ f± (x1,(`3 + `30)/2)

∂x3

∣∣∣∣
(`1−`10)/2≤x1≤(`1+`10)/2

= 0. (5)

Thus, we investigate the evolution of the foregoing initial infinitesimal imperfec-
tions of the crack-edge surfaces under bi-axial compression of the plate along the
Ox1 and Ox3 axes with uniformly distributed normal forces with intensity p1 and
p3 (Fig. 1b) respectively (for the elastic plate) and as time elapses at fixed val-
ues of the external compression forces (for the viscoelastic plate). As in the paper
by Akbarov, Yahnioglu and Tekin (2010), this evolution will be investigated by
utilizing the three-dimensional geometrically nonlinear equations of the theory of
viscoelasticity in the framework of the piecewise homogeneous body model.

Below, the values relating to the core layer and the face layers will be denoted
by upper indices (1) and (2) respectively. At the same time, we will use upper
index rk (k = 1,2,3) where r1 and r3 indicate the values related to the lower and
upper layers, respectively, but r2 indicates the values related to the core layer, so
that r1 = r3 = 2, r2 = 1. It is assumed that the face layers of the sandwich plate
are made from the same materials and the structure of the plate is symmetric with
respect to the middle plane of the core layer.
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Within the framework of the three dimensional geometrically nonlinear equations
of the theory of viscoelasticity the governing field equations are:

Equilibrium equation:

∂

∂x j

[
σ

(rk)
jn

(
δ

n
i +

∂u(rk)
i

∂xn

)]
= 0, i; j;n;k = 1,2,3, r1 = r3 = 2, r2 = 1 (6)

Geometrical relation:

ε
(rk)
i j =

1
2

(
∂u(rk)

i
∂x j

+
∂u(rk)

j

∂xi
+

∂u(rk)
n

∂xi

∂u(rk)
n

∂x j

)
, (7)

Constitutive relation:

σ
(rk)
i j = λ

∗(rk)θ (rk)δ
j

i +2µ
∗(rk)ε

(rk)
i j , θ

(rk) = ε
(rk)
11 + ε

(rk)
22 + ε

(rk)
33 , (8)

where λ ∗(rk) and µ∗(rk) are the following operators:

λ
∗(rk)φ(t) = λ

(rk)
0 φ(t)+

t∫
0

λ
(rk)(t− τ)φ(τ)dτ,

µ
∗(rk)φ(t) = µ

(rk)
0 φ(t)+

t∫
0

µ
(rk)(t− τ)φ(τ)dτ.

(9)

In equations (6)-(9) conventional notation is used. Consider formulation of the
boundary and contact conditions.

Boundary conditions at the ends of the plate:

u(rk)
2

∣∣∣
x1=0;`1

= 0, u(rk)
2

∣∣∣
x3=0;`3

= 0,

[
σ

(rk)
1n

(
δ

n
1 +

∂u(rk)
1

∂xn

)]∣∣∣∣∣
x1=0;`1

= p1,

[
σ

(rk)
1n

(
δ

n
3 +

∂u(rk)
3

∂xn

)]∣∣∣∣∣
x1=0;`1

= 0,

[
σ

(rk)
3n

(
δ

n
1 +

∂u(rk)
1

∂xn

)]∣∣∣∣∣
x3=0;`3

= 0,

[
σ

(rk)
3n

(
δ

n
3 +

∂u(rk)
3

∂xn

)]∣∣∣∣∣
x3=0;`3

= p3 (10)
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Boundary conditions on the free face planes of the plate:[
σ

(r1)
2n

(
δ

n
i +

∂u(r1)
i

∂xn

)]∣∣∣∣∣
x2=0

= 0,

[
σ

(r3)
2n

(
δ

n
i +

∂u(r3)
i

∂xn

)]∣∣∣∣∣
x2=h

= 0. (11)

Boundary conditions on the cracks’ edge surfaces:

[
σ

(r1)
jn

(
δ

n
i +

∂u(r1)
i

∂xn

)]∣∣∣∣∣
S−1

n−j = 0,

[
σ

(r2)
jn

(
δ

n
i +

∂u(r2)
i

∂xn

)]∣∣∣∣∣
S+

1

n+
j = 0,

[
σ

(r3)
jn

(
δ

n
i +

∂u(r3)
i

∂xn

)]∣∣∣∣∣
S+

2

n+
j = 0,

[
σ

(r2)
jn

(
δ

n
i +

∂u(r2)
i

∂xn

)]∣∣∣∣∣
S−2

n−j = 0,

S±1 = {((`1− `10)/2≤ x1 ≤ (`1 + `10)/2) , x±2 = hF + ε f± (x1,x3) ,

((`3− `30)/2≤ x3 ≤ (`3 + `30)/2)} ,

S±2 = {((`1− `10)/2≤ x1 ≤ (`1 + `10)/2) , x±2 = hF +hC + ε f± (x1,x3) ,

((`3− `30)/2≤ x3 ≤ (`3 + `30)/2)} . (12)

Contact conditions between the layers of the plate:

u(r1)
i

∣∣∣
℘
−
1

= u(r2)
i

∣∣∣
℘

+
1

, u(r3)
i

∣∣∣
℘

+
2

= u(r2)
i

∣∣∣
℘
−
2

,

[
σ

(r1)
2n

(
δ

n
i +

∂u(r1)
i

∂xn

)]∣∣∣∣∣
℘
−
1

=

[
σ

(r2)
2n

(
δ

n
i +

∂u(r2)
i

∂xn

)]∣∣∣∣∣
℘

+
1

,

[
σ

(r3)
2n

(
δ

n
i +

∂u(r3)
i

∂xn

)]∣∣∣∣∣
℘

+
2

=

[
σ

(r2)
2n

(
δ

n
i +

∂u(r2)
i

∂xn

)]∣∣∣∣∣
℘
−
2

,
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℘
±
1 = {0≤ x1 ≤ `1, 0≤ x2 ≤ hF ±0, 0≤ x3 ≤ `3}−

{(`1− `10)/2≤ x1 ≤ (`1 + `10)/2, x2 = hF ±0, (`3− `30)/2≤ x3 ≤ (`3 + `30)/2} ,

℘
±
2 = {0≤ x1 ≤ `1, 0≤ x2 ≤ hF +hC±0, 0≤ x3 ≤ `3}−
{(`1− `10)/2≤ x1 ≤ (`1 + `10)/2, x2 = hF +hC±0,

(`3− `30)/2≤ x3 ≤ (`3 + `30)/2} (13)

where n j (n±j ) in equation (12) are the orthonormal components of the unit normal
vector of the considered surfaces (i.e. acting on the cracks’ edge surfaces). The
other notation used in Eqs. (10)-(13) is conventional.

Having thus completed the formulation of the considered problem, we now con-
sider the method of solution.

3 Solution procedure

First, using the equations of the crack edge surfaces given in (4), from the equa-
tion x±2 = hF + ε f±(x1,x3) or x±2 = hF +hC + ε f±(x1,x3) we derive the following
expressions for n±j :

n±1 =
±ε

∂ f±(x1,x3)
∂x1√

1+ ε2
(

∂ f±(x1,x3)
∂x1

)2
+ ε2

(
∂ f±(x1,x3)

∂x3

)2
,

n±2 =
±1√

1+ ε2
(

∂ f±(x1,x3)
∂x1

)2
+ ε2

(
∂ f±(x1,x3)

∂x3

)2
,

n±3 =
±ε

∂ f±(x1,x3)
∂x3√

1+ ε2
(

∂ f±(x1,x3)
∂x1

)2
+ ε2

(
∂ f±(x1,x3)

∂x3

)2
. (14)

Note that the expression (14) occurs for the surfaces S±1 and S±2 (12) simultaneously.
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Assume that ε2
[(

∂ f±(x1,x3)
∂x1

)2
+
(

∂ f±(x1,x3)
∂x3

)2
]

<< 1 according to which, the ex-

pression (14) can be represented in series form in terms of the small parameterε:

n±1 =
∞

∑
k=0

ε
2k+1n±1k(x1,x3), n±2 =±1+

∞

∑
k=1

ε
2kn±2k(x1,x3), n±3 =

∞

∑
k=0

ε
2k+1n±3k(x1,x3).

(15)

In equation (15), the explicit expressions of the coefficients n±1k(x1,x3), n±2k(x1,x3)
and n±3k(x1,x3) are too long, so they are not given here. At the same time, these
expressions can be easily obtained by employing the well known power series ex-
pansion of the expressions given in (15). As in the paper by Akbarov, Yahnioglu
and Tekin (2010), the sought values are represented in series form in terms of ε as
follows:{

σ
(rk)
i j ;ε

(rk)
i j ;u(rk)

i

}
=

∞

∑
q=0

ε
q
{

σ
(rk),q
i j ;ε

(rk),q
i j ;u(rk),q

i

}
. (16)

After substituting equation (16) into equations (6)-(8) and comparing identical
powers of ε , we obtain the corresponding closed system of equations to describe
each approximation. Owing to the linearity of the mechanical relations in equations
(8) and (9) and the conditions for displacements in equations (10) and (13), these
relations and conditions will be satisfied for each approximation in Eq. (16), sep-
arately. The remaining relations obtained from equations (6)-(8) and (10)-(13) for
every q-th approximation contains the values of all the previous approximations.
At the same time, while satisfying the boundary conditions on the crack’s edge
surfaces, i.e. the conditions in equation (12), we employ the boundary form per-
turbation technique, according to which, the values of each approximation in Eq.
(16) related to the core layer are expanded in series in the vicinity of (x1,hF +0,x3)
and (x1,hF +hC−0,x3). However, using the values of each approximation in Eq.
(16) related to the upper face (lower face) layer in the vicinity (x1,hF +hC +0,x3)
(in the vicinity (x1,hF −0,x3)), and using the expression (15), the corresponding
conditions on the crack edge surfaces are also obtained for the first and subsequent
approximations.

It follows from the well-known mechanical considerations that for the compara-
tively rigid composites under determination of the zeroth approximation we can

use the relation δ n
i + ∂u(0)

i
∂xn
≈ δ n

i according to which the field equations, boundary
and contact conditions obtained from Eqs. (6)-(13) for the zeroth approximation
coincide with the corresponding ones of the classical linear theory for viscoelastic
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bodies. In this case, for determination of the values related to the zeroth approxi-
mation we use the principle of correspondence by using the Laplace transform

ϕ̄(s) =
∞∫

0

ϕ(t)e−stdt (17)

with the parameter s > 0. So, replacing σ
(rk),0
i j , ε

(rk),0
i j , u(rk),0

i , λ (rk) and µ(rk) in

the corresponding equations and relations by σ̄
(rk),0
i j , ε̄

(rk),0
i j , ū(rk),0

i , λ̄ (rk) and µ̄(rk)

respectively, we obtain the field equations, boundary and contact conditions for the
Laplace transform of the values of the zeroth approximation. It is evident that, ac-
cording to the non-homogeneity of the plate material under loading by the bi-axial
uniformly distributed normal forces with intensity p1 and p3 in the directions of
the axes Ox1 and Ox3 respectively, that at the ends of the plate the inhomogeneous
distributions of the stresses and strains appear in the layers. However, these inho-
mogeneous distributions arise only in the very near vicinity of the ends of the plate
and do not influence the local buckling delamination of the plate parts around the
rectangular cracks. Therefore, we do not take the mentioned inhomogeneous dis-
tribution of the stresses and strains into account under determination of the Laplace
transformation of the values of the zeroth approximation. Thus, using the relations

2hF σ̄
(2),0
11 (s)+hCσ̄

(1),0
11 (s) =

1
s

p1h, 2hF σ̄
(2),0
33 (s)+hCσ̄

(1),0
33 (s) =

1
s

p3h,

ε̄
(1),0
11 (s) = ε̄

(2),0
11 (s), ε̄

(1),0
33 (s) = ε̄

(2),0
33 (s) ⇒

1
Ē∗(1) σ̄

(1),0
11 (s)− ν̄∗(1)

Ē∗(1) σ̄
(1),0
33 (s) =

1
Ē∗(2) σ̄

(2),0
11 (s)− ν̄∗(2)

Ē∗(2) σ̄
(2),0
33 (s),

− ν̄∗(1)

Ē∗(1) σ̄
(1),0
11 (s)+

1
Ē∗(1) σ̄

(1),0
33 (s) =− ν̄∗(2)

Ē∗(2) σ̄
(2),0
11 (s)+

1
Ē∗(2) σ̄

(2),0
33 (s) (18)

we can write the following expressions for the Laplace transform of the zeroth
approximation:

σ̄
(2),0
11 =

(
1

se1
(p1− ν̄

∗(1)p3)+
e2

s(e1)2 (p3− ν̄
∗(1)p1)

)(
1− (e2)2

(e1)2

)−1

,

σ̄
(1),0
11 =

1
s
(p1− σ̄

(2),0
11 2hF)(hC)−1

σ̄
(2),0
33 =

1
s
(p3− ν̄

(1)p1 + e2σ̄
(1),0
11 )(e1)−1, σ̄

(1),0
33 =

1
s
(p1− σ̄

(2),0
33 2hF)(hC)−1,
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σ
(rk),0
i j = 0 for i j 6= 11;33, (19)

where

e1 = 2hF +hC
Ē∗(1)

Ē∗(2) , e2 = 2hF ν̄
∗(1) + ν̄

∗(2)hC
Ē∗(1)

Ē∗(2) . (20)

Selecting a suitable expression for the core functions E(rk)(t) and ν(rk)(t) of the
integral operators{

E∗(rk);ν
∗(rk)
}

φ(t) ={
E(rk)

0 ;ν
(rk)
0

}
φ(t)+

t∫
0

{
E(rk)(β , t− τ);ν

(rk)(β , t− τ)
}

φ(τ)dτ,

and employing some algorithms for calculation of the inverse Laplace transform
we can determine the stresses:

σ
(rk),0
11 = σ

(rk),0
11 (t) , σ

(rk),0
33 = σ

(rk),0
33 (t) , σ

(rk),0
i j = 0 for i j 6= 11;33, (21)

related to the zeroth approximation.

Now we consider determination of the values of the first approximation. According
to the foregoing assumptions (19) and (21) we obtain the following equilibrium
equations, mechanical and geometrical relations for the first approximation:

∂σ
(rk),1
ji

∂x j
+σ

(rk),0
11 (t)

∂ 2u(rk),1
i

∂x2
1

+σ
(rk),0
33 (t)

∂ 2u(rk),1
i

∂x2
3

= 0,

σ
(rk),1
i j = λ

∗(rk)θ (rk),1δ
j

i +2µ
∗(rk)ε

(rk),1
i j ,

ε
(rk),1
i j =

1
2

(
∂u(rk),1

i
∂x j

+
∂u(rk),1

j

∂xi

)
. (22)

Consider the boundary and contact conditions obtained for the first approximation:

Boundary conditions at the ends of the plate:

u(rk),1
2

∣∣∣
x1=0;`1

= 0, u(rk),1
2

∣∣∣
x3=0;`3

= 0,

[
σ

(rk),1
11 +σ

(rk),0
11 (t)

∂u(rk),1
1

∂x1

]∣∣∣∣∣
x1=0;`1

= 0, σ
(rk),1
13

∣∣∣
x1=0;`1

= 0,
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σ
(rk),1
31

∣∣∣
x3=0;`3

= 0,

[
σ

(rk),1
33 +σ

(rk),0
33 (t)

∂u(rk),1
3

∂x3

]∣∣∣∣∣
x3=0;`3

= 0. (23)

Boundary conditions on the free face planes of the plate:

σ
(r1),1
21

∣∣∣
x2=0

= σ
(r1),1
22

∣∣∣
x2=0

= σ
(r1),1
23

∣∣∣
x2=0

= 0,

σ
(r3),1
21

∣∣∣
x2=h

= σ
(r3),1
22

∣∣∣
x2=h

= σ
(r3),1
23

∣∣∣
x2=h

= 0. (24)

Boundary conditions on the cracks’ edge surfaces:

σ
(r1),1
21

∣∣∣
S̄−3

= σ
(r1),0
11 (t)

∂ f−

∂x1
, σ

(r1),1
22

∣∣∣
S̄−3

= 0, σ
(r1),1
23

∣∣∣
S̄−3

= σ
(r1),0
33 (t)

∂ f−

∂x3
,

σ
(r2),1
21

∣∣∣
S̄+

3

= σ
(r2),0
11 (t)

∂ f +

∂x1
, σ

(r2),1
22

∣∣∣
S̄+

3

= 0, σ
(r2),1
23

∣∣∣
S̄+

3

= σ
(r2),0
33 (t)

∂ f +

∂x3
,

σ
(r2),1
21

∣∣∣
S̄−4

= σ
(r2),0
11 (t)

∂ f−

∂x1
, σ

(r2),1
22

∣∣∣
S̄−4

= 0, σ
(r2),1
23

∣∣∣
S̄−4

= σ
(r2),0
33 (t)

∂ f−

∂x3
,

σ
(r3),1
21

∣∣∣
S̄+

4

= σ
(r3),0
11 (t)

∂ f +

∂x1
, σ

(r3),1
22

∣∣∣
S̄+

4

= 0, σ
(r3),1
23

∣∣∣
S̄+

4

= σ
(r3),0
33 (t)

∂ f +

∂x3
,

S̄±3 = {((`1− `10)/2≤ x1 ≤ (`1 + `10)/2) ,
x±2 = hF ±0, ((`3− `30)/2≤ x3 ≤ (`3 + `30)/2)

}
,

S̄±4 = {((`1− `10)/2≤ x1 ≤ (`1 + `10)/2) ,

x±2 = hF +hC±0, ((`3− `30)/2≤ x3 ≤ (`3 + `30)/2)
}

. (25)

Contact conditions between the layers of the plate:

u(r1),1
i

∣∣∣
℘
−
1

= u(r2),1
i

∣∣∣
℘

+
1

, u(r3),1
i

∣∣∣
℘

+
2

= u(r2),1
i

∣∣∣
℘
−
2

,

σ
(r1),1
21

∣∣∣
℘
−
1

= σ
(r2),1
21

∣∣∣
℘

+
1

, σ
(r1),1
22

∣∣∣
℘
−
1

= σ
(r2),1
22

∣∣∣
℘

+
1

, σ
(r1),1
23

∣∣∣
℘
−
1

= σ
(r2),1
23

∣∣∣
℘

+
1

,

σ
(r3),1
21

∣∣∣
℘

+
2

= σ
(r2),1
21

∣∣∣
℘
−
2

, σ
(r3),1
22

∣∣∣
℘

+
2

= σ
(r2),1
22

∣∣∣
℘
−
2

, σ
(r3),1
23

∣∣∣
℘

+
2

= σ
(r2),1
23

∣∣∣
℘
−
2

.

(26)
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This completes the formulation of the boundary value problem corresponding to
the first approximation.

In a likewise manner the corresponding equations, boundary and contact conditions
for the second and subsequent approximations can also be obtained. Thus, investi-
gation of the buckling delamination around an interface rectangular crack contained
within a rectangular sandwich plate is reduced to the solutions of series-boundary
value problems such as (22)-(26). As in papers by Akbarov and Rzayev (2002a,
2002b, 2003) and others, by direct verification it is proven that the linear equations
in (22)-(26) coincide with the corresponding equations for TDLTS presented by
Guz (1999).

After determination of the stress-deformation state in the considered plate (using
the solution procedure described above) it is necessary to select the stability loss
criteria. Similarly to Hoff (1954), for the stability loss criterion we will assume
that the case where the size of the initial imperfection starts to increase and grows
indefinitely with the external compressive forces (for the elastic plate) or with du-
ration of time (for the viscoelastic plate) under considerable fixed finite values of
these forces, is also applicable here. From this criterion, the critical force or the
critical time will be determined.

Investigations (which are not detailed here) indicate that the values of the critical
force or of the critical time can be determined only within the framework of the
zeroth and the first approximations. The second and subsequent approximations
do not change the values of the critical parameters. Considering these subsequent
approximations improves only the accuracy of the stress distributions in the plate.
Since our aim is to investigate the stability loss (i.e. to determine the values of the
critical parameters), we restrict ourselves to consideration of the zeroth and first
approximations.

According to the foregoing considerations, the stresses in the zeroth approximation
have already been determined by the expressions (19)-(21). Now we consider de-
termination of the values of the first approximation for which it is necessary to solve
the problem (22)-(26). For this purpose, as for determination of the zeroth approx-
imation, we attempt to use the principle of correspondence by using the Laplace
transform (17). It should be noted that under this procedure the following difficulty
arises. In the equation (22) and under the conditions (23), σ

(rk),0
11 (t) and σ

(rk),0
33 (t)

(as noted above) depend on time and therefore the Laplace transform of the terms
σ

(rk),0
11 (t)∂ 2u(rk),1

i /∂x2
1 and σ

(rk),0
33 (t)∂ 2u(rk),1

i /∂x2
3 in equation (22) and the Laplace

transform of the terms σ
(rk),0
11 (t)∂u(rk),1

i /∂x1 and σ
(rk),0
33 (t)∂u(rk),1

i /∂x3 under the
conditions (23) cannot be written as σ̄

(rk),0
11 ∂ 2ū(rk),1

i /∂x2
1,

σ̄
(rk),0
33 ∂ 2ū(rk),1

i /∂x2
3, σ̄

(rk),0
11 ∂ ū(rk),1

i /∂x1 and σ̄
(rk),0
33 ∂ ū(rk),1

i /∂x3, respectively. To
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overcome this difficulty we assume that σ
(rk),0
11 (t) and σ

(rk),0
33 (t) vary slowly in time

and take the values of σ
(rk),0
11 (t) and σ

(rk),0
33 (t) at some fixed moment t = t1 and

consequently, instead of the Laplace transform of the terms σ̄
(rk),0
11 ∂ 2ū(rk),1

i /∂x2
1,

σ̄
(rk),0
33 ∂ 2ū(rk),1

i /∂x2
3, σ̄

(rk),0
11 ∂ ū(rk),1

i /∂x1 and σ̄
(rk),0
33 ∂ ū(rk),1

i /∂x3 we write
σ

(rk),0
11 (t1)∂ 2ū(rk),1

i /∂x2
1, σ

(rk),0
33 (t1)∂ 2ū(rk),1

i /∂x2
3, σ

(rk),0
11 (t1)∂ ū(rk),1

i /∂x1 and
σ

(rk),0
33 (t1)∂ ū(rk),1

i /∂x3, respectively. This assumption, also used in the papers by
Rzayev (2002), Rzayev and Akbarov (2002) and Akbarov and Yahnioglu (2001),
allows us to obtain accurate results if the variation of σ

(rk),0
11 with respect to time

is insignificant. Thus, taking the foregoing discussions into account and replac-
ing σ

(rk),1
i j , ε

(rk),1
i j , u(rk),1

i , σ
(rk),0
11 (t), λ ∗(rk) and µ∗(rk) in (22)-(26) by σ̄

(rk),1
i j , ε̄

(rk),1
i j ,

ū(rk),1
i , σ

(rk),0
11 (t1), λ̄ ∗(rk) and µ̄∗(rk) respectively, we obtain the corresponding equa-

tions and boundary conditions with respect to the Laplace transform of values for
the first approximation. For the solution to the problems corresponding to the
Laplace transforms of the sought values, we employ the 3D Finite Element Method
(3D FEM).

4 FEM modeling of the considered problems

For FEM modeling, when employing the Ritz method, it is necessary to construct
the functional, the Euler equation of which the equations (22)-(26) are rewritten for
the Laplace transform of the corresponding sought functions. For the realization of
this construction the equations (22)-(26) must be self-adjoint ones. In the mono-
graph by Guz (1999) it is proven that the equations of the TDLTS are self-adjoint.
According to this statement, we construct the following functional for the problems
under consideration:

Π

(
ū(rk),1

1 , ū(rk),1
2 , ū(rk),1

3

)
=

3

∑
k=1

1
2

∫∫∫
V (rk)

[(
σ̄

(rk),1
11 +σ

(rk),0
11 (t1)

∂ ū(rk),1
1

∂x1
+σ

(rk),0
33 (t1)

∂ ū(rk),1
1

∂x3

)
∂ ū(rk),1

1
∂x1

+

σ̄
(rk),1
12

∂ ū(rk),1
1

∂x2
+ σ̄

(rk),1
13

∂ ū(rk),1
1

∂x3
+(

σ̄
(rk),1
21 +σ

(rk),0
11 (t1)

∂ ū(rk),1
2

∂x1
+σ

(rk),0
33 (t1)

∂ ū(rk),1
2

∂x3

)
∂ ū(rk),1

2
∂x1

+

σ̄
(rk),1
22

∂ ū(rk),1
2

∂x2
+ σ̄

(rk),1
23

∂ ū(rk),1
2

∂x3
+
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(
σ̄

(rk),1
31 +σ

(rk),0
11 (t1)

∂ ū(rk),1
3

∂x1
+σ

(rk),0
33 (t1)

∂ ū(rk),1
3

∂x3

)
∂ ū(rk),1

3
∂x1

+

σ̄
(rk),1
32

∂ ū(rk),1
3

∂x2
+ σ̄

(rk),1
33

∂ ū(rk),1
3

∂x3

]
dx1dx2dx3

]
+

(`3+`30)/2∫
(`3−`30)/2

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(r1),0
11 (t1)

∂ f−

∂x1
ū(r1),1

1

∣∣∣
x2=hF−0

dx1dx3+

(`3+`30)/2∫
(`3−`30)/2

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(r1),0
33 (t1)

∂ f−

∂x3
ū(r1),1

3

∣∣∣∣
x2=hF−0

dx1dx3+

(`3+`30)/2∫
(`3−`30)/2

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(r2),0
11 (t1)

∂ f +

∂x1
ū(r2),1

1

∣∣∣∣
x2=hF+0

dx1dx3+

(`3+`30)/2∫
(`3−`30)/2

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(r2),0
33 (t1)

∂ f +

∂x3
ū(r2),1

3

∣∣∣∣
x2=hF+0

dx1dx3+

(`3+`30)/2∫
(`3−`30)/2

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(r2),0
11 (t1)

∂ f−

∂x1
ū(r2),1

1

∣∣∣∣
x2=(hF+hC)−0

dx1dx3+

(`3+`30)/2∫
(`3−`30)/2

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(r2),0
33 (t1)

∂ f−

∂x3
ū(r2),1

3

∣∣∣∣
x2=(hF+hC)−0

dx1dx3+

(`3+`30)/2∫
(`3−`30)/2

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(r3),0
11 (t1)

∂ f +

∂x1
ū(r3),1

1

∣∣∣∣
x2=(hF+hC)+0

dx1dx3+
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(`3+`30)/2∫
(`3−`30)/2

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(r3),0
33 (t1)

∂ f +

∂x3
ū(r3),1

3

∣∣∣∣
x2=(hF+hC)+0

dx1dx3. (27)

By applying the standard procedure, we obtain the equilibrium equation in (22)
and all the boundary and contact conditions (23) – (26) written for stresses from
the relation:

δΠ =
3

∑
k=1

[
∂Π

∂ ū(rk)
1

δ ū(rk)
1 +

∂Π

∂ ū(rk)
2

δ ū(rk)
2 +

∂Π

∂ ū(rk)
3

δ ū(rk)
3

]
= 0. (28)

Thus, after establishing the foregoing functional by the usual procedure, the FEM
technique is applied to obtain the numerical results. In this case, the domain
V
(
= V (r1)∪V (r2) ∪ V (r3)

)
is divided into a finite number of finite elements in the

form of rectangular prism (brick) elements with eight nodes. The number of finite
elements is determined from the convergence requirement of the numerical results.
We should note that the authors in the package FTN77 have composed all computer
programs used in the numerical investigations carried out.

In the paper by Akbarov, Yahnioglu and Rzayev (2007), it was established that
under investigation of the buckling delamination around the cracks contained in a
plate, that the numerical results on the critical parameter obtained through the use
of singular type finite elements in the vicinity of the crack tips, coincide (with a
very high accuracy) with those obtained by the use of ordinary type finite elements
in the vicinity of the crack tips. According to this statement, in the present investi-
gation the finite elements containing the crack tips (fronts) are also ordinary brick
elements. In this way, we simply establish FEM modeling of the problems under
consideration.

Thus, by employing the FEM algorithm detailed above we calculate the values of
the Laplace transform of the sought values. The values of the sought functions are
determined by the use of the method by Schapery (1966).

5 Numerical results and discussion

The material of the face layers is supposed to be linearly viscoelastic with the op-
erators

E∗(2) = E(2)
0 [1−ω0R∗α (−ω0−ω∞)] ,

ν
∗(2) = ν

(2)
0

[
1+

1−2ν
(2)
0

2ν
(2)
0

ω0R∗α (−ω0−ω∞)

]
(29)
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where E(2)
0 and ν

(2)
0 are the instantaneous values of Young’s modulus and the Pois-

son coefficient, respectively; α, ω0 and ω∞ are the rheological parameters of the
covering layers’ materials and R∗α is the fractional-exponential operator of Rabot-
nov (1977) and this operator is determined as:

R∗αϕ(t) =
t∫

0

Rα (β , t− τ)ϕ(τ)dτ (30)

where

Rα (β , t) = tα
∞

∑
n=0

β ntn(1+α)

Γ((1+n)(1+α))
, −1 < α ≤ 0. (31)

In equation (31), Γ(x) is the Gamma function.

The material of the core layer is supposed to be pure elastic with mechanical char-
acteristics E(1) (Young’s modulus) and ν(1) (Poisson coefficient).

We introduce the dimensionless rheological parameter ω = ω∞/ω0 and the dimen-
sionless time t ′ = ω

1/(1+α)
0 t. For concrete numerical investigations, the suitable

initial imperfection modes of the crack edge surfaces can be selected as follows:

f±(x1,x3) =±`10 sin2
(

π

`10

(
x1−

`1− `10

2

))
sin2

(
π

`30

(
x3−

`3− `30

2

))
,

(`1− `10)/2≤ x1 ≤ (`1 + `10)/2, (`3− `30)/2≤ x3 ≤ (`3 + `30)/2. (32)

Thus, we turn to the analysis of the numerical results and first, we consider the
pure elastic stability loss buckling delamination which takes place at t ′ = 0 and
t ′ = ∞. We introduce the parameters δ 1 = σ

(1),0
11 /E(1) and δ 3 = σ

(1),0
33 /E(1), and

assume that δ 3 = ξ δ 1. Note that for the fixed value of the parameter ξ we can
easily determine the corresponding value of ratio p3/p1 from the relations (18) and
(19). Moreover, note that through the parameter ξ we estimate the influence of the
bi-axiality of the external compression of the plate. Consequently, for each fixed ξ

the local buckling delamination of the sandwich plate under consideration can be
determined through the critical values of the parameter δ 1.

The critical values of δ 1 obtained at t ′ = 0 and t ′ = ∞ we denote through δ 1cr.0 and
δ 1cr.∞ respectively. Assume that h/`1 = 0.15, ν(1) = ν

(2)
0 = 0.3 and `3/`1 = 1.0

and consider Table 1 which shows the influence of the parameter ξ on the values
of δ 1cr.0 (upper number) and δ 1cr.∞ (lower number) obtained for various E(2)

0 /E(1)

and hF/`1 under `10/`1 = 0.5, `30/`1 = 0.5 and ω = 2. It follows from this table
that, as can be predicted, an increase in the values of ξ causes a decrease in δ 1cr.0
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(a) 

 
(b) 

 Figure 2: Comparison of the values of δ 1cr.0 obtained for the embedded, edge and
band cracks
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Table 1: The values of δ 1cr.0 (upper number) and δ 1cr.∞ (lower number) obtained
for various ξ , E(2)

0 /E(1) and hF/`1 under `30/`1 = `10/`1 = 0.5

ξ E(2)
0 /E(1) hF/`1

0.01250 0.02500 0.03750 0.05000

0

1 0.0111
0.0077

0.0251
0.0176

0.0451
0.0317

0.0684
0.0481

2 0.0220
0.0153

0.0490
0.0346

0.0873
0.0618

0.1322
0.0935

5 0.0535
0.0374

0.1167
0.0829

0.2051
0.1466

0.3103
0.2213

10 0.1036
0.0728

0.2215
0.1586

0.3847
0.2773

0.5828
0.4183

0.5

1 0.0077
0.0054

0.0176
0.0124

0.0319
0.0225

0.0488
0.0344

2 0.0153
0.0107

0.0344
0.0243

0.0618
0.0438

0.0943
0.0668

5 0.0373
0.0261

0.0819
0.0583

0.1451
0.1038

0.2209
0.1578

10 0.0722
0.0508

0.1554
0.1114

0.2716
0.1961

0.4135
0.2980

1.0

1 0.0058
0.0040

0.0133
0.0093

0.0241
0.0170

0.0369
0.0260

2 0.0115
0.0080

0.0260
0.0183

0.0467
0.0331

0.0713
0.0505

5 0.0281
0.0196

0.0618
0.0440

0.1096
0.0784

0.1671
0.1193

10 0.0545
0.0383

0.1173
0.0841

0.2052
0.1482

0.3126
0.2254

and δ 1cr.∞. Moreover, this table shows that the values of δ 1cr.0 and δ 1cr.∞ also de-
crease with decreasing E(2)

0 /E(1) and hF/`1, i.e. with a decrease in the face layer’s
material stiffness and thickness. These results agree well with the well-known me-
chanical considerations and give an assurance of the reliability of the developed
algorithm and the programs that are used for their calculations. Consider also the
following verification of the validity of the developed and used algorithm and pro-
grams. For this purpose we use the results obtained under p3 = 0 which, according
to the assumption ν

(2)
0 = ν(1), corresponds to the case where ξ = 0 and we compare

these results with the corresponding ones obtained for the edge and band cracks.
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According to the mechanical consideration, for fixed `10/`1 the values of δ 1cr.0 ob-
tained for the above-noted three cases must approach each other with `30/`1. This
consideration is proven with the graphs given in Fig. 2 that show the dependence
between δ1cr.0 and `30/`1 under `10/`1 = 0.5, hF/`1 = 0.0375, E(2)

0 /E(1) = 5 (Fig.
2a) and 10 (Fig. 2b). Note that in Fig. 2 the graphs related to the edge and band
cracks are taken from the Ref. Akbarov, Yahnioglu and Tekin (2010).

Consider the influence of the cracks’ length along the Ox1 and Ox3 axes, i.e. the in-
fluence of the parameters `10/`1 and `30/`1, on the values of δ 1cr.0 and δ 1cr.∞. This
influence is illustrated by the graphs given in Fig. 3 which are constructed under
`30/`1 = 0.5 and in Fig. 4 which are constructed under `10/`1 = 0.5. Moreover,
under construction of these graphs it is assumed that ω = 2, hF/`1 = 0.0375 and
E(2)

0 /E(1) = 2 (Figs. 3a and 4a), 5 (Figs.3b and 4b) and 10 (Figs. 3c and 4c). It
follows from these results that the values of δ 1cr.0 and δ 1cr.∞ decrease with `10/`1

and `30/`1, but increase with E(2)
0 /E(1).

Now we handle the question of how the buckling delamination mode depends on
the ratio `30/`10. In this case taking the symmetry of the plate geometry with
respect to x1 = `1/2 and with respect to x3 = `3/2, we consider only the parts of
the plate for which VS = {0≤ x1 ≤ `1/2, 0≤ x3 ≤ `3/2, 0≤ x2 ≤ hF +hC/2}.
Fig. 5 and Fig. 6 show schematically the distribution of v = u(2)

2 E(2)
0 /(p1`1) with

respect to x(= x1) and z(= `3−x3) under x2 = hF −0 in the cases where `30/`10 =
0.6250, `30/`1 =0.25, ξ = 0.5 (Fig. 5) and `30/`10 = 0.3571, `30/`1 =0.25, ξ = 0.5
(Fig. 6) respectively. Under construction of these buckling mode surfaces it is as-
sumed that δ 1 is very near to δ 1cr.0, i.e. it is assumed that |δ 1−δ 1cr.0| < 10−4 is
satisfied. Although the illustrated mode surfaces are constructed for the case where
E(2)

0 /E(1) = 2 and hF/`1 = 0.0375 they also hold (in a qualitative sense) for the
other values of the problem parameters E(2)

0 /E(1) and hF/`1. It follows from Fig.
5 that in the case where `30/`10 = 0.6250, `10/`1 =0.40, ξ = 0.5 and δ1 =0.1644
the buckling delamination mode is similar to the initial imperfection mode of the
cracks’ edge surfaces, but in the case where `30/`10 = 0.3571, `10/`1 =0.70, ξ =
0.5 and δ1 =0.1458 (Fig. 6) the buckling delamination mode has a more compli-
cate character. For illustration of the influence of the parameters `30/`10 and ξ

on this character we consider the graphs of the dependence between the values of

w = 2u(2)
2

∣∣∣∣∣∣max
∣∣∣u(2)

2

∣∣∣
0≤x1≤`1/2

−min
∣∣∣u(2)

2

∣∣∣
0≤x1≤`1/2

∣∣∣∣∣∣
−1

at x2 = hF −0, x3 = `3/2 and x1/`1 which are

constructed under hF/`1 = 0.0375 and E(2)
0 /E(1) = 2 for various values of these

parameters. These graphs are given in Fig. 7 and in this figure by the letters a, b
and c, the cases where ξ = 0.0; 0.5 and 1.0 are indicated respectively. It follows
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(a) (b) 

  (c) 
 Figure 3: The graphs of the dependencies among δ 1cr.0, δ 1cr.∞ and `10/`1 under

E(2)
0 /E(1) = 2 (a), 5 (b) and 10 (c) under ω = 2, hF/`1 = 0.0375 and `30/`1 = 0.5
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(a) (b) 

 
(c) 

 Figure 4: The graphs of the dependencies among δ 1cr.0, δ 1cr.∞ and `30/`1 under
E(2)

0 /E(1) = 2 (a), 5 (b) and 10 (c) under ω = 2, hF/`1 = 0.0375 and `10/`1 = 0.5
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(a) 
 

(b) 

 Figure 5: The buckling delamination mode of the crack’s edge surface under t ′ = 0,
E(2)

0 /E(1) = 2, hF/`1 =0.0375, `30/`1 =0.25, `10/`1 =0.40, δ1 =0.1644: the case
where `30/`10 =0.6250 and the buckling delamination mode is similar with the
initial imperfection mode of the cracks’ edges

(a) 
 

(b) 

 Figure 6: The buckling delamination mode of the crack’s edge surface under t ′ =
0, E(2)

0 /E(1) = 2, hF/`1 =0.0375, `30/`1 =0.25, `10/`1 =0.70, δ1 =0.1458: the
case where `30/`10 =0.3571 and the buckling delamination mode has a complicate
character
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from the graphs that in general, for fixed values of the problem parameters there
exists such values of χ (= `30/`10) (denoted by χ∗), according to which the char-
acter of the buckling delamination mode can be determined. Thus, for the case
considered in Fig. 7, if χ > χ∗, then the buckling delamination mode is similar to
the initial imperfection mode, but if χ < χ∗ then the buckling delamination mode
is not similar to the initial imperfection mode and has a complicate character. Note
that the values of χ∗ decrease with the parameter ξ .

It follows from these results that the complicated buckling modes observed in the
experimental investigations carried out by Evans and Hutchinson (1995), Gioia
and Ortiz (1997), Hutchinson and Suo (1992), Hutchinson, Thouless and Liniger
(1992), Nilson and Giannakopoulos (1995), Thouless, Jensen and Liniger (1994),
Wang and Evans (1998) and Moon, Chung, Lee, Oh, Wang and Evans, (2002)
can be described within the scope of the approach proposed and developed in the
present paper.

The violation of the initial imperfection mode of the crack’s edges under its evo-
lution with external compressive forces can be explained as follows. In the case
considered, the investigation of the evolution of the crack edge-surfaces can be con-
sidered approximately as the investigation of the buckling of a “rectangular plate”,
whose edges are supported elastically. Namely, the “rectangular plate” mentioned
above is formed from the part of the plate occupying the region consisting of the
part of the face layer, which is between the crack’s edge surface and the free face
of this layer. During the evolution of the initial imperfection in the ends of this
“rectangular plate”, various types of stresses and displacements arise. These dis-
tributions depend significantly on the ratios `30/`10 and hF/`1 and determine the
buckling mode. Moreover, for clarity of the foregoing discussion, the following
known fact in the theory of the stability of rectangular plates should be remem-
bered.

Suppose that the stability loss of the rectangular plate without any initial imperfec-
tion with the length `10 and the width `30 is considered within the scope of the Euler
(bifurcation) approach. Furthermore, assume that at the ends of this plate, normal
and tangential forces act. As follows from the corresponding theoretical and ex-
perimental investigations (see, for example, the monograph by Volmir (1967)), in
such cases the stability loss modes of the rectangular plates depend on the ratio of
the length to the width.

Now, we consider the numerical results obtained for the critical time, i.e. for t ′cr.
In obtaining these results, we assume that the values of the strain caused by the
external compressive force satisfy the inequality-relation δ 1cr.∞ < δ 1 < δ 1cr.0. We
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introduce a parameter:

η =
δ 1cr.0−δ 1

δ 1cr.0−δ 1cr.∞
. (33)

Note that this parameter characterizes the “distance” of the selected value of δ 1
from the values of δ 1cr.0 and δ 1cr.∞, and 0 ≤ η ≤ 1; the values η = 0 and η = 1
correspond to the cases where δ 1 = δ1cr.0 and δ 1 = δ1cr.∞, respectively, and for
the interval δ 1cr.∞ < δ1 < δ 1cr.0 the values of η increase (decrease) monotonically
with δ 1 approaching δ1cr.∞ (δ1cr.0). To use the parameter η (33) gives the pos-
sibility of determining the influence of the problem parameters (for instance, the
parameters E(2)

0 /E(1) and ξ ) on the critical time (i.e. on t ′cr) obtained for the values
of δ 1 which have the same “distance” from δ 1cr.0 and δ 1cr.∞. Taking the foregoing
discussion into account, consider the results given in Tables 2, 3 and 4 which show
the values of t ′cr. obtained for various η (or δ 1) and E(2)

0 /E(1) under hF/` = 0.0375,
`30/`1 = 0.5, `10/`1 = 0.5, ω = 2 and α = −0.5 in the cases where ξ = 0.0, 0.5
and 1.0 respectively.

Note that under determination of t ′cr the values of σ
(r k)
11 (0) and σ

(r k)
33 (0) are taken

instead of σ
(rk)
11 (t) and σ

(rk)
33 (t) respectively, which enter the equations (22)-(26).

Thus, it follows from the analyses of the foregoing results that for the fixed value
of the parameter η the influence of the parameters E(2)

0 /E(1) and ξ is insignificant.
Consequently, the parameter on which the values of t ′cr depend mainly is η .

Consider the influence of the rheological parameter ω on the values of t ′cr. This
influence is tabulated in Table 5 under α =−0.5, ξ = 0.0, E(2)

0 /E(1) = 2, hF/`1 =
0.0375, `30/`1 = 0.5 and `10/`1 = 0.5. Table 5 shows that the values of t ′cr in-
crease with ω , because the parameter ω characterizes the dilatational mechanical
properties (for instance, the dilatational modulus of elasticity) of the face layers’
materials, and an increase in the values of ω means that the stiffness of these mate-
rials increases.

Table 6 illustrates the influence of the rheological parameter α on the values of t ′cr

obtained for the case where ω = 2 under ξ = 0.0, E(2)
0 /E(1) = 2, hF/`1 = 0.0375,

`30/`1 = 0.5 and `10/`1 = 0.5. It follows from Table 6 that there exists such a value
of δ 1 before (after) which an increase in the absolute values of the parameter α

causes a decrease (an increase) in the values of the critical time t ′cr. Note that these
results in the qualitative sense agree with corresponding ones obtained in a paper
by Akbarov and Karakaya (2011).
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(a) 

 
(b) 

 (c) 
 Figure 7: The distribution of the vertical displacement of the cracks’ edge surface

with respect to x1
/
`1 at x3 = `3/2 in the cases where ξ = 0 (a), 0.5 (b) and 1 (c)



Local Buckling Delamination of a Rectangular Sandwich Plate 67

Table 2: The values of t ′cr obtained for various η and E(2)
0 /E(1) under ξ = 0 for the

case where `30/`1 = `10/`1 = 0.5 and hF/`1 = 0.0375

E(2)
0 /E(1) δ1cr.0 δ1cr.∞ δ1 η t ′cr

1 0.0451 0.0317

0.043882 0.09 0.0006
0.041775 0.25 0.006
0.040633 0.33 0.015
0.038400 0.50 0.060
0.036167 0.67 0.244
0.035050 0.75 0.555
0.033933 0.83 1.581
0.033040 0.90 5.370
0.032918 0.91 6.711
0.032370 0.95 27.031

2 0.0873 0.0618

0.084982 0.09 0.0006
0.080973 0.25 0.006
0.078800 0.33 0.015
0.074550 0.50 0.060
0.070300 0.67 0.243
0.068175 0.75 0.550
0.066050 0.83 1.550
0.064350 0.90 5.155
0.064118 0.91 6.406
0.063075 0.95 24.527

5 0.2051 0.1466

0.199782 0.09 0.0006
0.190585 0.25 0.006
0.185600 0.33 0.015
0.175850 0.50 0.060
0.166100 0.67 0.242
0.161225 0.75 0.547
0.156350 0.83 1.529
0.152450 0.90 4.999
0.151918 0.91 6.185
0.149525 0.95 22.765
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Table 3: The values of t ′cr obtained for various η and E(2)
0 /E(1) under ξ = 0.5 for

the case where `30/`1 = `10/`1 = 0.5 and hF/`1 = 0.0375

E(2)
0 /E(1) δ1cr.0 δ1cr.∞ δ1 η t ′cr

1 0.0319 0.0225

0.031045 0.09 0.0006
0.029568 0.25 0.006
0.028767 0.33 0.015
0.027200 0.50 0.059
0.025633 0.67 0.240
0.024850 0.75 0.541
0.024067 0.83 1.511
0.023440 0.90 4.949
0.023355 0.91 6.126
0.022970 0.95 22.690

2 0.0618 0.0438

0.060164 0.09 0.0006
0.057334 0.25 0.006
0.055800 0.33 0.015
0.052800 0.50 0.060
0.049800 0.67 0.241
0.048300 0.75 0.546
0.046800 0.83 1.533
0.045600 0.90 5.057
0.045436 0.91 6.274
0.044700 0.95 23.559

5 0.1451 0.1038

0.141345 0.09 0.0006
0.134853 0.25 0.006
0.131333 0.33 0.015
0.124450 0.50 0.060
0.117567 0.67 0.243
0.114125 0.75 0.550
0.110683 0.83 1.539
0.107930 0.90 5.050
0.107555 0.91 6.252
0.105865 0.95 23.198
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Table 4: The values of t ′cr obtained for various η and E(2)
0 /E(1) under ξ = 1 for the

case where `30/`1 = `10/`1 = 0.5 and hF/`1 = 0.0375

E(2)
0 /E(1) δ1cr.0 δ1cr.∞ δ1 η t ′cr

1 0.0241 0.0170

0.023455 0.09 0.0006
0.022338 0.25 0.006
0.021733 0.33 0.015
0.020550 0.50 0.060
0.019367 0.67 0.242
0.018775 0.75 0.547
0.018183 0.83 1.533
0.017710 0.90 5.055
0.017645 0.91 6.278
0.017355 0.95 23.568

2 0.0467 0.0331

0.045464 0.09 0.0006
0.043326 0.25 0.006
0.042167 0.33 0.015
0.039900 0.50 0.060
0.037633 0.67 0.242
0.036500 0.75 0.549
0.035367 0.83 1.541
0.034460 0.90 5.102
0.034336 0.91 6.336
0.033780 0.95 23.967

5 0.1096 0.0784

0.106764 0.09 0.0006
0.101859 0.25 0.006
0.099200 0.33 0.015
0.094000 0.50 0.061
0.088800 0.67 0.247
0.086200 0.75 0.560
0.083600 0.83 1.576
0.081520 0.90 5.240
0.081236 0.91 6.153
0.079960 0.95 24.913
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Table 5: The influence of the rheological parameter ω on the values of t ′cr obtained
under which α =−0.5, E(2)

0 /E(1) = 2, hF/`1 = 0.0375, `30/`1 = `10/`1 = 0.5 and
ξ = 0

δ1
ω

0.5 1.0 2.0
0.080973 0.004 0.005 0.006
0.078800 0.009 0.010 0.015
0.074550 0.026 0.033 0.060
0.070300 0.058 0.084 0.243
0.068175 0.083 0.131 0.550
0.066050 0.116 0.203 1.550
0.064350 0.152 0.290 5.155

Table 6: The influence of the rheological parameter α on the values of t ′cr obtained
under which ω = 2, E(2)

0 /E(1) = 2, hF/`1 = 0.0375, `30/`1 = `10/`1 = 0.5 and
ξ = 0

δ1
α

-0.3 -0.5 -0.7
0.080973 0.022 0.006 0.0003
0.078800 0.040 0.015 0.001
0.074550 0.110 0.060 0.014
0.070300 0.298 0.243 0.150
0.068175 0.535 0.550 0.587
0.066050 1.112 1.550 3.296
0.064350 2.646 5.155 24.419

6 Conclusion

In the present paper, an approach was developed and employed for the study of the
buckling delamination of elastic and viscoelastic rectangular sandwich plates con-
taining interface rectangular embedded cracks under bi-axial compression. The in-
vestigation was made within the scope of the piecewise homogeneous body model.
It was assumed that the edge surfaces of the cracks have initial infinitesimal imper-
fections and the proposed approach was based on the study of the evolution of these
initial imperfections with external compressive forces (with duration of time) for
pure elastic (viscoelastic) materials. The noted evolution was determined within
the scope of the exact 3D geometrically nonlinear field equations of the theory of
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elasticity and viscoelasticity. For the solution to the corresponding boundary-value
problems, the boundary form perturbation techniques, Laplace transform and 3D
FEM were employed. The initial imperfection criterion was used as a delamina-
tion buckling (stability loss) criterion. The numerical results on the influence of
the problem parameters on the values of the critical strain and critical time as well
as on the buckling delamination mode were presented and analyzed. According to
these analyses, the following main conclusions can be drawn:

• In unidirectional compression, the values of the critical strains, i.e. the criti-
cal values of the parameter δ 1 obtained for the interface rectangular embed-
ded cracks are greater than the corresponding ones obtained for the interface
edge and band cracks;

• The bi-axiality of the external compression causes a decrease in the critical
values of the parameter δ 1 ;

• The buckling delamination mode of the embedded cracks’ edges depends on
the value of the ratio `30/`10, where `10 (`30) is the crack’s length along the
Ox1 (Ox3) axis;

• The parameter on which the values of the dimensionless critical time mainly
depend is the parameter η which characterizes the “distance” of the selected
value of the parameter δ 1 from the values of δ 1cr.0 and δ 1cr.∞. For a fixed
value of the parameter η the influence of the problem parameters E(2)

0 /E(1)

and ξ on the values of the dimensionless critical time is insignificant;

• With the length of the rectangular embedded crack along the Ox3 axis the
results obtained for the critical values of δ 1 approach the corresponding ones
obtained in the paper by Akbarov, Yahnioglu and Tekin (2010) for the edge
and band cracks;

• The critical values of the parameter δ 1 increase with the stiffness of the ma-
terial of the face layers;

• The critical dimensionless time increases with rheological parameter ω , the
increasing of which corresponds to an increase in the dilatational modulus of
elasticity of the face layers’ materials;

• There exists such a value of the parameter δ 1 before (after) which an increase
in the absolute values of the rheological parameter α causes an increase (a
decrease) in the values of the dimensionless critical time;
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• The numerical results obtained and analyzed in the present paper can be taken
as a standard for the estimation of the accuracy (in the qualitative and quan-
titative senses) of the corresponding numerical results obtained within the
scope of approximate plate theories.
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