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Development of 3D T-Trefftz Voronoi Cell Finite Elements
with/without Spherical Voids &/or Elastic/Rigid Inclusions

for Micromechanical Modeling of Heterogeneous
Materials

L. Dong1 and S. N. Atluri1

Abstract: In this paper, three-dimensionalT-Trefftz Voronoi Cell Finite Elements
(VCFEM-TTs) are developed for micromechanical modeling of heterogeneous ma-
terials. Several types of VCFEMs are developed, depending on the types of hetero-
geneity in each element. Each VCFEM can include alternatively a spherical void,
a spherical elastic inclusion, a spherical rigid inclusion, or no voids/inclusions at
all.In all of these cases, an inter-element compatible displacement field is assumed
at each surface of the polyhedral element, with Barycentric coordinates as nodal
shape functions.The T-Trefftz trial displacement fields in each element are ex-
pressed in terms of the Papkovich-Neuber solution. Spherical harmonics are used
as the Papkovich-Neuber potentials to derive the T-Trefftz trial displacement fields.
Characteristic lengthsareused for each element to scale the T-Trefftztrial functions,
in order to avoid solving systems of ill-conditioned equations. Two approaches
for developing element stiffness matrices are used.The differencesbetween these
two approachesare that, the compatibilitybetweenthe independentlyassumed field-
sin the interior of the element with those at the outer- as well as the inner-boundary,
are enforced alternatively, byLagrange multipliers in multi-fieldboundary varia-
tional principles, or by collocation at a finite number of preselected points. These
elements are named as VCFEM-TT-BVP and VCFEM-TT-C respectively, follow-
ing the designations of [Dong and Atluri (2011b, 2012a)].Several three-dimensional
computational micromechanics problems are solved using these elements. Com-
putational results demonstrate that both VCFEM-TT-BVP and VCFEM-TT-C can
solve three-dimensional problems efficiently and accurately. Especially, these VCFEM-
TTs can capture the stress concentration around spherical voids/inclusion quite ac-
curately, and the time for computing each element is much less than that for the
hybrid-stress version of VCFEM in [Ghosh and Moorthy (2004)]. Therefore, we
consider that the 3D Voronoi Cell Finite Elements developed in this study are suit-
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able for micromechanical modeling of heterogeneous materials. We also point out-
that, the process of reducing ellipsoidal coordinates/harmonics to spherical ones
in the limiting case cannot work smoothly, which was contrarily presented in an
ambiguous way in [Ghosh and Moorthy (2004)]. VCFEMs with ellipsoidal, and
arbitrary shaped voids/inclusions will be presented in future studies.

Keywords: T-Trefftz, VCFEM,matrix, inclusion, void, variational principle, col-
location, LBB conditions, completeness, efficiency, Barycentric coordinates, Pap-
kovich-Neuber solution, spherical harmonics

1 Introduction

In recent decades, increasing advancement of science, technology, and the wideap-
plication of heterogeneous materials, have been experienced in mechanical, aerospace
and military industries. For example, metal/alloys with precipitates/pores, and
metal/polymer/ceramic composite materials with fiber/whisker/particulate reinforce-
ments are of particular interest. Development of efficient and accurate tools to
model the micromechanical and macromechanical behavior of heterogeneous ma-
terials is of fundamental importance.

There are several widely-used analytical tools to predict the overall properties of
heterogeneous materials. For example, [Hashin and Shtrikman (1963)] developed
variational principles to estimate the upper and lower bounds of the elasticity or
compliance tensor. [Hill (1965)] developed a self-consistent approach to estimate
the homogenized material properties. For a useful reference, one can refer to the
book [Nemat-Nasser and Hori (1999)]. Analytical methods have their unique val-
ues in the study of micromechanics. However, because most of these methods
follow the work of [Eshelby (1957)], namely the elastic field of an ellipsoidal in-
clusion in an infinite media, it is expected that these methods can only accurately
model heterogeneous materials with simple geometries and low volume fractions
of inclusions.

The need for predicting the overall properties of a material with complex geometry,
distribution, and arbitrary volume fraction of inclusions, promoted the development
of computational tools for micromechanics. A popular way of doing this is to use
finite elements to model a Representative Volume Element (RVE). By concept, a
RVE is a microscopic material volume, which is statistically representative of the
infinitesimal material neighborhood of the macroscopic material point of interest.
By modeling simple loading cases of the RVE, the microscopic stress field and
strain field in the RVE can be computed by the finite element method. And the
homogenized material properties are calculated by relating the macroscopic (av-
erage) stress tensor to the macroscopic (average) strain tensor. Some useful refer-
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ences can be found in [Christman, Needleman and Suresh (1989), Bao, Hutchinson,
McMeeking(1991)]. Finite element method and asymptotic homogenization the-
ory were also combined to perform multi-scale modeling of structures composed
of heterogeneous materials in [Guedes and Kikuchi (1990)].

However, it is well known that, primal finite elements, which involve displacement-
type of nodal shape functions, are highly inefficient for modeling stress concentra-
tion problems. Accurate computation of the fields around a single inclusion or void
may need thousands of elements. Moreover, meshing of a RVE which contains a
large number of inclusions/voids, can be human-labor intensive. For the expensive
burden of computation as well as meshing, the above-mentioned computational
models mostly use a Unit Cell as the RVE, assuming the microstructure of mate-
rial is strictly periodic. This obviously cannot account for the complex shape and
distribution of materials of different phases.

In order to reduce the burden of computation and meshing, [Ghosh and Mallett
(1994); Ghosh, Lee and Moorthy (1995)] proposed the idea of Voronoi Cell Finite
Elements (VCFEMs). The RVE is meshed using Voronoi Diagram according to the
locations of inclusions/voids, and each Voronoi Cell with/without an inclusion/void
can be modeled using one singe finite element. Ghosh’s VCFEMs are all developed
based the hybrid stress model of [Pian (1964)], using the modified principle of com-
plementary energy, and assuming inter-element compatible displacement fields and
a priori equilibrated stress fields. The a priori equilibrated stress fields are gener-
ated by using Airy’s stress functions in 2D or Maxwell’s stress functions in 3D.
However, the hybrid stress approach involves Lagrange multipliers, and involves
both domain and boundary integration for each and every element. This makes the
VCFEMs developed by Ghosh and his coworkers computationally inefficient, and
also plagued by LBB conditions. The completeness of the stress fields generated
by polynomial Airy’s stress functions or Maxwell’s stress functions is also of ob-
vious questionability. Incomplete stress field assumptions lead to very poor results
of computed stress/strain fields. Attempts were made to improve the accuracy by
introducing additional stress fields. For example, in the 3D VCFEMs developed
by [Ghosh and Moorthy (2004)], the analytical stress field around an ellipsoidal in-
clusion embedded in an infinite media subjected to remote loads was added to the
stress field generated by the polynomial Maxwell’s stress functions. However, the
stress fieldis still not necessarily complete, even though some improvement was
made by introducing this additional stress field. For detailed discussion of com-
pleteness, see [Muskhelishvili (1954)] for 2D problems, and [Lurie (2005)] for 3D
problems.

In order to overcome the several aforementioned disadvantages, a different class of
VCFEMs wasdeveloped recently by the authors—T-Treffz Voronoi Cell Finite Ele-



172 Copyright © 2012 Tech Science Press CMC, vol.29, no.2, pp.169-211, 2012

ments (VCFEM-TTs), which are efficient and accurate for micromechanical model-
ing of heterogeneous materials. Two-dimensional cases of VCFEM-TTs were pre-
sented in [Dong and Atluri(2011b);Dong and Atluri(2012a)]. The main difference
of VCFEM-TTs developed by the authors and the VCFEMs developed by Ghosh
and his coworkers is that: a complete T-Trefftz trial displacement field which satis-
fies both equilibrium and compatibility is assumed in VCFEM-TTs, instead of only
the “a priori equilibrated” stress field used in [Ghosh, Lee and Moorthy (1995)].
VCFEM-TTs developed by the authors are computationally more efficient, because
only boundary integrals are needed in VCFEM-TTs, instead of both the volume and
surface integrals needed in the hybrid-stress elements developed by Ghosh et al.
VCFEM-TT-C, one of the two classes of VCFEM-TTs developed by the authors,
is not plagued by LBB conditions, because no Lagrange multipliers are involved.
VCFEM-TTs can also model the stress concentration around voids/inclusions much
more accurately, because of the completeness of the T-Trefftz trial displacement
fields, see [Dong and Atluri (2012b)].

In this study, we extend VCFEM-TTs to solve 3D problems. 3D VCFEM-TTs
without voids/inclusions, with a spherical void, with a spherical elastic inclusion, or
with a spherical rigid inclusion are developed respectively. The inter-element dis-
placement field is assumed by using Barycentric coordinates as nodal shape func-
tions. The T-Trefftz trial displacement fields are assumed in the form of Papkovich-
Neuber solutions. Spherical harmonics are used as Papkovich-Neuber potentials.
Two approaches for developing element stiffness matrices are used. The compat-
ibility betweenthe independently assumed fields at the outer- as well as the inner-
boundary, are enforced alternatively, by Lagrange multipliers in multi-field bound-
ary variational principles, or by collocation at a finite number of preselected points.
These elements are named as VCFEM-TT-BVP and VCFEM-TT-C respectively.
Numerical experiments using elements without inclusions and with spherical in-
clusions show high-performance of the developed VCFEM-TTs.

The rest of this paper is organized as follows: in section 2, we use Barycentric coor-
dinates to develop the inter-element compatible displacement field; in section 3, we
introduce the T-Trefftz trial displacement fields in the form of Papkovich-Neuber
solution; in section 4, we briefly discuss spherical harmonics asPapkovich-Neuber
potentials; in section 5, we develop and test the performance of 3D VCFEM-TTs
without voids/inclusions; in section 6, we develop and test the performance of 3D
VCFEM-TTs with spherical voids/inclusions; in section 7, we complete this paper
with some concluding remarks.
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Figure 1: A 3D Voronoi Cell Finite Element

2 Boundary Displacement Fields with Barycentric Coordinates as Nodal Shape
Functions

For an arbitrary VCFEM in the 3D space,each surface is a polygon, see Fig. 1 for
example. Constructing an inter-element compatible displacement on the boundary
of the polyhedral element is not as simple as that for 2D VCFEMs. One way
of doing this is to use Barycentric coordinates as nodal shape functions on each
polygonal face of the 3D VCFEM.

Consider a polygon face Vn with n nodes x1, x2,. . . xn, the Barycentric coordinates,
denoted as λi(i = 1, 2, ... n). λi is only a function of the position vector x. To obtain
a good performance of VCFEM, we only consider Barycentric coordinates which
satisfy the following properties:

1. Non-negative: λi ≥ 0 in the polygon Vn

2. Smooth: λi is at least C1 continuous in the polygon Vn

3. Linear along each edge that composes the polygon Vn
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4. Linear completeness: For any linear function f (x), the following equality
holds: f (x) = ∑

n
i=1 f (xi)λi

5. Partition of unity: ∑
n
i=1 λi ≡ 1.

6. Dirac delta property: λi(xj) = δi j.

Among the many Barycentric coordinates that satisfy these conditions, Wachspress
coordinates [Wachspress (1975)] is among the most simple and efficient.

Let x ∈ Vn, and define the areas: Bias the area of the triangle withxi−1,xi and xi+1

as its three vertices, and Ai(x) as the area of the triangle having x, xi and xi+1 as its
three vertices. This is illustrated in Fig. 2.

 
 

Figure 2: Definition of triangles Bi and Ai(x)

Define the Wachspress weight function as:

wi(x) = Bi ∏
j 6=i, i−1

A j(x) (1)

Then, the Wachspress coordinates are given by the rational functions:

λi(x) =
wi(x)

∑
n
j=1 w j(x)

(2)

Fig. 3 shows the Wachspress coordinate for one node of a regular pentagon. It can
be seen that the Wachspress coordinate as shown in Fig. 3 have all the properties
described previously in this section.

Similar to the well-known triangular Barycentric coordinates used in the 2D primal
triangular elements, the nodal shape functions associated with the vertices of this
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polygonal surface displacement field are their corresponding Barycentric coordi-
nates. An inter-element compatible displacement field is therefore expressed in the
following form:

ũi(x) =
n

∑
k=1

λk(x)ui(xk) x ∈Vn ,Vn ⊂ ∂Ω
e (3)

 
Figure 3: Barycentric coordinates as nodal shape functions

3 T-Trefftz Trial Displacement field: the Papkovich-Neuber Solution

Consider a linear elastic solid undergoing infinitesimal elasto-static deformation.
Cartesian coordinates xi identify material particles in the solid. σi j,εi j,ui are Carte-
sian components of the stress tensor, strain tensor and displacement vector respec-
tively. fi,ui, t i are Cartesian components of the prescribed body force, boundary
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displacement and boundary traction vector. Su,St are displacement boundary and
traction boundary of the domain Ω. We use (),ito denote differentiation with re-
spect to xi. The equations of linear and angular momentum balance, constitutive
equations, compatibility equations, and boundary conditions can be written as:

σi j, j + f i = 0 in Ω (4)

σi j=σ ji in Ω (5)

σi j = Ci jklεkl (or εi j = Si jklσkl) in Ω for a linear elastic solid (6)

εi j =
1
2

(ui, j +u j,i)≡ u(i, j) in Ω (7)

ui = ui at Su (8)

n jσi j = t i at St (9)

For 3D isotropic media where body force is negligible, equation (4)-(6) can be
rewritten in terms of displacements, which is the Navier’s equation:

(λ + µ)θ,i + µ∆ui = 0 (10)

where

θ = uk,k

λ =
Ev

(1+ v)(1−2v)

µ = G =
E

2(1+ v)

(11)

The T-Trefftz methods start by selecting a set of trial functions which satisfy(10) a
priori. For 3D isotropic elasticity, this can be done by using the Papkovich-Neuber
solution, see [Lurie (2005)]:

u = [4(1− v)B−∇(R ·B+B0)]/2G

=
[
(3−4v)B−R · (∇B)T −∇B0)

]
/2G

(12)

B0,B are scalar and vector harmonic functions, which are sometimes called Papkovich-
Neuber potentials

The second equation in (12) can be written in the following index form:

ui = [(3−4v)Bi− xkBk,i−B0,i]/2G (13)
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An interesting fact of 3D Papkovich-Neuber solution is that, the 3D displacements
as in (13) have a very similar form to the displacements in 2D expressed in terms of
complex potentials, as shown in [Muskhelishvili (1954)]. However, unlike theap-
proach of complex potentials, for a specific displacement field ui in 3D, the har-
monic potentials have large degrees of freedom. That is to say, there may exist
many different sets of B0,B1,B2,B3, which are harmonic potentials of the same
specific displacement fieldui. This prompts people to think about whether it is pos-
sible to drop the scalar harmonic function, to express the solution as:

u = [4(1− v)B−∇R ·B]/2G (14)

It was proved by M.G. Slobodyansky that (14) is complete for the infinite region
which is external to a closed surface for any v. However, for a simply-connected
domain, (14) is complete only when v 6= 0.25.

By expressing B0 to be a specific function of B, M.G. Slobodyansky has shown that
a specific case of the Papkovich Neuber solution is :

u = [4(1− v)B+R ·∇B−R∇ ·B)]/2G (15)

whichis complete for a simply connected domain, for any v.

For detailed discussion of the completeness of the Papkovich-Neuber solution, see
[Lurie (2005)].

4 On Spherical Harmonics as Papkovich-Neuber General Potentials

In this section, we make a short introduction to spherical harmonics. One can refer
to the monograph [Hobson (1931)] for detailed discussion.

Consider Cartesian coordinates x1,x2,x3 and spherical coordinates q1 = R,q2 =
θ ,q3 = φ , related by:

x1 = Rsinθ cosφ

x2 = Rsinθ sinφ

x3 = Rcosθ

(16)

We use ei to denote base vectors of the Cartesian coordinate system, and R = xiei

to denote the position vector. From (16) we have:

∂x1

∂R
= sinθ cosφ ,

∂x1

∂θ
= Rcosθ cosφ ,

∂x1

∂φ
=−Rsinθ sinφ ,

∂x2

∂R
= sinθ sinφ ,

∂x2

∂θ
= Rcosθ sinφ ,

∂x2

∂φ
= Rsinθ cosφ ,

∂x3

∂R
= cosθ ,

∂x3

∂θ
=−Rsinθ ,

∂x3

∂φ
= 0.

(17)
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And

∂qs

∂xk
=

1
H2

s

∂xk

∂qs

∂R
∂qr ·

∂R
∂qs = δrsHrHs

(18)

where

H1 = HR = 1

H2 = Hθ = R

H3 = Hφ = Rsinθ

(19)

are called Lame’s coefficients. By defining a set of orthonormal base vectors of the
spherical coordinate system:

gr =
1

Hr

∂R
∂qr (20)

we have:

∂gR

∂R
= 0,

∂gR

∂θ
= gθ ,

∂gR

∂φ
= gφ sinθ ,

∂gθ

∂R
= 0,

∂gθ

∂θ
=−gR,

∂gθ

∂φ
= gφ cosθ ,

∂gφ

∂R
= 0,

∂gφ

∂θ
= 0,

∂gφ

∂φ
=−(gR sinθ +gθ sinθ) ,

(21)

Therefore, the Laplace operator of a scalar λ has the following form:

∇
2
λ = ∇ ·∇λ =

1
Hr

gr
∂

∂qr
· 1

Hs
gs

∂λ

∂qs

=
1
R

[
∂

∂R
R2 ∂λ

∂R
+

∂

∂ µ
(1−µ

2)
∂λ

∂ µ
+

1
1−µ2

∂λ

∂λ 2

] (22)

where the new variable µ = cosθ is introduced.

By separating of variables, assuming λ = L(R)M(µ)N(φ) and using m2 and n(n+
1) as separating constants, it can be shown that L,M,N should satisfy the following
equations:

N
′′
(φ)+m2N(φ) = 0 (23)

[
(1−µ

2)M′ (µ)
]′

+
[

n(n+1)− m2

1−µ2

]
M (µ) = 0 (24)
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[
R2L′ (R)

]′−n(n+1)L(R) = 0 (25)

Equation (23) leads to particular solutions cosmφ and sinmφ for an non-negative
integer m, because we require N(φ) to be periodic, with 2π as the period.

Equations (24), which is obviously the associated Legendre’s differential equation,
leads to associated Legendre’s functions of the first and the second kind. Because
the latter is singular at poles µ = ±1, only the associated Legendre’s functions of
the first kind are valid for constructing M (µ). Denoting them as Pm

n (µ), we have:

Pm
n (µ) = (−1)m(1−µ

2)m/2 dm

dµm Pn(µ)

Pn(µ) =
1

22n!

[
dn

dµn (µ
2−1)n

] (26)

The product of M(µ)N(φ) are called spherical surface harmonics. And it can be
normalized to be:

Y m
n (θ ,φ) =

√
2n+1

4π

(n−m)!
(n+m)!

Pm
n (cos(θ))eimφ

=

√
2n+1

4π

(n−m)!
(n+m)!

Pm
n (cos(θ)) [cos(mφ)+ isin(mφ)]

= YCm
n (θ ,φ)+ iY Sm

n (θ ,φ)

(27)

such that∫ 2π

0

∫
π

0
Y m

n (θ ,φ)Ȳ m′
n′ (θ ,φ)sinθdθdφ = δmm′δnn′ (28)

Finally, Eq. (25) leads to particular solutions Rn and R−(n+1). For different prob-
lems, different forms of L(R) should be used, which leads to different forms of
spherical harmonics. For the internal problem of a sphere, only Rn is valid. λcan
be expanded as:

λp =
∞

∑
n=0

Rn

{
a0

0YC0
0(θ ,φ)+

n

∑
m=1

[am
n YCm

n (θ ,φ)+bm
n Y Sm

n (θ ,φ)]

}
(29)

For external problems in an infinite domain, only R−(n+1) is valid, λ can be ex-
panded as:

λk =
∞

∑
n=0

R−(n+1)

{
c0

0YC0
0(θ ,φ)+

n

∑
m=1

[cm
n YCm

n (θ ,φ)+dm
n Y Sm

n (θ ,φ)]

}
(30)
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For external problems in a finite domain, a hollow sphere for instance, λ is the
summation of (29)(30):

λp +λk =
∞

∑
n=0

Rn

{
a0

0YC0
0(θ ,φ)+

n

∑
m=1

[am
n YCm

n (θ ,φ)+bm
n Y Sm

n (θ ,φ)]

}

+
∞

∑
n=0

R−(n+1)

{
c0

0YC0
0(θ ,φ)+

n

∑
m=1

[cm
n YCm

n (θ ,φ)+dm
n Y Sm

n (θ ,φ)]

} (31)

However, these assumptions of trial functions will lead to ill-conditioned systems
of equations when being applied in Trefftz method to numerically solve a bound-
ary value problem. We use characteristic lengths which was introduced in [Liu
(2007a,b)] to scale the T-Trefftz trial functions.

For a specific domain of interest, two characteristic lengths Rp and Rk are defined,
which are respectively the maximum and minimum values of radial distance R of

points where boundary conditions are specified. Therefore,
(

R
Rp

)n
and

(
Rk
R

)−(n+1)

is confined between 0 and 1 for any positive integern. Harmonics are thereafter
scaled as:

λp =
∞

∑
n=0

(
R
Rp

)n
{

a0
0YC0

0(θ ,φ)+
n

∑
m=1

[am
n YCm

n (θ ,φ)+bm
n Y Sm

n (θ ,φ)]

}

λk =
∞

∑
n=0

(
R
Rk

)−(n+1)
{

c0
0YC0

0(θ ,φ)+
n

∑
m=1

[cm
n YCm

n (θ ,φ)+dm
n Y Sm

n (θ ,φ)]

} (32)

5 T-Trefftz VCFEMs without Inclusions/Voids

5.1 Basic Theory and Formulation

For an element with N nodes, the displacement along each polygonal surface is
assumed using Wachspress coordinates as nodal shape functions:

ũ = Ñq at ∂Ω
e (33)

An interior displacement field is also independently assumed using the Papkovich-
Neuber Solution. Without inclusions or voids, the element is a simply-connected
domain. Therefore, the source point is put at the center, and the Papkovich-Neuber
displacement potentials are expressed as:

B =
M

∑
n=0

(
R
Rc

)n
{

a0
0YC0

0(θ ,φ)+
n

∑
m=1

[am
n YCm

n (θ ,φ)+bm
n Y Sm

n (θ ,φ)]

}
(34)
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Rc is the characteristic length used to scale the T-Trefftz trial functions, in order to
avoid solving ill-conditioned systems of equations. Rcshould be the largest distance
between the source point, and any point along the element boundary.

It should be pointed out, that although each component of the harmonic vector
of B is expressed in terms of spherical coordinates, these spherical harmonics of
each order n are actually homogenous polynomials of x1,x2,x3 of the same order n.
Therefore, such a displacement field does not impose any difficulty for numerical
integration.

And the T-Trefftz trial dispacelement field is expressed as:

u = [4(1− v)B+R ·∇B−R∇ ·B)]/2G (35)

We point out that displacement field assumed in this way is rotationally invariant.

We also list the 6 modes which corresponds to the six rigid body modes in 3D.
They are:

a0
0 =

{
1 0 0

}T

a0
0 =

{
0 1 0

}T

a0
0 =

{
0 0 1

}T

a0
1 =

{
1 0 0

}T
, a1

1 =
{

0 0
√

2
}T

a0
1 =

{
0 1 0

}T
, a1

1 =
{

0
√

2 0
}T

a1
1 =

{
0 1 0

}T
, b1

1 =
{
−1 0 0

}T

(36)

Whether these modes need to be removed or not, beforehand, depends on how the
element stiffness matrix is developed.

In principle, for a VCFEM with N nodes, the truncation order M should be no
smaller than

⌈√
N
⌉
− 1, so that non-rigid body modes included in ui is equal or

larger than 3N−6 , the number of non-rigid-body modes included in ũi.
⌈√

N
⌉

is
the smallest integer which is equal or larger than

√
N. However, based on some

numerical examples, it was found that M =
⌈√

N
⌉

is a good option. In this study,
such an order truncation is always used.

Adopting matrix and vector notation, we have:

u = Nααα in Ω
e

εεε = Bq in Ω
e

σσσ = Dεεε = Pα in Ω
e

t = nσσσ = Rααα at ∂Ω
e

(37)
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Firstly, we can substitute the assumed ui, ũi into a two-field boundary variational
principle:

π1(ui, ũi) = ∑
e

{∫
Ωe

1
2

tiuidS−
∫

∂Ωe
tiũidS +

∫
Se

t

t iũidS
}

(38)

Substituting assumed ui, ũi into the boundary variational principle (38), we have:

δπ1(ααα,q) = 0

= δ ∑
e

(
1
2

ααα
T Hααα−qT GT

ααα +qT Q
)

= ∑
e

(
δααα

T Hααα−δqT GT
ααα−δααα

T Gq+δqT Q
) (39)

where

G =
∫

∂Ωe
RT ÑdS

H =
∫

∂Ωe
RT NdS

Q =
∫

Se
t

ÑT tdS

(40)

Finite element equations derived in this way are:

∑
e

(
δqT Kq−δqT Q

)
= ∑

e

(
δqT GT H−1Gq−δqT Q

)
= 0 (41)

For this case, rigid-body modes should be eliminated from the assumedui.

We denote this type of VCFEM as VCFEM-TT-BVP. The development of stiffness
matrices of VCFEM-TT-BVP needs integration merely along the boundary. This
saves a large amount of computational burden for 3D problems, because domain in-
tegration in 3D is computationally intensive. However, VCFEM-TT-BVP is clearly
plagued by LBB conditions, because the multi-field boundary variational principle
(38) involves Lagrange multipliers. Similarly, because the VCFEMs developed by
Ghosh and his coworkers involve Lagrange multipliers, they are also plagued by
LBB conditions. Moreover, the VCFEMs developed by Ghosh and his coworkers
are based on Hybrid-Stress variational principle of Pian, and involve only equili-
brated stresses which are forced to satisfy compatibility conditions through the vari-
ational principles. Thus the hybrid-stress VCFEMs of Ghosh et al. involve volume
integrals as wells as surface integrals in the development of the VCFEM stiffness
matrices. Inability to satisfy LBB conditions will cause the instability of finite ele-
ments solutions. For detailed discussion of LBB conditions, see [Babuska (1973);
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Brezzi (1974); Rubinstein, Punch and Atluri (1983); Punch and Atluri (1984); Xue,
Karlovitz and Atluri (1985)].

A simple approach to develop hybrid/mixed elements without LBB conditions were
presented in [Dong and Atluri (2011a)]. The essential idea was to enforce the
compatibility between independently assumed fields, using collocation or the least
squares method, instead of using Lagrange multipliers in multi-field variational
principles. Following this idea, we can also enforce the compatibility of ui and ũi

at a set of preselected collocation points x(k)
i ,k = 1,2...M along ∂Ωe, similar to the

procedure of developing 2D VCFEM-TT-C. We obtain:

ui(x
(k)
i ,ααα) = ũi(x

(k)
i ,q), k = 1,2, ... (42)

A system of linear equations would be obtained:

Aα = Bq (43)

In general, (43) is an over-determined system of equations, its solution can be ob-
tained in a least square sense:

α =
(
ATWA

)−1 ATWBq = Cq (44)

wherethe weight matrix W has only non-zero entries wk in the diagonal.Each wk
represents the relative weight of the corresponding equation. In this study, each
polygonal surface is divided into triangles for the numerical integrations of (40).
The collocation points are selected at the integration points of each triangle.And the
corresponding wk is the product of the Jacobian (area of the triangle) and the weight
for numerical integration, at each collocation/integration points. With this choice
of collocation points and weights, it is obvious that, if a large number of collocation
points are used, (44) is equivalent to solving the least square problem of minimiz-
ing

∫
∂Ωe (ui− ũi)

2dS. However, ensuring the solvability of (44) needs less colloca-
tion/integration points than that are needed for exactly integrating

∫
∂Ωe (ui− ũi)

2dS,
and thus it involves less computational burden.

It should be noted that, using collocation method, the rigid body modes should not
be eliminated from the assumedui.

In this case, ui already satisfy governing Navier’s equation (10), and are related to ũi

using collocation method, which satisfies the inter-element compatibility condition,
we can develop finite elements using the following variation principle:

π2(ui) = ∑
e

{∫
Ωe

1
2

tiuidS−
∫

Se
t

t iuidS
}

(45)



184 Copyright © 2012 Tech Science Press CMC, vol.29, no.2, pp.169-211, 2012

Substituting the displacement field into (45), we obtain finite element equations:

∑
e

(
δqT Kq−δqT Q

)
= ∑

e

(
δqT CT HCq−δqT Q

)
= 0 (46)

We still denote this type of element as VCFEM-TT-C. Because the variational prin-
ciple (45) does not involve Lagrange multipliers, VCFEM-TT-C is not plagued by
LBB conditions.

5.2 Numerical Examples

 
Figure 4: A polyhedron element

Firstly, we illustrate the reason why we use a characteristic length to scale the T-
Trefftz trial functions. Material propertiesE = 1 and v = 0.25 are used. A 3D
VCFEM is used, see Fig. 4. We compute the condition number of the coefficient
matrices of the equations used to relate αto q. Numerical results are shown in
Tab.1. We can clearly see that by scaling the T-complete functions, the resulting
systems of equations have significantly smaller condition number. In the follow-
ing examples, the characteristic length is always used to scale the T-Trefftz trial
functions.

We also compare the CPU time required for computing the stiffness matrix of the
element shown in Fig. 4, using different VCFEM-TTs. The CPU time required
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Table 1: Condition number of coefficient matrices of equations used to relate ααα to
q

Elements VCFEM-TT-BVP VCFEM-TT-C
Characteristic length Scaled Not Scaled Scaled Not Scaled
Condition number 83.4 3.5×1012 350.6 1.6×1014

is shown in Tab. 2. As can be seen, VCFEM-TT-C and VCFEM-TT-BVP need
about the same time for computing one element. We would like to point out that,
this computational time should be much less than VCFEMs developed in [Ghosh
and Moorthy (2004)], even though an non-optimized MATLAB code is used in
this study. In [Ghosh and Moorthy (2004)], it was reported that the computational
burden for 3D VCFEMs are so high that parallel–processing has to be used to
accelerate the computation. However, even for VCFEM-TTs with inclusions/voids
developed in this study, the CPU time needed for computing one element is always
smaller than 2.5 seconds.

Table 2: CPU time required for computing the stiffness matrix of the element in
Fig. 4

CPU Time (second)
VCFEM-TT-BVP VCFEM-TT-C

0.71 0.70

Using the same element, we compute the eigenvalues of element stiffness matrices
of different VCFEMs. This is conducted in the original and rotated global Cartesian
coordinate system. The eigenvalues obviously are invariant with respect to the
global coordinate system. Experimental results are recorded in Tab. 3.

As can clearly be seen, these elements are stable and invariant for this shape. How-
ever, this does not mean that LBB conditions are satisfied by VCFEM-TT-BVP for
an arbitrary element. On this point, VCFEM-TT-C, which does not involve LBB
conditions, demonstrates significant advantages.

We also conduct the one-element patch test. The same element in Fig. 4 is used. A
uniform traction is applied to the upper faces. The displacements in the lower face
are prescribed to be the exact solution. The exact solution is:

u1 =−Pv
E

x1

u2 =−Pv
E

x2

u3 =
P
E

x3

(47)
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Table 3: Eigenvalues of stiffness matrices of different VCFEMs

Eigenvalues Rotation=0˚&45˚ VCFEM-TT-BVP VCFEM-TT-C
1 2.3383 2.3454
2 1.0878 1.1019
3 1.0805 1.0907
4 0.8408 0.8436
5 0.8408 0.8436
6 0.8348 0.7706
7 0.6265 0.6167
8 0.6161 0.6055
9 0.6002 0.6014

10 0.6002 0.6014
11 0.5529 0.5372
12 0.5407 0.5297
13 0.5407 0.5297
14 0.5029 0.5042
15 0.2984 0.2972
16 0.2511 0.2551
17 0.2511 0.2551
18 0.1915 0.1835
19 0.1915 0.1835
20 0.1692 0.1740
21 0.1219 0.1323
22 0.0000 0.0000
23 0.0000 0.0000
24 0.0000 0.0000
25 0.0000 0.0000
26 0.0000 0.0000
27 0.0000 0.0000

The numerical result of different elements is shown in Tab. 4, with error defined
as:

Error =
‖q−qexact‖
‖qexact‖ (48)

VCFEM-TT-BVP can pass the patch test. The numerical error for VCFEM-TT-C
is very small.

We also evaluate the performance of VCFEMs by modeling the cantilever beam
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Table 4: Performances of different VCFEMs in the constant strain patch test

Error
VCFEM-TT-BVP VCFEM-TT-C
5.8×10−10 5.5×10−3

with mesh configuration shown in Fig. 5, and compare their performances to the
exact solution. Geometry properties length L = 10, width 2c = 2, depth 2e = 2.
Material properties E = 1500 and v = 0.25 are used. An end bending moment is
applied to the right face withM = 4000. The mesh configuration includes 10 ele-
ments, as shown in Fig. 5. Traction boundary conditions are applied to the right
side of the beam. The displacements on the left side are prescribed to be the exact
solution. The exact solutions can be found in [Timoshenko and Goodier (1970)].
Computed tip vertical displacement at point A, and normal stress at point B are
shown in Tab. 5. From this example, we can see that similar accuracies can be
obtained by VCFEM-TT-BVP and VCFEM-TT-C.

 
Figure 5: Mesh configuration used for overall test of performances of different
VCFEMs

6 T-Trefftz VCFEMs with Spherical Inclusions/Voids

6.1 T-Trefftz Trial Displacement Fields for Different Types of Inhomogeneities

Consider a linear elastic solid undergoing infinitesimal elasto-static deformation.
The governing equation can be written in terms of displacements, which is the
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Table 5: Computed and exact solution of cantilever beam in Fig. 5 under end shear
or bending moment

Element Type
End Bending
vA σB

VCFEM-TT-BVP 71.2 2962.9
VCFEM-TT-C 72.5 3009.1

Exact 100.3 3000.0

Navier’s equation:

(λ + µ)θ,i + µ∆ui = 0 (49)

The boundary conditions are:

ui = ui at Su (50)

n jσi j = t i at St (51)

We consider that the domain Ω is discretized into elements Ωe with element bound-
ary ∂Ωe, each element boundary can be divided into Se

u,S
e
t ,ρ

e, which are intersec-
tions of ∂Ωe with Su,St and other element boundaries respectively. For elements
developed in this study, an inclusion or void Ωe

c is present inside each element,
which satisfy Ωe

c ⊂ Ωe,∂Ωe
c∩∂Ωe = /0, see Fig. 6. We denote the matrix material

in each element as Ωe
m, such that Ωe

m = Ωe−Ωe
c.

When an elastic inclusion is considered, we denote the displacement field in Ωe
m and

Ωe
cas um

i and uc
i , the strain and stress fields corresponding to which are εm

i j ,σ
m
i j and

εc
i j,σ

c
i j respectively. We also denote the displacement field along ∂Ωeas ũm

i , which
is inter-element compatible, by using Barycentric coordinates as nodal shape func-
tions. Then, in addition touc

i satisfying(49)ineach Ωe
c, um

i satisfying(49)ineach Ωe
m,

satisfying(51) at Se
t , ũm

i satisfying(50) at Se
u,displacement continuity and traction

reciprocity conditions at each ρeshould be considered:

um
i = ũm

i at ∂Ω
e (52)(

n jσ
m
i j
)+ +

(
n jσ

m
i j
)− = 0 at ρ

e (53)

Displacement continuity and traction reciprocity conditions at ∂Ωe
c should also be

considered:

um
i = uc

i at ∂Ω
e
c (54)

−n jσ
m
i j +n jσ

c
i j = 0 at ∂Ω

e
c (55)



Development of 3D T-Trefftz Voronoi Cell Finite Elements 189

where n j is the unit outer-normal vector at ∂Ωe
c.

When a rigid inclusion is considered, because only rigid-body displacement is al-
lowed for the inclusion, there is no need to assume uc

i . The following conditions
need to be satisfied at ∂Ωe

c:

um
i (non-rigid-body) = 0 at ∂Ω

e
c (56)∫

∂Ωe
c

n jσ
m
i j dS = 0∫

∂Ωe
c

eghixhn jσ
m
i j dS = 0

(57)

When a void is to be considered, for VCFEM-TT-BVP,ũc
i is assumed only along

∂Ωe
c. The following displacement continuity and traction free conditions are to be

satisfied:

um
i = ũc

i at ∂Ω
e
c (58)

n jσ
m
i j = 0 at ∂Ω

e
c (59)

For VCFEM-TT-C, on the other hand, there is no need to assume such a boundary
field ũc

i . Only (59) needs to be satisfied at ∂Ωe
c.

It should be noted that, for a priori equilibrated displacement fields, condition (57)
is a necessary condition of (55)or (59). Hence, for problems with elastic inclusion
or voids, condition (57) is satisfied as long as conditions (55) or (59) are satisfied.

In T-Trefftz elements derived in this study, um
i ,uc

i satisfy (49) as well as (57)a pri-
ori, and all other conditions as shown in (50)-(59) are satisfied using variational
principles or using collocation method. Such displacement fields can be expressed
in terms of Papkovich-Neuber potentials. When a spherical inclusion or void is
present, as shown in Fig. 6, the source point is put in the center of the sphere and
we use two types of spherical harmonics as Papkovich-Neuber potentials:

Bmp =
M

∑
n=0

(
R

Rmp

)n
{

a0
0YC0

0(θ ,φ)+
n

∑
l=1

[
al

nYCl
n(θ ,φ)+bl

nY Sl
n(θ ,φ)

]}

Bmk =
N

∑
n=0

(
R

Rmk

)−(n+1)
{

c0
0YC0

0(θ ,φ)+
n

∑
l=1

[
dl

nYCl
n(θ ,φ)+dl

nY Sl
n(θ ,φ)

]}
(60)

Bmp are spherical harmonics for the internal problems, whichare non-singular in
the whole domain. And Bmk are spherical harmonics for the external problems,
which are singular at the source point:
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Figure 6: A 3D VCFEM with a spherical inclusion/void

Two characteristic lengths Rmk and Rmp are defined. Rmk is equal to the minimum

distance between the source point Se and any point in Ωe
m, therefore

(
R

Rmk

)−(n+1)

is confined between 0 and 1 for any positive n. For a spherical inclusion/void, it is
obvious that Rmk is equal to the radius of the sphere.

Rmp is equal to the maximum distance between the source point Se and any point

in Ωe
m, therefore

(
R

Rmk

)n
is confined between 0 and 1 for any positive n.

And the displacement field in the matrix is express as:

um = ump +umk

ump = [4(1− vm)Bmp +R ·∇Bmp−R∇ ·Bmp)]/2Gm

umk = [4(1− vm)Bmk−∇Rmk ·B]/2Gm

(61)

When a spherical elastic inclusion is considered, uc
i can be express using the spher-

ical harmonics for internal problems:

uc = ucp = [4(1− vc)Bcp +R ·∇Bcp−R∇ ·Bcp)]/2Gc

Bcp =
L

∑
n=0

(
R

Rcp

)n
{

e0
0YC0

0(θ ,φ)+
n

∑
l=1

[
el

nYCl
n(θ ,φ)+ fl

nY Sl
n(θ ,φ)

]} (62)
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Rcp is equal to the maximum distance between the source point Se and any point in

Ωe
c, therefore

(
R

Rcp

)n
is confined between 0 and 1 for any positive n.

When a rigid inclusion is considered, uc
i does not need to be assumed. Assuming

um
i is good enough in order to develop finite element equations.

When a void is considered, for VCFEM-TT-BVP, ũc
i is assumed only at ∂Ωc. We

assume

ũc = ũcp =
[
4(1− vm)B̃cp +R ·∇B̃cp−R∇ · B̃cp)

]
/2Gm

B̃cp =
L

∑
n=0

(
R

Rcp

)n
{

g0
0YC0

0(θ ,φ)+
n

∑
l=1

[
gl

nYCl
n(θ ,φ)+hl

nY Sl
n(θ ,φ)

]} (63)

Now that the displacement fields are defined, the undetermined parameters can
be related to nodal displacements of the element using either multi-field bound-
ary variational principles or using the collocation method, which is similar to the
approaches as shown in section 5, for VCFEM-TTs without inclusions/voids.

It should be noted that, the six rigid-body modes should be eliminated beforehand
for VCFEM-TT-BVP, but should be preserved for VCFEM-TT-C. All other modes
are independent, non-rigid-body modes.

It also should be noted that the following three modes correspond to concentrated
forces at the source point (Kelvin’s solutions). They are the only three modes that
contribute to the total resultant forces on ∂Ωc:

c0
0 =

{
1 0 0

}T

c0
0 =

{
0 1 0

}T

c0
0 =

{
0 0 1

}T

(64)

And the following three modes correspond to concentrated moments at the source
point. They are the only three modescontribute to the total resultant moments on
∂Ωc:

c0
1 =

{
1 0 0

}T
, c1

1 =
{

0 0
√

2
}T

c0
1 =

{
0 1 0

}T
, c1

1 =
{

0
√

2 0
}T

c1
1 =

{
0 1 0

}T
, d1

1 =
{
−1 0 0

}T

(65)

Moreover, the displacement assumptions considered in this section are all invariant
with respect to change of coordinate systems. Therefore, the element stiffness ma-
trices developed from these displacement assumptions are expected to be invariant.
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6.2 T-Trefftz VCFEMs Using Multi-Field Boundary Variational Principles

In this section, T-Trefftz VCFEMs are developed using multi-field boundary varia-
tional principles.

An inter-element compatible displacement field ũm
i is assumed at ∂Ωe with Wach-

spress coordinates as nodal shape functions. Using matrix and vector notation, we
have:

ũm = Ñmq at ∂Ω
e (66)

The displacement field in Ωe
m and its corresponding traction field tm

i at ∂Ωe
m,∂Ωe

c
as:

um = Nmααα in Ω
e
m

tm = Rmααα at ∂Ω
e
m,∂Ω

e
c

(67)

When an elastic inclusion is to be considered, the displacement field in the inclusion
is independently assumed. We have:

uc = Ncβββ in Ω
e
c

tc = Rcβββ at ∂Ω
e
c

(68)

Therefore, finite element equations can be derived using the following three-field
boundary variational principle:

π3(ũm
i ,um

i ,uc
i ) = ∑

e

{
−
∫

∂Ωe+∂Ωe
c

1
2

tm
i um

i dS +
∫

∂Ωe
m

tm
i ũm

i dS−
∫

Se
t

t iũm
i dS

}
+∑

e

{∫
∂Ωe

c

tm
i uc

i dS +
∫

∂Ωe
c

1
2

tc
i uc

i dS
} (69)

This leads to finite element equations:

δ

{
q
βββ

}T [GT
αqH−1

ααGαq GT
αqH−1

ααGαβ

GT
αβ

H−1
ααGαq GT

αβ
H−1

ααGαβ +Hββ

]{
q
βββ

}
= δ

{
q
βββ

}T {Q
0

}
(70)

where

Gαq =
∫

∂Ωe
RT

mÑmdS

Hαα =
∫

∂Ωe+∂Ωe
c

RT
mNmdS

Hββ =
∫

∂Ωe
c

RT
c NcdS

Q =
∫

Se
t

ÑT
mtdS

(71)



Development of 3D T-Trefftz Voronoi Cell Finite Elements 193

This equation can be further simplified by static-condensation.

When the inclusion is rigid, uc
i does not need to be assumed, and we use the fol-

lowing variational principle:

π4(ũm
i ,um

i ) = ∑
e

{
−
∫

∂Ωe+∂Ωe
c

1
2

tm
i um

i dS +
∫

∂Ωe
m

tm
i ũm

i dS−
∫

Se
t

t iũm
i dS

}
(72)

The corresponding finite element equations are:

∑
e

(
δqT GT

αqH−1
ααGαqq−δqT Q

)
= 0 (73)

When the element includes a void instead of an elastic/rigid inclusion, ũc
i is merely

assumed at ∂Ωe
c. We have:

ũc = Ñcγ at ∂Ω
e
c (74)

We use the following variational principle:

π5(ũm
i ,um

i , ũc
i ) = ∑

e

{
−
∫

∂Ωe+∂Ωe
c

1
2

tm
i um

i dS +
∫

∂Ωe
m

tm
i ũm

i dS−
∫

Se
t

t iũm
i dS

}
+∑

e

∫
∂Ωe

c

tm
i ũc

i dS
(75)

The corresponding finite element equations are:

δ

{
q
γ

}T [GT
αqH−1

ααGαq GT
αqH−1

ααGαγ

GT
αγH−1

ααGαq GT
αγH−1

ααGαγ

]{
q
γ

}
= δ

{
q
γ

}T {Q
0

}
(76)

where

Gαγ =
∫

∂Ωe
c

RT
mÑcdS (77)

Similarly, this equation can be further simplified by static-condensation.

It should be pointed out that VCFEM-TT-BVPs developed in this section, with
spherical voids/inclusions, are plagued by LBB conditions, because Lagrange mul-
tipliers are involved. VCFEM-TT-Cs without involving LBB conditions are de-
veloped in section 6.3, by using collocation method to enforcing the compatibility
between independently assumed fields.
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6.3 T-Trefftz VCFEMs Using Collocation and a Primitive Field Boundary Vari-
ational Principle

In this section, we develop 3D VCFEM-TTs using collocation method and a prim-
itive field variational principle, in a similar fashion to its 2D versions as shown in
[Dong and Atluri (2012a)].

A finite number of collocation points are selected along ∂Ωe and ∂Ωe
c, denoted as

xmp
i ∈ ∂Ωe, p = 1,2.... , and xcq

i ∈ ∂Ωe
c,q = 1,2....

Collocations are carried out in the following manner:

1. When an elastic inclusion is considered, we enforce the following conditions at
corresponding collocation points:

um
i (xmp

j ,ααα) = ũi(x
mp
j ,q) xmp

j ∈ ∂Ω
e

um
i (xcq

j ,ααα)−uc
i (x

cq
j ,βββ ) = 0 xcq

j ∈ ∂Ω
e
c

wtm
i (xcq

j ,ααα)+wtc
i (x

cq
j ,βββ ) = 0 xcq

j ∈ ∂Ω
e
c

(78)

ααα,βββ are related to q in the following way:

ααα = C1
αqq

βββ = C1
βqq

(79)

2. When the inclusion is rigid, there is no need to assume uc
i , and the following

collocations are considered:

um
i (xmp

j ,ααα) = ũi(x
mp
j ,q) xmp

j ∈ ∂Ω
e

um
i (non-rigid-body,xcq

j ,ααα)= 0 xcq
j ∈ ∂Ω

e
c

(80)

We obtain:

α = C2
αqq (81)

3. When a void is considered instead of a inclusion, there is no need to assume uc
i or

ũc
i . The following conditions are enforced:

um
i (xmp

j ,ααα) = ũi(x
mp
j ,q) xmp

j ∈ ∂Ω
e

wtm
i (xcq

j ,ααα)= 0 xcq
j ∈ ∂Ω

e
c

(82)

By solving(82), we have:

ααα = C3
αqq (83)
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It should be noted that, in (78)and (82), a parameter w is used to weigh the collo-
cation equations for tractions, so that they have the same order of importance as
collocation equations for displacements. For displacement fields assumed in sec-
tion 6.1, it is obvious that a proper choice of w is w = Rmk/2Gm. It should also be
pointed out that, for the over-determined system of equations obtained using either
(78), (80), or (82), the least square solution as discussed in (44) is obtained.

Now that the interior displacement field is related to nodal displacements, finite
element equations can be derived from the following primitive-field boundary vari-
ational principle, as used in section 5 for elements without inclusions/voids:

π2(ui) = ∑
e

{∫
∂Ωe

1
2

tiuidS−
∫

Se
t

t iuidS
}

(84)

Substituting corresponding displacement fields into (84), we obtain finite element
equations:

∑
m

(
δqT Cs

αq
T MααCs

αqq−δqT Q
)

= 0, s = 1,2 or 3

Mαα =
∫

∂Ωe
RT

mNmdS
(85)

When s is equal to 1, 2, and 3, Cs
αq

T MααCs
αq is the stiffness matrix for VCFEM-

TTs with an elastic inclusion, a rigid inclusion, and a void respectively.

Because in the development of VCFEM-TT-C, integration of only one matrix Mαα

along the outer boundary is needed, and collocatoin along the inner boundary re-
quire less points where the basis functions are evaluated, VCFEM-TT-C is expected
to be computationally more efficient than VCFEM-TT-BVP. Also, as explained pre-
viously, VCFEM-TT-C does not suffer from LBB conditions, which is a tremen-
dous advantage of VCFEM-TT-C over VCFEM-TT-BVP.

6.4 Numerical Examples

Firstly, we illustrate the reason why we use characteristic lengths to scale the T-
Trefftz trial functions. See Fig. 7 for the geometry of the element. Material
properties of the matrix are Em = 1,vm = 0.25. Three kinds of heterogeneities
are considered: an elastic inclusion with Ec = 2,vc = 0.3, a rigid inclusion, and a
void. Stiffness matrices of VCFEM-TT-C are computed, with and without using
characteristic lengths to scale T-Trefftz trial functions. Condition numbers of the
coefficient matrix of equationsare shown in Tab. 5. We can clearly see that by
scaling the T-Trefftz functions using characteristic lengths, the resulting systems of
equations have significantly smaller condition number. Although not shown here,
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Figure 7: An element with a spherical inclusion/void used for condition number
test, eigenvalue test, and patch test

Table 6: Condition number of coefficient matrices of equations used to relate ααα,βββ
to q using the collocation method with/without using characteristic lengths to scale
T-Trefftz Trial functions for the element shown in Fig. 7

Elastic Inclusion Rigid Inclusion Void
Characteristic
Length

Scaled Not scaled Scaled Not scaled Scaled Not scaled

Condition
number

1.08×103 3.7×1035 2.8×1034 2.3×1033 2.8×103 2.6×1035

scaling T-Trefftz trial functions using characteristic lengths also has similar effect
on VCFEM-TT-BVP.

We also compare the CPU time required for computing the stiffness matrix of the
element shown in Fig. 7, using different VCFEM-TTs. The CPU time required
is shown in Tab. 7. As can be seen, VCFEM-TT-C needsless time for computing
one element than that for VCFEM-TT-BVP. The computational time for either of
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these two types of VCFEM-TTs should be much less than VCFEMs developed in
[Ghosh and Moorthy (2004)].

Table 7: CPU time required for computing the stiffness matrix of the element in
Fig. 7

CPU Time (seconds)
VCFEM-TT-BVP VCFEM-TT-C

2.42 1.51

Using the same element, we compute the eigenvalues of element stiffness matrices
of different VCFEMs. This is conducted in the original and rotated global Cartesian
coordinate system. Experimental results are shown in Tab. 8-10

As can clearly be seen, these elements are stable and invariant for this element,
because additional zero energy modes do not exist, and eigenvalues do not vary
with respect to change of coordinate systems. However, this does not mean that
LBB conditions are satisfied by VCFEM-TT-BVP for an arbitrary element.

We also conduct the one-element patch test. The same element is considered. The
materials of the matrix and the inclusion are the same, with material properties
E = 1,v = 0.25. A uniform traction is applied to the upper faces. The displacements
in the lower face are prescribed to be the exact solution. Experimental results are
shown in Tab. 11.

As can be seen, VCFEM-TT-BVP can pass the patch test with errors equal to or
less than an order of 10−8. Although the error for VCFEM-TT-C is larger, but still
in an order of 10−3. We consider the performance of all VCFEMs to be satisfactory
in this one-element patch test.

In order to evaluate the overall performances of different VCFEMs for modeling
problems with inclusions or voids, we consider the following problem: an infinite
medium with a spherical elastic/rigid inclusion or void in it. Exact solution of all
of these three problems: an elastic inclusion, a rigid inclusion, or a void, can be
solved using Eshelby’s solution and the equivalent inclusion method. For details of
the exact solution, see [Eshelby (1957); Nemat-Nasser and Hori (1999)].

The material properties of the matrix are Em = 1,vm = 0.25. When an elastic inclu-
sion is considered, the material properties of the inclusion are Ec = 2,vc = 0.3. The
magnitude of the remote tension P in the direction of x3 is equal to 1. The radius
of the inclusion/void is 0.1. For numerical implementation, the infinite medium is
truncated to a finite cube. The length of each side of the truncated cube is equal
to2. For all three cases with an elastic/rigid inclusion or a void, only one element
is used. Traction boundary conditions are applied to the outer-boundary of the
element. Least number of nodal displacements are prescribed to the exact solution.
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Table 8: Eigenvalues of stiffness matrices of different VCFEMs when an elastic
inclusion is considered

Eigenvalues Rotation=0˚&45˚ VCFEM-TT-BVP VCFEM-TT-C
1 2.3383 2.3455
2 1.0878 1.1022
3 1.0805 1.0909
4 0.8408 0.8434
5 0.8408 0.8434
6 0.8349 0.7703
7 0.6267 0.6164
8 0.6161 0.6048
9 0.6002 0.6015

10 0.6002 0.6015
11 0.5530 0.5373
12 0.5408 0.5296
13 0.5408 0.5296
14 0.5029 0.5040
15 0.2984 0.2965
16 0.2511 0.2546
17 0.2511 0.2546
18 0.1915 0.1834
19 0.1915 0.1834
20 0.1692 0.1737
21 0.1219 0.1323
22 0.0000 0.0000
23 0.0000 0.0000
24 0.0000 0.0000
25 0.0000 0.0000
26 0.0000 0.0000
27 0.0000 0.0000

We compare the computed σ11 along axis x3, σ33 along axis x1, to that of the exact
solution. As shown in Fig. 9-11, no matter an elastic inclusion, a rigid inclusion,
or a void is considered, VCFEM-TTs always give very accurate computed stresses,
even though only one element is used. For this reason, we consider VCFEM-TTs
very efficient for micromechanical modeling of heterogeneous materials.

We also use the VCFEM-TTs developed in this study to study the stiffness of het-
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Table 9: Eigenvalues of stiffness matrices of different VCFEMs when a rigid inclu-
sion is considered

Eigenvalues Rotation=0˚&45˚ VCFEM-TT-BVP VCFEM-TT-C
1 2.4003 2.4081
2 1.1161 1.1280
3 1.1098 1.1187
4 0.8657 0.8686
5 0.8657 0.8686
6 0.8453 0.7826
7 0.6421 0.6205
8 0.6205 0.6115
9 0.6074 0.6099

10 0.6074 0.6099
11 0.5553 0.5406
12 0.5431 0.5302
13 0.5431 0.5302
14 0.5077 0.5078
15 0.3018 0.3005
16 0.2531 0.2557
17 0.2531 0.2557
18 0.1919 0.1836
19 0.1919 0.1836
20 0.1699 0.1744
21 0.1227 0.1330
22 0.0000 0.0000
23 0.0000 0.0000
24 0.0000 0.0000
25 0.0000 0.0000
26 0.0000 0.0000
27 0.0000 0.0000

erogeneous materials. A Unit Cell model of Al/SiC material is considered. The
material properties are: EAl = 74GPa,vAl = 0.33,ESiC = 410GPa,vSiC = 0.19. The
volume fraction of SiC is 20%. This model was studied in [Chawla, Ganesh, Wun-
sch (2004)], using around 76,000 ten-node tetrahedral elements with ABAQUS.
However, in this study, we use just one VCFEM, see in Fig. 12. As shown in Tab.
12, although only one element is used, the homogenized Young’s modulus is quite
close to what is obtained by using round 76,000 ten-node tetrahedral elements with
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Table 10: Eigenvalues of stiffness matrices of different VCFEMs when a void is
considered

Eigenvalues Rotation=0˚&45˚ VCFEM-TT-BVP VCFEM-TT-C
1 2.2681 2.2617
2 1.0640 1.0656
3 1.0564 1.0546
4 0.8632 0.8510
5 0.8241 0.8236
6 0.8241 0.8236
7 0.6278 0.6340
8 0.6113 0.6134
9 0.5963 0.5867

10 0.5963 0.5867
11 0.5707 0.5542
12 0.5707 0.5542
13 0.5602 0.5479
14 0.5029 0.5086
15 0.2994 0.2977
16 0.2518 0.2609
17 0.2518 0.2609
18 0.1978 0.1862
19 0.1978 0.1862
20 0.1726 0.1828
21 0.1257 0.1226
22 0.0000 0.0000
23 0.0000 0.0000
24 0.0000 0.0000
25 0.0000 0.0000
26 0.0000 0.0000
27 0.0000 0.0000
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Table 11: Performances of different VCFEMs in patch test

Error
VCFEM-TT-BVP VCFEM-TT-C
1.0×10−8 6.5×10−3

 
Figure 8: A spherical elastic/rigid inclusion or hole under remote tension

ABAQUS.

Table 12: Homogenized Young’s modulus using different methods

Method Young’s Modulus (GPa)
VCFEM-TT-BVP 103.8
VCFEM-TT-C 98.8
ABAQUS 100.0

We also study a RVE of Al/SiC material, with 125 randomly distributed spherical
SiC particles. The RVE is shown in Fig. 13, discretized with 125 VCFEMs de-
veloped in this study. The material properties of Al and SiC are taken the same as
those in the last example. The size of the RVE is 100 µm × 100 µm × 100 µm.
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Figure 9: Computed σ11 along axis x3, σ33 along axis x1 for the problem with an
elastic inclusion
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 Figure 10: Computed σ11 along axis x3, σ33 along axis x1 for the problem with a
rigid inclusion
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void
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                                   (a)                                                             (b) 
 
Figure 12: The mesh of an Al/SiC Unit Cell model using: (a) around 76,000 ten-
node tetrahedral elements with ABAQUS in the study of [Chawla, Ganesh, Wunsch
(2004)]; (b) one T-Trefftz Voronoi Cell Finite Element

A uniform tensile stress of 100 MPa is applied in the x3 direction. Both VCFEM-
TT-BVP and VCFEM-TT-C are used to study the microscopic stress distribution
in the RVE. However, because very similar results are obtained by these two types
of VCFEM-TTs, only the results obtained by VCFEM-TT-C are shown here. The
maximum principal stress in plotted in Fig. 14, and the strain energy density is
shown in Fig. 15. While the inclusions are presenting a relative uniform stress
state, the maximum principal stress and the strain energy density in the matrix
show high concentration. To be more specific, high stress and strain energy con-
centration is observed near the inclusions, in the direction which is parallel to the
direction of loading. On the other hand, at the locations near the inclusions, in the
direction which is perpendicular to the direction of loading, very low stress values
and strain energy density are observed. This gives us the idea at where damagesare
more likely to initiate and develop, for materials reinforced by stiffer particles.

We also use the same RVE as shown in Fig. 13, to study porous PZT ceramic ma-
terial. The RVE includes 125 spherical voids. The material properties of the matrix
material are: E = 165GPa,v = 0.22. Only the results obtained by VCFEM-TT-C
are shown here. The maximum principal stress in plotted in Fig. 16, and the strain
energy density is shown in Fig. 17. The stress and energy density concentration is
showing a different pattern as the Al/SiC material, of which SiC particles are stiffer
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Figure 13: A RVE with 125 spherical inclusions/voids

inclusions.For PZT material with spherical pores, high stress and strain energy con-
centration is observed near the cavities, in the direction which is perpendicular to
the direction of loading. On the other hand, at the locations near the cavities, in
the direction which is parallel to the direction of loading, very low stress values
and strain energy density are observed. This gives us the idea at where damage are
more likely to initiate and develop for porous materials.

7 Conclusions

Three-dimensional T-Trefftz Voroni Cell Finite Elements (VCFEM-TTs) without
inclusions/voids, or with spherical inclusions/voids, are developed. For each el-
ement, a compatible displacement field along the element outer-boundaryis as-
sumed, with Barycentric coordinates as nodal shape functions. Independent dis-
placement fieldsin the elementare assumed ascharacteristic-length-scaled T-Trefftz
trial functions. Papkovich-Neuber solution is used to contruct the T-Trefftz trial
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Figure 14: Distribution of maximum principal stress in the RVE of Al/SiC material
modeled by 125 VCFEM-TT-Cs, each element includes a spherical inclusion

 
Figure 15: Distribution of strain energy density in the RVE of Al/SiC material
modeled by 125 VCFEM-TT-Cs, each element includes a spherical inclusion
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Figure 16: Distribution of maximum principal stress in the RVE of porous PZT ce-
ramic material modeled by 125 VCFEM-TT-Cs, each element includes a spherical
void

 
Figure 17: Distribution of strain energy densityin the RVE of porous PZT ceramic
material modeled by 125 VCFEM-TT-Cs, each element includes a spherical void



Development of 3D T-Trefftz Voronoi Cell Finite Elements 209

displacement fields. The Papkovich-Neuber potentials are linear combinations of
spherical harmonics. Two approaches are used alternatively to develop element
stiffness matrices. VCFEM-TT-BVP uses multi-field boundary variational princi-
ples to enforce all the conditions in a variational sense. VCFEM-TT-C uses the col-
location method to relate independently assumed displacement fields to nodal dis-
placements, and develop finite element equations based on a primitive-field bound-
ary variational principle.

Through numerical examples, we demonstrate thatVCFEM-TTs developed in this
study can capture the stress concentration around spherical voids/inclusion quite ac-
curately, and the time needed for computing each element is much less than that for
the hybrid-stress version of VCFEMs in [Ghosh and Moorthy (2004)]. VCFEM-
TTs developed in this study are also used to estimate the overall material properties
of heterogeneous materials, as well as to compute the microscopic stress distribu-
tion. It is observed that, for composite materials with stiffer second-phase inclu-
sions, high stress concentration in the matrix is shown near the inclusion, in the
direction of which is parallel to the direction of loading. However, for materials
with spherical cavities, high stress concentration is observed in the direction which
is perpendicular to the direction of loading.

Because of their accuracy and efficiency, we consider that the 3D Voronoi Cell Fi-
nite Elements developed in this study are suitable for micromechanical modeling
of heterogeneous materials. We also point out that, the process of reducing ellip-
soidal coordinates/harmonics to spherical ones in the limiting case cannot work
smoothly, which was contrarily presented in an ambiguous way in [Ghosh and
Moorthy (2004)]. VCFEMs with ellipsoidal, and arbitrary shaped voids/inclusions
will be presented in future studies.
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