
Copyright © 2012 Tech Science Press CMC, vol.29, no.2, pp.129-154, 2012

Domain-Decomposition Singular Boundary Method for
Stress Analysis in Multi-Layered Elastic Materials

Yan Gu1, Wen Chen1,2 and Xiao-Qiao He3

Abstract: This paper applies an improved singular boundary method (SBM) in
conjunction with domain decomposition technique to stress analysis of layered
elastic materials. For problems under consideration, the interface continuity con-
ditions are approximated in the same manner as the boundary conditions. The
multi-layered coating system is decomposed into multiple subdomains in terms of
each layer, in which the solution is approximated separately by the SBM represen-
tation. The singular boundary method is a recent meshless boundary collocation
method, in which the origin intensity factor plays a key role for its accuracy and ef-
ficiency. This study also introduces new strong-form regularization formulas to ac-
curately evaluate the origin intensity factors for elasticity problem. Consequently,
we dramatically improve the accuracy and convergence of SBM solution of the
elastostatics problems. The proposed domain-decomposition SBM is tested on two
benchmark problems. Based on numerical results, we discuss merits of the present
SBM scheme over the other boundary discretization methods, such as the method
of fundamental solution (MFS) and the boundary element method (BEM).

Keywords: Multi-layered materials, singular boundary method, domain decom-
position, meshless boundary collocation method, origin intensity factor, elasticity.

1 Introduction

In the machining industry, the coatings consist of one or more layers and pro-
tect the tool against adhesion diffusion and intensive abrasive wear and also pro-
vide a barrier for the intensive heat flow from the contact area into the substrate
material. Thanks to their thin-walled structures, the boundary-only discertization
techniques, typically boundary element method (BEM) [Atluri (2005); Cheng and
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Cheng (2005)], have the salient edges over domain discretization methods such as
finite element method (FEM) in the numerical modeling of the problems of this
type. However, the traditional BEM encounters challenging mesh generation for
complex-shaped moving boundary problems and costly numerical integration.

To remedy the above-mentioned problems, recent decades have witnessed a quickly
increasing research on the so-called meshless strong-form boundary collocation
methods, among which the most known is the method of fundamental solution
(MFS) [Chen et al. (1998); Fairweather and Karageorghis (1998); Golberg et al.
(2000); Poullikkas et al. (2002)]. The MFS shares major advantages of the BEM
over domain discretization methods [Cheng and Cheng (2005); Marin (2009)]. In
addition, it has further advantages over the BEM in that it does not require an
elaborate discretization of the boundary and avoids computationally expensive and
mathematically tricky numerical integration. No extra quadratures are required to
evaluate solutions in the interior domain as well. In addition, the MFS is mathemat-
ically simple and very easy to program with little data preparation. On the down-
side, the traditional MFS, however, requires a fictitious boundary for the placement
of the source points to circumvent singularity of fundamental solution. The costly
non-linear least-squares minimization procedure is sometimes used to determine
this artificial boundary. In practice, the fictitious boundary is largely determined
based on trial-error empirical law and can be arbitrary. This has long been a per-
plexing issue to restrict its utility in real-world problems.

The singular boundary method (SBM) [Chen et al. (2009); Chen and Wang (2010);
Gu et al. (2011); Htike et al. (2011)] is another recent meshless boundary collo-
cation method. Like the MFS, the SBM is an inherently meshless boundary col-
location method [Chen et al. (2003); Liu et al. (2009); Sarler (2009); Wang et al.
(2009); Young et al. (2005)] in which the mesh or element is not required and only
boundary nodes are generated. The SBM enjoys all merits of the MFS and BEM.
Its key idea is to introduce a concept of the origin intensity factor [Chen and Gu
(2011); Gu et al. (2012a)] to isolate the singularity of the fundamental solutions in
a strong-from integration-free fashion. Consequently, the solution of the problem
of interest can be approximated by a linear combination of fundamental solutions
with sources located directly on the physical boundary. This is dramatically differ-
ent from the MFS in that the perplexing fictitious boundary is totally eliminated.
Prior to this study, the SBM has been successfully used for the solution of many
problems, such as potential problems [Chen and Wang (2010); Gu et al. (2012b)],
infinite domain problems [Chen and Fu (2010)], and plane elasticity problems [Gu
et al. (2011)].

As mentioned above, the origin intensity factor plays a key role in the SBM and
its accurate evaluation can dramatically improve the accuracy, stability, and effi-
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ciency of the SBM solution. This paper introduces new strong-form regularization
formulas to accurately evaluate the origin intensity factors for elasticity problem.
This study will apply this improved SBM scheme to stress analysis in multi-layered
elastic materials. Different from our previous SBM solution of 2D elasticity prob-
lems [Gu et al. (2011)], our new regularization technique can accurately remove
the singularities of the fundamental solution and its derivatives in the strong-form
fashion, and consequently, the origin intensity factors can be determined directly
without using any sample nodes as in Ref. [Gu et al. (2011)].

The multi-layered problems under consideration are solved using a domain decom-
position technique (DDT), which has been successfully used in conjunction with
the BEM and MFS, see Refs. [Berger and Karageorghis (1999); Berger and Kara-
georghis (2001); Chen and Liu (2001); Gao et al. (2007); Karageorghis and Lesnic
(2008); Luo et al. (2000)]. The basic idea behind the DDT is that the whole do-
main of concern is broken up into separated subdomains and the final system of
equations is constituted by assembling algebraic equations discretized in each sub-
domain, based on the compatibility of displacements and equilibrium of tractions at
adjacent common interface nodes. The resulting algebraic equations have a blocked
sparse coefficient matrix.

This paper is an extension of our recent work [Chen et al. (2011)] where a new reg-
ularization technique was derived and applied to 2D elastostatics problems. Herein,
the developed SBM formulation is extended to multi-domain problems and applied
to the stress analysis for multi-layered coating systems. A brief outline of the pa-
per is as follows. In section 2, we introduce the SBM formulation in the solution
of elastostatics problems in a single material. In section 3, we describe the SBM
domain decomposition approach for the solution of multi-layered elastic problems.
In section 4, two benchmark test problems are examined to validate the computa-
tional code and assess the performances of the proposed SBM scheme. Finally, the
conclusions and remarks are provided in Section 5.

2 The SBM for elastostatics problem in a single material

In the absence of body forces, the equilibrium equations for plane elastostatics
problem, also known as the Navier equations, with respect to the displacement
components ui(x), i = 1,2, can be stated as{
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with the boundary conditions

ui(x) = ūi x ∈ Γu (Dirichlet boundary conditions), (3)

ti(x) = t̄i x ∈ Γt (Neumann boundary conditions), (4)

where µ represents the Poisson’s ratio, ti(x) denotes the component of boundary
traction in the ith coordinate direction, the boundary of Ω is ∂Ω = Γu ∪Γt which
we assume to be piecewise smooth, ūi and t̄i represent the prescribed displacements
and tractions, respectively.

The strains εi j(x), i, j = 1,2, are related to the displacement gradients by the kine-
matic relations

εi j(x) =
1
2

{
∂ui(x)

∂x j
+

∂u j(x)
∂xi

}
, (5)

and the stresses σi j(x), i, j,= 1,2, are related to the strains via Hooke’s law by

σi j(x) = 2G
(

εi j(x)+
µ

1−2µ
εkk(x)δi j

)
, (6)

where G is the shear modulus and δi j the Kronecker delta symbol. We use the
customary standard Cartesian notation for summation over repeated subscripts.

The boundary tractions ti(x), i = 1,2, are defined in terms of the stresses as

ti(x) = σi j(x)n j(x), x ∈ ∂Ω, (7)

where n j(x) is the direction cosine of the unit outward normal vector at the bound-
ary point x.

Employing indicial notation for the coordinates of points x and s, i.e. x1, x2 and
s1, s2, respectively, the Kelvin fundamental solutions of the elastostatics governing
equations (1) and (2) can be expressed as [Banerjee (1994)]

Ui j(x,s) =− 1
8πG(1−µ)

{
(3−4µ) logr(x,s)δi j− r,i(x,s)r, j(x,s)

}
, (i, j = 1,2),

(8)

where r(x,s) is the Euclidean distance between the collocation point x and source
point s, r,i(x,s) = ∂ r(x,s)

∂xi
= xi−si

r(x,s) expresses the partial derivative of the distance r
with respect to xi.
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The fundamental solution of the tractions can be obtained by first calculating the
fundamental solutions of strains and then applying Hooke’s law and are stated as

Ti j(x,s) =− 1
4π(1−µ)r(x,s)

{
[(1−2µ)δi j +2r,i(x,s)r, j(x,s)] r,n(x,s)

+ (1−2µ)(r,i(x,s)n j(x)− r, j(x,s)ni(x))
}

, (i, j = 1,2),
(9)

where r,n(x,s) = r,i(x,s)ni(x) represents the derivative of r in the direction of the
outward normal at the point x. Similarly, the fundamental solution of stress is given
by

Di jk(x,s) =
1

4π(1−µ)r(x,s)
{
(1−2µ)

[
r,k(x,s)δi j− r, j(x,s)δik− r,i(x,s)δ jk

]
−r,i(x,s)r, j(x,s)r,k(x,s)

}
, (i, j,k = 1,2).

(10)

By analogy with the radial basis function (RBF) interpolation [Li et al. (2008);
Marin and Lesnic (2004); Redekop and Cheung (1987); Saranen and Vainikko
(2002)], the displacement and traction solutions can be approximated by a linear
combination of fundamental solutions with respect to different sources s as follows:

ui(xm) =
N

∑
n=1

α j(sn)Ui j(xm,sn) =
N

∑
n=1
{α1(sn)Ui1(xm,sn)+α2(sn)Ui2(xm,sn)}, (11)

ti(xm) =
N

∑
n=1

α j(sn)Ti j(xm,sn) =
N

∑
n=1
{α1(sn)Ti1(xm,sn)+α2(sn)Ti2(xm,sn)}, (12)

where i, j = 1,2, xm ∈ Ω∪ ∂Ω is the mth collocation point and sn the nth source
point, {α j(sn)}N

n=1 represent the nth unknown coefficient of the distributed source
at sn

, N denotes the numbers of source points.

In the traditional MFS, a fictitious boundary outside the problem domain is required
in order to place the source points {sn}N

n=1 and avoid the singularity of the funda-
mental solutions. These source points are either pre-assigned or taken to be part
of the unknowns of the problem along with the coefficients {α j(sn)}N

n=1. In the
early applications of the MFS [Johnston and Fairweather (1984)], the locations of
the source points were determined by a non-linear system of the equations that can
be solved using a non-linear least-squares minimization software. This approach,
however, has attracted limited attention primarily because of its high computational
costs and the criticism that a linear boundary value problem is converted to a non-
linear discrete problem [Karageorghis et al. (2011)]. In the recently established
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fashion of the MFS the source points are pre-assigned, and the non-linear least-
squares minimization procedure can be avoided. However, this introduces a per-
plexing problem of the optimal placement of the sources. In addition, the resulting
global system matrix is badly conditioned, see for example [Chen et al. (2006)].
These drawbacks severely downplay the applicability of the MFS to real-world ap-
plications.

The SBM also uses the fundamental solution as the basis function of its approxi-
mation. However, unlike the MFS, the collocation and source points in the SBM
are coincident and are both placed on the physical boundary without the need of
using a fictitious boundary. The basic idea is to introduce a concept of the origin
intensity factor to isolate the singularity of the fundamental solutions so that the
source points can be placed on the real boundary directly. The SBM interpolation
formulations for 2D elasticity problems can be expressed as [Gu et al. (2011)]

ui(xm) =
N

∑
n=1,n6=m

α j(sn)Ui j(xm,sn)+α j(sm)ui j(xm), xm ∈ Γu, (13)

ti(xm) =
N

∑
n=1,n6=m

α j(sn)Ti j(xm,sn)+α j(sm)ti j(xm), xm ∈ Γt , (14)

where ui j(xm) = Ui j(xm,xm) and ti j(xm) = Ti j(xm,xm) are defined as the origin in-
tensity factors, i.e., the diagonal and sub-diagonal elements of the SBM interpo-
lation matrix. The fundamental assumption of the SBM is the existence of origin
intensity factors upon the singularity of the coincident source-collocation nodes for
mathematically well-posed problems [Gu et al. (2012a)]. Our experiments show
that origin intensity factors do exist and have a finite value depending merely on the
distribution of discrete boundary nodes and their respective boundary conditions.

When the collocation point xm approaches to the source point sn, the distance be-
tween them tends to zero. Consequently, Eqs. (13) and (14) will present various
orders of singularity. Therefore, these two formulations should be regularized by
using some special treatments. By adopting a subtracting and adding-back tech-
nique [Anselone (1981); Chen and Gu (2011); Guiggiani (1991); Guiggiani and
Gigante (1990)], the regularized SBM formulation for Neumann boundary condi-
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tions (12) can be expressed as

ti(xm) =
N

∑
n=1

α j(sn)Ti j(xm,sn)

=
N

∑
n=1

(
α j(sn)− Ln

Lm
α j(xm)

)
Ti j(xm,sn)

+
α j(xm)

Lm

N

∑
n=1

[
LnTi j(xm,sn)+LnT (E)

i j (sn,xm)
]
,

(15)

in which

N

∑
n=1

LnT (E)
i j (sn,xm) = 0, i, j = 1,2, (16)

and T (E)
i j (sn,xm) denotes the fundamental solution of the exterior problems. The

detailed derivations of Eq. (16) are provided in Appendix A. In the above equations
(15) and (16), Lm represents the half distance between the source nodes sm−1 and
sm+1.

According to the dependency of the outward normal vectors on the two kernel
functions of interior and exterior problems [Young et al. (2005)], we can obtain the
following relationships

{
Ti j(sn,xm) =−T (E)

i j (sn,xm), m 6= n,

Ti j(sn,xm) = T (E)
i j (sn,xm), m = n.

(17)

With the help of Eq. (17) and noting that α j(sn)− Lnα j(xm)/Lm = 0 when n is
equal to m, the regularized Neumann boundary equation (15) can be rewritten as

ti(xm) =
N

∑
n=1,m6=n

(
α j(sn)− Ln

Lm
α j(xm)

)
Ti j(xm,sn)

+
α j(xm)

Lm
[LmTi j(xm,sm)+LmTi j(sm,xm)]

+
α j(xm)

Lm

N

∑
n=1,m6=n

[LnTi j(xm,sn)−LnTi j(sn,xm)].

(18)
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Combining the similar terms produces

ti(xm) =
N

∑
n=1,m6=n

α j(sn)Ti j(xm,sn)+
α j(xm)

Lm

{
[LmTi j(xm,sm)+LmTi j(sm,xm)]

−
N

∑
n=1,m6=n

LnTi j(sn,xm)

}
.

(19)

Since the collocation point xm and the source point sn will never coincide whenmis

unequal to n, both the terms
N
∑

n=1,m 6=n
α j(sn)Ti j(xm,sn) and

N
∑

n=1,m6=n
LnTi j(sn,xm) are

regular and can directly be calculated without any special treatments. The remain-
ing term LmTi j(xm,sm)+LmTi j(sm,xm), however, will present singularity and is ap-
proximated by a quadrature rule as

Im = LmTi j(xm,sm)+LmTi j(sm,xm)≈
∫

Γm

[Ti j(xm,s)+Ti j(s,xm)]dΓm(s)

=
∫

Γm

k1

r

{
r,l [nl(xm)−nl(s)] [k2δi j +2r,ir, j] + k2r,i [n j(xm)−n j(s)]

− k2r, j [ni(xm)−ni(s)]
}

dΓm(s),

(20)

where i, j, l = 1,2, k1 =−1/4π(1−µ), k2 = 1−2µ , r = r(xm,s), and r,i = r,i(xm,s).
We can observe that when the collocation point xm moves close to the source point
s, the degree of the singularity of the integrand r is reduced or damped out by one
order owing to the relative quantity ni(xm)−ni(s). Thus the whole integral is more
amenable for numerical integration and can be accurately calculated by using the
standard Gaussian quadrature. The integration domain is illustrated in Fig. 1.

Using the procedure described above, the final form of the regularized Neumann
boundary equation can be expressed as

ti(xm) =
N

∑
n=1,m6=n

α j(sn)Ti j(xm,sn)+
α j(xm)

Lm

[
Im−

N

∑
n=1,m 6=n

LnTi j(sn,xm)

]
, (21)

and then the aforementioned origin intensity factors can be extracted out as

ti j(xm) =
1

Lm

[
Im−

N

∑
n=1,m6=n

LnTi j(sn,xm)

]
. (22)

After using the proposed regularized technique, we are able to remove or damp
out the singularity of the kernel functions of the Neumann boundary equation. The
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Figure 1: Nodal integration domain for 2D problem

matrix form of discretization equations (21) can be written as:

t1(x1)
t2(x1)

...
t1(xN)
t2(xN)


=


t11(x1) t12(x1) · · · T11(x1,sN) T12(x1,sN)
t21(x1) t22(x1) · · · T21(x1,sN) T22(x1,sN)

...
...

. . .
...

...
T11(xN ,s1) T12(xN ,s1) · · · t11(xN) t12(xN)
T21(xN ,s1) T22(xN ,s1) · · · t21(xN) t22(xN)





α1(s1)
α2(s1)

...
α1(sN)
α2(sN)


(23)

On the other hand, the calculation of the origin intensity factors on Dirichlet bound-
ary equations (11) can be directly set as an average value of the fundamental solu-
tion over a portion of the boundary. This can be formulated as

ui j(xm) =
1

Lm

∫
Γm(s)

Ui j(xm,s)dΓm(s)

=
1

Lma1

∫
Γm(s)

a2 logr(xm,s)δi jdΓm(s)

− 1
Lma1

∫
Γm(s)

r,i(xm,s)r, j(xm,s)dΓm(s),

(24)

where a1 =−8πG(1−µ) and a2 = 3−4µ . Since there is no singularity in the sec-
ond right hand side integral, it can be evaluated using a standard Gaussian quadra-
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ture. The first right hand side integral, however, requires the following special
treatment because of the weak singularity when the source point s moves closely to
the collocation point xm∫

Γm(s)
logr(xm,s)dΓm(s) =

∫ 1

−1
J(ξ ) logr(xm,ξ )dξ

=
∫ 1

−1
[J(ξ )− J(η)] logr(xm,ξ )dξ

+ J(η)
∫ 1

−1
logr(xm,ξ )dξ ,

(25)

where ξ is the intrinsic coordinate which transforms the integral so that it is mapped
onto the interval [-1,1], η ∈ [−1,1] denotes the position of the collocation point
xm, J(ξ ) represents the Jacobian of the transformation. These integrals can now
be evaluated using the standard Gaussian quadrature and logarithmic schemes, re-
spectively.

It is noteworthy that we calculate all SBM interpolation matrix elements directly
in the strong-form fashion as in the MFS, except of the diagonal and sub-diagonal
elements, namely original intensity factors, where the collocation points coincide
with the source points. We only calculate these singular terms by using numerical
integration and regularization schemes. This is dramatically different from various
boundary element techniques where the numerical integration and mesh genera-
tion are required. Once all the boundary unknowns are solved, the displacements
and stresses at any point inside the domain can be evaluated in a straight-forward
fashion using Eqs. (13) and (14) which require no extra quadratures. Overall, this
SBM scheme is unlike the weak-form BEMs and remains a strong form approach
which greatly simplifies its implementations in programming and computational
efficiency.

3 Domain-decomposition SBM for multi-layered materials

We considered a multi-layered elastic material coated with n layers (see Fig. 2).
In such a case, all layers with each one being homogeneous, isotropic and linear
elastic must be analyzed respectively. The boundary and interface conditions for
each layer can be written as follows:

On the external surface of a coating layer, the traction must be given by

Tn = pn, Tt = pt , (26)

where Tn and Tt are the normal and tangential components of the traction, pn and
pt denote the loads applied in the normal and tangential direction, respectively
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(see Fig. 2). In addition, the coating system should be constrained, with specified
displacement, at some other locations on the boundary.

For a well-posed boundary value problem, there is only unknown (either displace-
ments U or tractions T ) at each nodal point on the boundary. However, along the
interface ΓI between layers k and k +1, both U and T are unknowns. To solve the
problem numerically, there will be the same number of algebraic equations as the
unknowns. Therefore, the following continuity conditions at the interface must be
considered:

TIn = T k
In =−T k+1

In , TIt = T k
It =−T k+1

It , (27)

UIn = Uk
In = Uk+1

In , UIt = Uk
It = Uk+1

It , (28)

where the subscript In indicates interface I and normal (n) component, and sub-
script It represents interface I and tangential (t) direction.

First, the two layers k and k +1 with interface ΓI, as shown in Fig. 2, are analyzed.
In the kth layer, the solution is approximated by the SBM-type expansion as

uk
i (x

m) =
N

∑
n=1,m6=n

α
k
j (s

n)Uk
i j(x

m,sn)+α
k
j (s

m)uk
i j(x

m), (29a)

tk
i (x

m) =
N

∑
n=1,m6=n

α
k
j (s

n)T k
i j(x

m,sn)+α
k
j (s

m)tk
i j(x

m), (29b)
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for xm ∈Ωk, and, in the (k +1)th layer, the solution is approximated by

uk+1
i (xm) =

N

∑
n=1,m 6=n

α
k+1
j (sn)Uk+1

i j (xm,sn)+α
k+1
j (sm)uk+1

i j (xm), (30a)

tk+1
i (xm) =

N

∑
n=1,m6=n

α
k+1
j (sn)T k+1

i j (xm,sn)+α
k+1
j (sm)tk+1

i j (xm), (30b)

for xm ∈Ωk+1, with an obvious extension of notation from Section 2.

The discretized algebraic equations from Eqs.(29) can be written in the matrix form
as[
Gk
]({

αk
}{

αk
I
})=

{
Uk
}

,
[
Gk

I

]({
αk
}{

αk
I
})=

{
Uk

I

}
, (31a)

[
Hk
]({

αk
}{

αk
I
})=

{
T k
}

,
[
Hk

I

]({
αk
}{

αk
I
})=

{
T k

I

}
, (31b)

where Uk
I , T k

I and αk
I are the interface displacements, tractions, and density func-

tions of layer k on the interface ΓI , Uk, T k and αk represent the displacements,
tractions, and density functions of layer k on the remaining surfaces. Gk, Gk

I , Hk

and Hk
I denotes the corresponding coefficient matrix containing the displacement

or traction fundamental solutions.

Similarly, for the ( j +1)th layer, we have the following equations

[
Gk+1

]({
αk+1

}{
α

k+1
I

})=
{

Uk+1
}

,
[
Gk+1

I

]({
αk+1

}{
α

k+1
I

})=
{

Uk+1
I

}
, (32a)

[
Hk+1

]({
αk+1

}{
α

k+1
I

})=
{

T k+1
}

,
[
Hk+1

I

]({
αk+1

}{
α

k+1
I

})=
{

T k+1
I

}
. (32b)

In order to illustrate the SBM procedures in a more clear fashion without loss of
generality, we here suppose that the traction boundary conditions are prescribed
on the external surfaces of kth layer, and the displacement boundary conditions are
prescribed on the external surfaces of (k +1)th layer. According to the equilibrium
and compatibility conditions (27) and (28) at the interface, one has the following
relations at the interface ΓI

Uk
I = Uk+1

I , T k
I =−T k+1

I . (33)
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Hence, equations (31) and (32) can be coupled as
[
Hk
]

[0][
Gk

I
]
−
[
Gk+1

I

][
Hk

I
] [

Hk+1
I

]
[0]

[
Gk+1

]


({

φ k
}{

φ k
I
})({

φ k+1
}{

φ
k+1
I

})
=


{

T k
}

{0}
{0}{

Uk+1
}
 . (34)

More equations can be added to this system in a similar way for other layers and the
substrates. The system still needs to be reordered according to the prescribed dis-
placement and traction boundary conditions. The system of equations (34) can be
solved simultaneously for the boundary and interface unknowns. Once the bound-
ary unknowns are solved, Eqs. (29) and (30) can be used to calculate the stress
distributions at any point inside each subdomain.

4 Numerical examples and discussions

In order to assess the performance of the domain-decomposition SBM described
in Sections 2 and 3, we solve in this section two benchmark numerical examples
involving both smooth and piecewise smooth geometries. The effect of numerical
accuracy, the convergence with respect to the number of boundary nodes, as well
as the stability of the scheme with respect to the noise added into the input data are
carefully investigated.

In real engineering applications, the known boundary data are often measured and
thus inevitably contaminated by errors. Therefore, the stability of the numerical
scheme is of vital importance to obtain physically meaningful results. To examine
the stability of the SBM against contaminated data, the simulated noisy boundary
data are generated in our test cases using the following formula:

b̃ = b(1+ randn×δ ), (35)

where b is the exact data, randn is a normally distributed random variable with
zero mean and unit standard deviation, and δ dictates the level of noise. In our
computations, the random variable randn was realized using the Matlab function
‘randn ()’.

In order to measure the accuracy of the numerical approximation with respect to
the exact solution, we use the relative error defined by

Relative Error =

[
1
M

M

∑
k=1

(
Ik
numerical− Ik

exact

Ik
exact

)2]1/2

, (36)
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where Ik
numerical and Ik

exact denote numerical and analytical solutions, respectively, at
the kth calculated point. Here, M is the total number of tested collocation points at
which both the numerical and exact solutions are evaluated.
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Figure 3: A two-layer coating system under constant pressure p = 1 (Material con-
stants are G=333333.333 Pa and µ = 0.2): (a) The geometry of the problem, and
(b) the schematic distribution of source points using the SBM

4.1 Interfacial stress analysis for a two-layer coating system under uniform
load

The first case is concerned with a symmetric two-layer coating system under a uni-
formly distributed load p = 1 in the x2-direction, where Hc1 = 1 is the thickness of
the outside coating, Hc2 = 1 the thickness of the inside coating, L = 30 the struc-
ture length. The geometric configuration of the problem and the distribution of the
sources are schematically shown in Fig. 3. We assume the length of the plate in the
x3-direction is so large that this problem can be simplified to a plane strain problem.
Because the dimension of the length L = 30 is large compared to the dimension of
the coatings (h = Hc1 + Hc2 = 2), analytical solution of the whole system may be
well approximated by considering the whole system as an elastic half-space. The
bottom edge of the model is fixed, and thus, displacement components along the
boundary x2 = 0 in both the x1- and x2- directions are constrained. When the mate-
rials of the two coatings are identical, the analytical solution can be found readily
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[Johnson (1985)] as{
σ11 =− µ

1−µ
, σ22 =−1, σ12 = 0

u1 = 0, u2 =− 1−2µ

2G(1−µ)x2
(37)

It is assumed that both coatings are composed of the identical material and share
the same elastic constants. The analytical stress/displacement solutions of this case
exist and can be obtained. In this special case, the stress distributions are in fact the
internal stress components in the single material. The SBM domain decomposition
approach is applied here simply to obtain these stresses inside this single material
domain, in order to compare with the analytical solution.

In the SBM model, the horizontal boundaries are divided each into 80 boundary
nodes, whereas the vertical ones into 20 boundary nodes each. Note that only 280
nodes are required in modeling the whole system since the nodes over the interfaces
are shared by both coatings. We also provide the numerical results by the MFS and
the BEM for the purpose of a fair comparison. It is noted that the BEM results
are obtained using the direct formulation developed in Ref. [Banerjee (1994)].
For the MFS results, the sources are located on pseudo-boundaries which enclose
the original domain and appear like physical boundary with a distance d > 0 in
between. On each pseudo-boundary of the MFS, the sources are distributed in a
similar way corresponding to the collocation nodes on the physical boundary. The
schematic distribution of the fictitious source and boundary collocation points of
the MFS is illustrated in Fig. 4.

 
 Figure 4: The distribution of the source (◦) and boundary collocation (•) points in

the MFS

Figs. 5 and 6 display the relative error curves of normal stresses σ11 and σ22 at
interior points on the coating-coating interface (x2 = 1) for varied values of x1. As
shown in these figures, the results of the present SBM are in very good agreement
with the available analytical solutions, with the largest relative error less than 0.01,
indicating its high accuracy and stability. We can also observe that the SBM results
are slightly better than those of the BEM, possibly because the SBM requires no
extra quadratures to evaluate solutions in the interior of the domain. Further, we
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Figure 5: Relative error curves of normal stress σ11 at interior points on the coating-
coating interface for varying values of x1
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Figure 6: Relative error curves of normal stress σ22 at interior points on the coating-
coating interface for varying values of x1
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can observe that the MFS solution accuracy with the fictitious boundary d = 0.5
dramatically deteriorates compared with d = 1, where d is an indicator of the fic-
titious boundary location, namely, the distance between the fictitious and the real
boundaries. This clearly illustrates the decisive role of the fictitious boundary in
the MFS performances. Although an appropriate or optimal placement of the ficti-
tious boundary in the MFS can result in a very accurate solution, it remains an open
issue to find this appropriate fictitious boundary for the real-word complex-shaped
boundary problems.
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Figure 7: The domain-decomposition SBM error distribution of the normal stress
σ11 calculated using exact (a) and 5% noise added into input data (b)

To investigate the stability, Figs. 7(a) and (b) present the error distribution of the
normal stress σ11, calculated via exact and 5% noise added into the input data,
respectively, where the error curves were yielded at 30× 30 calculation points
uniformly-spaced over the square (−0.2,0.2)× (1.3,1.7). As shown in Fig. 7(a),
the proposed SBM scheme is extremely accurate for problems with exact data, e.g.
the maximum relative error 12×10−3. It can be seen from Fig. 7(b) that the SBM
results are in very good agreement with the analytical solutions even for a relatively
high amount (δ = 5%) of noise added into the input data, reflecting the high stabil-
ity. Similar results have also been obtained for the normal stress σ22, as illustrated
in Fig. 8. Hence we can conclude that the SBM in conjunction with the domain
decomposition technique can provide stable and accurate numerical solutions to
multi-layered elastic problems.
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Figure 8: The domain-decomposition SBM error distribution of the normal stress
σ22 calculated using exact (a) and 5% noise added into input data (b)

4.2 A rigid cylinder with two-layers of coatings

This test is concerned with a rigid shaft with two-layers of coatings under uniform
pressure p, as shown in Fig. 9 where the layers of coatings consist of different ma-
terials (Young’s modulus of outside coating/Young’s modulus of inner coating=1/2
and Poisson ratio of outside coating=Poisson ratio of inner coating=0.2). The shaft
and the two coatings have outer radii r1 = 5, r2 = 6 and r3 = 7, respectively. It
is assumed that the coatings are free to expand laterally except at the interface to
the rigid shaft, but are axially constrained so that a condition of plane strain exists
relative to x1−x2 plane. This coating system is loaded by a uniform pressure p = 1,
distributed around the circumference of the outside coating.

The boundary conditions of the displacement, under the rigid shaft assumption,
are ur = uθ = 0 for all nodes at the shaft-coating interface. Under such boundary
conditions, the analytical solutions corresponding to this coating system is given
by

σr =
−13.2173

r2 −0.7302, σθ =
13.2173

r2 −0.7302, (38)

for the outside coating and

σr =
−11.6196

r2 −0.7746, σθ =
11.6196

r2 −0.7746, (39)
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for the inner coating, respectively, where (r,θ) denotes the polar coordinates.
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Figure 9: Cross-section of a shaft with two-layers of coatings

To investigate the convergence rate of relative error versus the number of boundary
nodes, the convergence curves of the radial (σr) and tangential (σθ ) stresses at
interior points A and B are illustrated in Fig. 10, plotted in the log-log scale. It
can be seen from this figure that when the number of boundary nodes increases, the
relative errors decrease until the number of boundary nodes reaches N = 360, and
thereafter more boundary nodes does not substantially improve the accuracy of the
numerical results. This shows that accurate numerical results can be obtained using
even relatively a small number of source points. Approximately, a convergence rate
of 3.65, i.e., O

(
(1/N)3.65

)
, is estimated with respect to the number of boundary

nodes, as shown by the dash-dot line in Fig. 10. Therefore, it could be concluded
that, in general, the numerical solutions show a super convergence as the number
of boundary nodes increases.

Next, we examine the SBM sensitivity of the numerical results with respect to the
level of noise added into the input data. The SBM results for σr and σθ at interior
points on the line x2 = 0, computed using exact, 1% and 5% noise added into input
data, are illustrated in Figs. 11 and 12, respectively. We can observe from these
figures that even in the case of a relatively high amount (δ = 5%) of noise added
into the input data, the proposed method produces good approximations in compar-
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Figure 10: Convergence curves of the radial (σr) and tangential (σθ ) stresses at
interior points A and B
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Figure 11: The analytical radial stress solution and domain-decompostion SBM
results via exact and various amount of noise added into input data
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Figure 12: The analytical tangential stress solution and domain-decompostion
SBM results via exact and various amount of noise added into input data

ison with analytical values. Furthermore, it should be mentioned that, as expected,
the numerical stresses converge towards their corresponding exact solutions as the
amount of noise decreases. Although not presented for the sake of limited space, it
should be mentioned that we have performed numerous numerical experiments on
the other cases and similar observations have been drawn.

5 Conclusions

In this paper, we developed a novel SBM domain decomposition technique to solve
multi-layered elastic problems. The SBM is similar to the MFS in that both meth-
ods are meshless boundary collocation method with boundary-only nodes and no
meshes requirement. The SBM, however, overcomes the fictitious boundary per-
plexing the MFS, thanks to the introduction of the concept of the origin intensity
factor to isolate the singularity of the fundamental solutions. Compared with the
BEM, the SBM is meshless easy to implement, and requires little data preparation,
and avoids potentially troublesome extra quadratures to evaluate solutions in the
interior of the domain. Thus, the SBM avoids the major drawbacks of meshless
boundary methods and boundary element method, while keeping all their merits.

In the present domain-decompostion SBM scheme, the multi-layered problems un-
der consideration are decomposed into several subdomains, and in each subdomain,
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the solution is approximated by the SBM-type expansion. On the subdomain inter-
faces, the continuity of the displacements and the tractions is imposed. In addition,
we also introduce new accurate formulas to calculate the origin intensity factors
which play an important role in the SBM. From the foregoing numerical results,
it can be concluded that the proposed scheme is computationally efficient, robust,
accurate, stable with respect to decreasing noise added into the input data, and con-
vergent with respect to increasing number of boundary nodes. In comparison with
the other existing numerical methods for layered elastic problems, the proposed
scheme could be considered as a competitive alternative.
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Appendix A The detailed derivations of Eq. (16)

The null-field of the boundary integral equation (BIE) based on the direct method
is given by

0 =
∫

Γ

[
U (E)

i j (s,xm)ti(s)−T (E)
i j (s,xm)ui(s)

]
dΓ(s), xm ∈Ω

(E), (A1)

where i, j = 1,2, the superscript (E) denotes the exterior domain, s is the source
point located on the physical boundary and xm is the field point.

Substituting the particular solution (t1(s) = t2(s) = 0 when u1(s) = 1 and u2(s) = 0)
into the above equation, we have∫

Γ

T (E)
11 (s,xm)dΓ(s) =

∫
Γ

T (E)
12 (s,xm)dΓ(s) = 0, xm ∈Ω

(E). (A2)

In a similar way, substituting the particular solution (t1(s) = t2(s) = 0 when u1(s) =
0 and u2(s) = 1) into the above equation A.1, we have∫

Γ

T (E)
21 (s,xm)dΓ(s) =

∫
Γ

T (E)
22 (s,xm)dΓ(s) = 0, xm ∈Ω

(E). (A3)

We can rewrite Eqs. (A.2) and (A.3) as∫
Γ

T (E)
i j (s,xm)dΓ(s) = 0, i, j = 1,2, xm ∈Ω

(E). (A4)
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When the field point xm approaches the boundary, we can discretize the Eq. (A.4)
by

∫
Γ

T (E)
i j (s,xm)dΓ(s) =

N

∑
n=1

∫
Γn

T (E)
i j (s,xm)dΓn(s)≈

N

∑
n=1

T (E)
i j (sn,xm)Ln = 0

i, j = 1,2, xm ∈ Γ. (A5)

where Ln represents the half of distance of the (n−1)th and (n+1)th source points.
Thus, we have

N

∑
n=1

LnT (E)
i j (sn,xm) = 0 i, j = 1,2, xm ∈ Γ, (A6)

which is Eq. (16) in Section 2.


