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Dispersion of Axisymmetric Longtudinal Waves in a
Pre-Strained Imperfectly Bonded Bi-Layered Hollow

Cylinder

S. D. Akbarov1,2 and C. Ipek 3

Abstract: This paper studies the dispersion of the axisymmetric longitudinal
wave propagation in the pre-strained hollow cylinder consisting of two-layers under
the shear-spring type imperfectness of the contact conditions between these layers.
The investigations are made within the framework of the piecewise homogeneous
body model by utilizing the 3D linearized theory of elastic waves in elastic bodies
with initial stresses. It is assumed that the layers of the cylinder are made from
compressible hyper-elastic materials and their elasticity relations are given through
the harmonic potential. The degree of the mentioned imperfectness is estimated by
the shear-spring parameter. Numerical results on the influence of this parameter on
the behavior of the dispersion curves related to the fundamental mode are presented
and discussed. It is established that the considered type imperfectness of the contact
conditions causes two branches of the dispersion curve related to the fundamental
mode to appear: the first disappears, but the second approaches the dispersion curve
obtained for the perfect interface case by decreasing the shear-spring parameter.

Keywords: Bi-layered hollow cylinder, shear-spring type imperfectness, initial
strains, axisymmetric waves, wave dispersion

1 Introduction

Initial strains (or stresses) in construction elements are one of the reference details
or factors which must be taken into account not only because of their static behavior
but particularly for their dynamic behavior. It is known that these initial strains
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occur in structural elements during their manufacture and assembly, in the Earth’s
crust under the action of geostatic forces, in composite materials, etc. Moreover,
construction elements are loaded by external forces, as well as by additional forces
acting on the external forces, during the construction process. When it is necessary
to identify the mechanical problems caused by these additional forces, then the
stresses caused by the working load can be taken as the initial stresses.

Thus, the scope of the problem regarding the initially stressed body is significantly
wide and it is of utmost importance to study it in both the practical as well as
theoretical sense.

Wave propagation in pre-strained bodies has been studied by many researchers, the
systematic analyses of which are given in the monographs by Biot (1965), Guz
(2004) and Eringen and Suhubi (1975). A review of these investigations is given
in papers by Guz (2002, 2005), and Akbarov (2007). A considerable part of these
studies relates to wave propagation in pre-strained cylinders and plates.

Here we consider a brief review of the investigations related to time-harmonic
wave dispersion in the pre-strained homogeneous and layered cylinders with cir-
cular cross sections which are directly relevant to the present paper. Note that the
pioneer work in this field was made by Green (1961) in which the torsional wave
propagation in the pre-stretched homogeneous cylinder was studied. The paper by
Demiray and Suhubi (1970) analyzed the axisymmetric wave propagation in an ini-
tially twisted circular cylinder. It was established that the initial twisting of the cir-
cular cylinder causes the coupled wave propagation field between the axisymmetric
torsional and longitudinal waves to occur. In other words, it was established that
in the initially twisted circular cylinder the axisymmetric torsional and longitudi-
nal waves cannot be propagated separately. However, in the paper by Demiray and
Suhubi (1970), as an example of the numerical results, only the approximate ana-
lytical expression for the perturbation of the torsional oscillation frequency caused
by the initial twisting is given.

In a paper by Belward (1976), the wave propagation in a pre-strained cylinder made
from an incompressible material was studied. Initial strains in the cylinder were
determined within the framework of the non-linear theory of elasticity. The study of
the longitudinal wave propagation in the homogeneous cylinder was also a subject
of papers by Guz et al. (1975) and Kushnir (1979). The results of these later papers
were also included in a monograph by Guz (2004).

Note that in the foregoing papers the subject of the study was the homogeneous cir-
cular cylinder. Before the beginning of the 21st century there was no investigation
of the wave propagation problems in a pre-stressed bi-material compounded cylin-
der. The first attempt in this field was made by Akbarov and Guz (2004) in which
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it was assumed that the initial stretching is small and the initial stress state in the
compound cylinder is calculated within the scope of the first version of the small
initial deformation theory, the meaning of which was described in the monographs
by Guz (1999, 2004).

Ozturk and Akbarov (2008, 2009a, 2009b) studied torsional wave dispersion in
the initially stretched bi-material compound hollow cylinder, in the pre-strained
cylinder embedded in an infinite pre-strained elastic medium and in the initially
stretched bi-material solid compound cylinder. In these papers it was assumed that
the initial strains are small and the initial stress-strain state in the cylinders was
determined within the scope of the classical linear theory of elasticity. Moreover,
the elasticity relations of the materials of the constituents were described by the
Murnaghan potential.

A paper by Akbarov and Guliev (2009) extended the work by Akbarov and Guz
(2004) to the case where the initial strains are finite and the mechanical relations
of their materials are assumed to be compressible and are given by the harmonic-
type potential. Within the same assumptions Akbarov and Guliev (2010) studied
the influence of the finite initial strains on the axisymmetric wave dispersion in a
circular cylinder embedded in a compressible elastic medium. In paper by Akbarov
et al. (2010) the problem considered in papers by Akbarov and Guliev (2009, 2010)
was studied for the case where the materials of the components of the system are
incompressible and the stress-strain relations for them are given through the Treloar
potential. Numerical results regarding the influence of the initial strains in the
cylinder and embedded body on the wave dispersion are presented and discussed.
It should be noted that in the investigations reviewed above it was assumed that the
initial strains are caused by the uni-axial stretching or compression along the wave
propagation direction, i.e. along the cylinders. The dispersion of the axisymmetric
longitudinal wave in the initially twisted compound cylinder was a subject of a
paper by Akbarov et al. (2011). It was assumed that in the initial state the cylinders
are twisted and each of them has a constant twist per unit length and this initial
stress-strain state is determined within the scope of the classical linear theory of
elasticity. The materials of the constituents are isotropic and homogeneous.

In all the foregoing papers, it is assumed that the contact condition on the inter-
face between the inner and outer cylinders is a perfect one; i.e., it is assumed that
the forces and displacements are continuous functions across the interface surface.
However, in many cases (for an example, in the case where the reinforced cables
are modeled as bi-material compounded cylinders), it is unrealistic to assume a
perfectly bounded interface. Consequently, in order to apply the results of the theo-
retical investigations to the indicated cases, it is necessary to take the imperfectness
of the contact conditions into account in the study of the wave propagation in the
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bi-material compounded circular cylinders. Note that the study of the torsional
wave propagation in the bi-material compounded cylinder (without initial stresses)
with an imperfect interface is studied in the paper by Berger et al. (2000) in which
the imperfection of the contact condition is presented according to the model pro-
posed by Jones and Whitter (1967). Kepceler (2010) has carried out investigations
of a similar type for the initially stressed bi-material compound cylinder. Note that
in this paper, the investigations carried out by Ozturk and Akbarov (2008, 2009b)
are developed for the case where the contact condition on the interface surface is
imperfect and the imperfectness of the contact condition is formulated according
to the model used by Berger et al. (2000). Moreover, in the present paper, as in
papers by Ozturk and Akbarov (2008, 2009b), the mathematical formulations for
the corresponding eigen-value problems are made within the scope of the piece-
wise homogenous body model with the use of the equations and relations of the
Three-dimensional Linearized Theory of Elastic Waves in Initially Stressed Bod-
ies (TLTEWISB). It is also assumed that the elasticity relations of the cylinders’
materials are given through the Murnaghan potential. Note that the obtaining of
the equations and relations of TLTEWISB for the case under consideration will be
detailed in section 2.

To the best of the authors’ knowledge, up to publication of the paper by Akbarov
and Ipek (2010) there has not been any investigation related to the study of the
influence of the imperfectness of the contact conditions on the axisymmetric lon-
gitudinal wave propagation either in the compound cylinder with initial strains or
in the compound cylinder without initial strains. The first attempt in this field was
made in the mentioned paper by the authors, in which the influence of the shear-
spring type of the imperfectness of the contact conditions on the dispersion on
the axisymmetric longitudinal wave propagation in a pre-strained bi-material solid
cylinder was studied. In the present paper, the investigations started in the paper by
Akbatov and Ipek (2010) are extended for the pre-strained bi-material hollow cylin-
der. As in the paper by Akbatov and Ipek (2010), it is assumed that the materials
of the constituents are hyper-elastic compressible ones and their elasticity relations
are described by the harmonic potential. The corresponding numerical results are
presented and discussed.

2 Formulation of the problem

We consider the sandwich hollow circular cylinder shown in Fig. 1 and assume that
in the natural state the radius of the external circle of the inner hollow cylinder is
R and the thickness of the inner and outer cylinders are h(2) and h(1), respectively.
In the natural state we determine the position of the points of the cylinders by the
Lagrangian coordinates in the cylindrical system of coordinates Orθz. The values
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related to the inner and external hollow cylinders will be denoted by the upper
indices (2) and (1), respectively. Furthermore, we denote the values related to the
initial state by an additional upper index 0.

 

 
Figure 1: The geometry of the considered cylinder.

It is assumed that the cylinders have infinite length in the direction of the Oz axis
and the initial strain-stress state in each component of the considered body is ax-
isymmetric with respect to this axis and homogeneous. Moreover, it is assumed that
the mentioned initial strain-stress state in the inner and external hollow cylinders
are determined through the following displacement fields:

u(k),0
r = (λ (k)

1 −1)r, u(k),0
θ

= 0, u(k),0
z = (λ (k)

3 −1)z, λ
(k)
1 6= λ

(k)
3 , k = 1,2 (1)

where u(k),0
r (u(k),0

z ) is the displacement along the radial direction (along the direc-
tion of the Oz axis) and λ

(k)
1 (λ (k)

3 ) is the elongation parameters.

Such an initial stress field may be present with stretching or compression of the
considered body along the Oz axis. The stretching or compression may be con-
ducted for the inner and the external hollow cylinders separately before they are
compounded. However, the results which will be discussed below can also be re-
lated to the case where the inner and external hollow cylinders are stretched or
compressed together after the compounding. In this case, as a result of the dif-
ference of the radial and circumferential deformations of the inner and external
cylinders’ materials (similar to the deformations in the classical linear theory of
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elasticity which are determined through the Poisson’s coefficient), the inhomoge-
neous initial stresses acting on the areas which are parallel to the Oz axis may arise.
Nevertheless, according to the well known mechanical consideration, the afore-
mentioned inhomogeneous initial stresses can be neglected under corresponding
investigations, in the cases where these stresses are less significant than those act-
ing on the areas which are perpendicular to the Oz axis. Otherwise, it is necessary
to take the mentioned inhomogeneous stresses into account when considering the
corresponding problems which may be a subject of other investigations.

For the initial state of the cylinders, we associate the Lagrangian cylindrical system
of coordinates O′r′θ ′z′ and introduce the following notation:

r′ = λ
(k)
1 r, z′ = λ

(k)
3 z, R′ = λ

(2)
1 R, (2)

k = 2 for R≤ r ≤ R+h(2), k = 1 for R+h(2) < r ≤ R+h(1) +h(2).

The values related to the system of coordinates associated with the initial state
below, i.e. with O′r′θ ′z′ , will be denoted by an upper prime.

Within this framework, let us investigate the axisymmetric wave propagation along
the O′z′ axis in the considered body. We make this investigation by the use of coor-
dinates r′ and z′ in the framework of the TLTEWISB. We will follow the style and
notation used in the paper by Akbarov and Guliev (2008). Thus, we write the basic
relations of the TLTEWISB for the compressible body under an axisymmetrical
state. These relations are satisfied within each constituent of the considered body
because we use the piecewise homogeneous body model.

The equations of motion are:

∂

∂ r′
Q′(k)r′r′ +

∂

∂ z′
Q′(k)r′z′ +

1
r′

(
Q′(k)r′r′−Q′(k)

θ ′θ ′

)
= ρ

′(k) ∂ 2

∂ t2 u′(k)r′ ,

∂

∂ r′
Q′(k)r′z′ +

∂

∂ z′
Q′(k)z′z′ +

1
r′

Q′(k)r′z′ = ρ
′(k) ∂ 2

∂ t2 u′(k)z′ . (3)

The mechanical relations are:

Q′(k)r′r′ = ω
′(k)
1111

∂u′(k)r′

∂ r′
+ω

′(k)
1122

u′(k)r′

r′
+ω

′(k)
1133

∂u′(k)z′

∂ z′
,

Q′(k)
θ ′θ ′ = ω

′(k)
2211

∂u′(k)r′

∂ r′
+ω

′(k)
2222

u′(k)r′

r′
+ω

′(k)
2233

∂u′(k)z′

∂ z′
,

Q′(k)z′z′ = ω
′(k)
3311

∂u′(k)r′

∂ r′
+ω

′(k)
3322

u′(k)r′

r′
+ω

′(k)
3333

∂u′(k)z′

∂ z′
,



Dispersion of Axisymmetric Longtudinal Waves 105

Q′(k)r′z′ = ω
′(k)
1313

∂u′(k)r′

∂ z′
+ω

′(k)
1331

∂u′(k)z′

∂ r′
, Q′(k)z′r′ = ω

′(k)
3113

∂u′(k)r′

∂ z′
+ω

′(k)
3131

∂u′(k)z′

∂ r′
. (4)

In (3) and (4) through Q′(k)r′r′ ,. . . , Q′(k)z′r′ the perturbation of the components of the

Kirchoff stress tensor are denoted. The notation u′(k)r′ , u′(k)z′ shows the perturbations

of the components of the displacement vector. The constants ω ′
(k)
1111,. . . ,ω ′(k)3333 in

(3) and (4) are determined by the mechanical constants of the inner and outer cylin-
ders’ materials and through the initial stress state. ρ ′(k) is the density of the k-th
material.

For an explanation of the foregoing equations and relations, according to mono-
graphs by Eringen and Suhubi (1975) and Guz (2004), let us consider briefly some
basic relationships of the large (finite) elastic deformation theory for hyper-elastic
bodies and their linearization which are used in the present investigation.

2.1 Some related relations of the non-linear theory of elasticity for hyper-elastic
bodies

Consider the definition of the stress and strain tensors in the large elastic defor-
mation theory under an axisymmetric case. For this purpose we use the Lagrange
coordinates r, θ and z in the cylindrical system of coordinates Orθz. In this case,
the physical components of Green’s strain tensor ε̃εε in the Orθz coordinate system
are determined by the physical components ur and uz of the displacement vector u
through the following relations:

εrr =
∂ur

∂ r
+

1
2

{(
∂ur

∂ r

)2

+
(

∂uz

∂ r

)2
}

,

εrz =
1
2

(
∂ur

∂ z
+

∂uz

∂ r

)
+

1
2

{
∂ur

∂ r
∂ur

∂ z
+

∂uz

∂ r
∂uz

∂ z

}

εθθ =
ur

r
+
(ur

r

)2
, εzz =

∂uz

∂ z
+

1
2

{(
∂ur

∂ z

)2

+
(

∂uz

∂ z

)2
}

. (5)

Consider the determination of the Kirchhoff stress tensor. The use of various types
of stress tensors in the large (finite) elastic deformation theory is connected with
the reference of the components of these tensors to the unit area of the relevant sur-
face elements in the deformed or un-deformed state. This is because, in contrast to
the linear theory of elasticity, in the finite elastic deformation theory the difference
between the areas of the surface elements taken before and after deformation must
be accounted for in the derivation of the equation of motion and under satisfaction
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of the boundary conditions. According to the aim of the present investigation, we
consider here two types of stress tensors denoted by q̃ and s̃ the components of
which refer to the unit area of the relevant surface elements in the un-deformed
state, but act on the surface elements in the deformed state. The physical com-
ponents s(i j)of the stress tensor s̃ are determined through strain energy potential
Φ = Φ(εrr,εθθ , ...,εzz) by the use of the following expression:

s(i j) =
1
2

(
∂

∂ε(i j)
+

∂

∂ε( ji)

)
Φ, (6)

where (i j) = rr, θθ , zz, rz.

The physical components of the stress tensor q̃ are determined by the following
expressions:

qrr = srr

(
1+

∂ur

∂ r

)
+ srz

∂ur

∂ z
, qrz = srr

∂uz

∂ r
+ srz

(
1+

∂uz

∂ z

)
,

qθθ = sθθ

(
1+

ur

r

)
, qzr = szr

(
1+

∂ur

∂ r

)
+ szz

∂ur

∂ z
,

qzz = szr
∂uz

∂ r
+ szz

(
1+

∂uz

∂ z

)
, (7)

The stress tensor q̃ with components determined by expression (7) is called the
Kirchhoff stress tensor, but the stress tensor s̃ is called the Lagrange stress tensor.
According to the expressions (6) and (7), the stress tensor s̃ is symmetric, but the
stress tensor q̃ is non-symmetric. In this case the equation of motion is written as
follows:

∂qrr

∂ r
+

∂qzr

∂ z
+

1
r

(qrr−qθθ ) = ρ
∂ 2ur

∂ t2 ,
∂qrz

∂ r
+

1
r

qrz +
∂qzz

∂ z
= ρ

∂ 2uz

∂ t2 , (8)

Under determination of the stress-strain relations, it is necessary to give the explicit
expression for the strain energy potential Φ in expression (6). In the present paper,
we will use the following expression for the potential Φ which was proposed in a
paper by John (1960) and was called the harmonic potential:

Φ =
1
2

λe2
1 + µe2, (9)

where

e1 =
√

1+2ε1 +
√

1+2ε2 +
√

1+2ε3−3,
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e2 =
(√

1+2ε1−1
)2

+
(√

1+2ε2−1
)2

+
(√

1+2ε3−1
)2

. (10)

In relations (9) and (10), λ and µ are material constants and εi(i = 1,2,3) are the
principal values of Green’s strain tensor.

Thus, with this we restrict ourselves to consideration of the definition of the stress
and strain tensor, the determination of the relations between them, as well as the
equation of motion in the finite elastic deformation theory.

2.2 Determination of the initial strains and stresses

Substituting the expression (1) into the relation (5) and supplying it with the corre-
sponding upper indices we obtain the following initial strains:

ε
(k),0
rr = ε

(k),0
θθ

=
1
2

((
λ

(k)
1

)2
−1
)

, ε
(k),0
zz =

1
2

((
λ

(k)
3

)2
−1
)

, ε
(k),0
rz = 0. (11)

It follows from (11) that in the considered initial state, the principal values of
Green’s strain tensor ε

(k),0
1 , ε

(k),0
2 and ε

(k),0
3 coincide with ε

(k),0
rr , ε

(k),0
θθ

and ε
(k),0
zz ,

respectively. Consequently, substituting the expression (11) into the relations (9)
and (10) we obtain the following expression for the strain energy potential in the
initial state:

Φ
(k),0 =

1
2

λ
(k)
(

2λ
(k)
1 +λ

(k)
3 −3

)2
+ µ

(k)
(

2
(

λ
(k)
1 −1

)2
+
(

λ
(k)
3 −1

)2
)

. (12)

According to the expression (11), the following relations can be written:

∂

∂ε
(k),0
rr

=
∂

∂ε
(k),0
θθ

=
1

λ
(k)
1

∂

∂λ
(k)
1

,
∂

∂ε
(k),0
zz

=
1

λ
(k)
3

∂

∂λ
(k)
3

. (13)

Using (12) and (13) we obtain the following expressions for the stresses in the
initial state:

s(k),0
zz =

[
λ

(k)
(

2λ
(k)
1 +λ

(k)
3 −3

)
+2µ

(k)
(

λ
(k)
3 −1

)](
λ

(k)
3

)−1
,

s(k),0
rθ

= s(k),0
rz = s(k),0

zθ
= 0,

s(k),0
rr = s(k),0

θθ
=
[
λ

(k)
(

2λ
(k)
1 +λ

(k)
3 −3

)
+2µ

(k)
(

λ
(k)
1 −1

)](
λ

(k)
1

)−1
. (14)

According to the problem statement, we can write:

s(k),0
rr = s(k),0

θθ
=
[
λ

(k)
(

2λ
(k)
1 +λ

(k)
3 −3

)
+2µ

(k)
(

λ
(k)
1 −1

)](
λ

(k)
1

)−1
= 0,



108 Copyright © 2012 Tech Science Press CMC, vol.30, no.2, pp.99-144, 2012

and from which we obtain:

λ
(k)
1 =

[
2− λ (k)

µ(k)

(
λ

(k)
3 −3

)][
2

(
λ (k)

µ(k) +1

)]−1

. (15)

Also, we obtain from (14), (1) and (7) the following expressions for the Kirchhoff
stress tensor in the initial state:

q(k),0
zz = λ

(k)
3 s(k),0

zz , q(k),0
rr = λ

(k)
1 s(k),0

rr = 0, q(k),0
θθ

= λ
(k)
1 s(k),0

θθ
= 0,

q(k),0
θr = q(k),0

rθ
= q(k),0

rz = q(k),0
zr = q(k),0

zθ
= q(k),0

θz = 0. (16)

It follows from the relations (1) and (16) that the equation (8) satisfies automatically
the initial strain-stress state.

2.3 Determination of the relations related to the perturbation state

Now we assume that the considered three-layered hollow cylinder with the fore-
going initial strain-stress state has additional small perturbations determined by a
displacement vector with components u(k)

r = u(k)
r (r,z, t) and u(k)

z = u(k)
z (r,z, t). Tak-

ing into account the smallness of the displacement perturbation we linearize the
relationships (5) – (10) for the perturbed state in the vicinity of the appropriate val-
ues for the initial state and then subtract from them the relationships for the initial
state. As a result, we obtain the equations of the TLTEWISB. As an example, in the
case under consideration, as a result of the mentioned linearization we obtain the
following expressions for perturbations of the components of Green’s strain tensor:

ε
(k)
rr = λ

(k)
1

∂u(k)
r

∂ r
, ε

(k)
θθ

= λ
(k)
1

u(k)
r

r
, ε

(k)
zz = λ

(k)
3

∂u(k)
z

∂ z
,

ε
(k)
rz =

1
2

(
λ

(k)
1

∂u(k)
r

∂ z
+λ

(k)
3

∂u(k)
z

∂ r

)
. (17)

The perturbation of the components of the stress tensor s̃(k) (denote them by capital
letter S(k)

(i j)) are determined from the linearization of the relation (6). We do not
consider here the details of this linearization procedure, but note that as a result of
this linearization the following expressions for S(k)

(i j) are obtained:

S(k)
rr =

(
λ

(k) +2µ
(k)
)

∂u(k)
r

∂ r
+λ

(k) u(k)
r

r
+λ

(k) ∂u(k)
z

∂ z
,
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S(k)
θθ

= λ
(k) ∂u(k)

r

∂ r
+
(

λ
(k) +2µ

(k)
) u(k)

r

r
+λ

(k) ∂u(k)
z

∂ z
,

S(k)
zz = λ

(k) ∂u(k)
r

∂ r
+λ

(k) u(k)
r

r
+

(
λ

(k) +
λ

(k)
1

λ
(k)
3

2µ
(k)

)
∂u(k)

z

∂ z
,

S(k)
rz =

2λ
(k)
1

λ
(k)
1 +λ

(k)
3

µ
(k) ∂u(k)

r

∂ z
+

2λ
(k)
3

λ
(k)
1 +λ

(k)
3

µ
(k) ∂u(k)

z

∂ r
. (18)

Taking the relations (18) into account we obtain from (7) the following expression
for perturbation of the components of the Kirchhoff stress tensor q̃(k) (denote them
by capital letter Q(k)

(i j)) which differ from zero.

Q(k)
zz = λ

(k)
3 S(k)

zz + s(k),0
zz

∂u(k)
r

∂ r
, Q(k),0

rr = λ
(k)
1 S(k)

rr , Q(k)
θθ

= λ
(k)
1 S(k)

θθ
,

Q(k)
rz = λ

(k)
1 S(k)

rz , Q(k)
zr = λ

(k)
3 S(k)

rz + s(k),0
zz

∂u(k)
r

∂ z
. (19)

Thus, substituting
(

q(k),0
(i j) +Q(k)

(il)

)
,
(

u(k),0
r +u(k)

r

)
and

(
u(k),0

z +u(k)
z

)
for q(i j), ur

and uz respectively in equation (8) we obtain:

∂Q(k)
rr

∂ r
+

∂Q(k)
zr

∂ z
+

1
r

(
Q(k)

rr −Q(k)
θθ

)
= ρ

(k) ∂ 2u(k)
r

∂ t2 ,

∂Q(k)
rz

∂ r
+

1
r

Q(k)
rz +

∂Q(k)
zz

∂ z
= ρ

(k) ∂ 2u(k)
z

∂ t2 . (20)

Multiplying the equation (20) with
((

λ
(k)
1

)2
λ

(k)
3

)−1

and using the notation:

ρ
′(k) = ρ

(k)
((

λ
(k)
1

)2
λ

(k)
3

)−1

, Q′(k)r′r′ = Q(k)
rr

(
λ

(k)
1 λ

(k)
3

)−1
,

Q′(k)z′r′ = Q(k)
zr

(
λ

(k)
1

)−2
, r′ = λ

(k)
1 rQ′(k)

θ ′θ ′ = Q(k)
θθ

(
λ

(k)
1 λ

(k)
3

)−1
,

Q′(k)z′z′ = Q(k)
zz

(
λ

(k)
1

)−2
, u′(k)r′ = u(k)

r , u′(k)z′ = u(k)
z , z′ = λ

(k)
3 z. (21)
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we obtain the equation (3) from equation (20). Moreover, from the relationships
(18), (19) and (21) we derive the following expressions for the components ω ′

(k)
1111,

ω ′
(k)
3333, ω ′

(k)
1122, ω ′

(k)
1133, ω ′

(k)
1221, ω ′

(k)
3113 and ω ′

(k)
1313 which enter the relation (4):

ω
′(k)
1111 =

(
λ

(k)
3

)−1(
λ

(k) +2µ
(k)
)

, ω
′(k)
3333 =

(
λ

(k)
3

λ
(2)
1

)2(
λ

(k) +2µ
(k)
)

,

ω
′(k)
1122 =

(
λ

(k)
3

)−1
λ

(k), ω
′(k)
1133 =

(
λ

(k)
1

)−1
λ

(k),

ω
′(k)
1221 =

(
λ

(k)
3

)−1
µ

(k), ω
′(k)
1313 = 2µ

(k)
(

λ
(k)
1 +λ

(k)
3

)−1
,

ω
′(k)
3113 = 2µ

(k)
(

λ
(k)
1

)−2(
λ

(k)
3

)2(
λ

(k)
1 +λ

(k)
3

)−1
. (22)

Although the foregoing operations are made for the harmonic potential (9) in the
cylindrical system of coordinates Orθz, but these operations, as in Refs. Ogden and
Roxburgh (1993), Roxburgh and Ogden (1994) and Guz (2004), can be also made
for the general form of the potential Φ in the mentioned cylindrical system of co-
ordinates. For this purpose the various type invariants of the strain tensor, through
which this potential is expressed, must be rewritten by physical components of this
tensor. After this procedure, the expression (6) can be employed for the operations
similar above ones for each possible type elastic potential.

Thus, the propagation of the longitudinal axisymmetric wave in the considered
systems will be investigated by the use of Eqs. (3), (4) and (22). These equations
must be supplied with the corresponding boundary and contact conditions. First,
we consider the boundary conditions which can be written as follows:

Q′(1)
r′r′

∣∣∣
r′=R′+h′(1)

= 0, Q′(1)
r′z′

∣∣∣
r′=R′+h′(1)

= 0,

Q′(2)
r′r′

∣∣∣
r′=R′−h′(2)

= 0, Q′(2)
r′z′

∣∣∣
r′=R′−h′(2)

= 0. (23)

Now we consider the formulation of the imperfect contact conditions on the in-
terface surface between the inner and outer cylinders. It should be noted that, in
general, the imperfectness of the contact conditions is identified by discontinuities
of the displacements and forces across the mentioned interface. A review of the
mathematical modeling of the various types of incomplete contact conditions for
elastodynamics problems has been detailed in a paper by Martin (1992). It follows
from this paper that for most models the discontinuity of the displacement u+ and
force f+ vectors on one side of the interface are assumed to be linearly related to
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the displacement u− and force f− vectors on the other side of the interface. This
statement, as in the paper by Rokhlin and Wang (1991), can be presented as fol-
lows:

[f] = Cu−+Df−, [u] = Gu−+Ff−, (24)

where C, D, G and F are three-dimensional (3×3) matrices and the square brackets
indicate a jump in the corresponding quantity across the interface. Consequently,
if the interface is at r′ = R′, then:

[u] = u|r′=R′+0− u|r′=R′−0 , [f] = f|r′=R′+0− f|r′=R′−0 . (25)

It follows from (24) that we can write incomplete contact conditions for various
particular cases by selection of the matrices C, D, G and F. One such selection was
made in the paper by Jones and Whitter (1967), according to which, it was assumed
that C =D= G = 0. In this case the following can be obtained from (25):

[f] = 0, [u] = Ff−, (26)

where F is a constant diagonal matrix. The model (26) simplifies significantly the
solution procedure of the corresponding problems and is adequate in many real
cases. Therefore, this model (i.e. the model (26)) is called a shear-spring type
resistance model and has been used in many investigations carried out within the
framework of classical elastodynamics by Jones and Wittier (1967), Berger, Martin
and McCaffery (2000), Kepceler (2010) and others. According to this statement,
we also use the model (26) for the mathematical formulation of the imperfectness
of the contact conditions. For the problems under consideration these conditions
can be written as follows:

Q′(1)
r′r′

∣∣∣
r′=R′

= Q′(2)
r′r′

∣∣∣
r′=R′

, Q′(1)
r′z′

∣∣∣
r′=R′

= Q′(2)
r′z′

∣∣∣
r′=R′

, u′(1)
r′

∣∣∣
r′=R′

= u′(2)
r′

∣∣∣
r′=R′

,

u′(1)
z′

∣∣∣
r′=R′
− u′(2)

z′

∣∣∣
r′=R′

= F
R

µ(2) Q′(2)
r′z′ , (27)

where F is the non-dimensional shear-spring parameter. The case where F = 0
corresponds to the perfect contact condition, but the case where F = ∞ corresponds
to the fully slipping imperfectness of the contact condition.

This completes the formulation of the problem. It should be noted that in the case
where λ

(k)
3 = λ

(k)
1 = 1.0, (k = 1,2) the above described formulation transforms

to the corresponding one of the classical linear theory of elastodynamics for the
compressible body.
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3 Solution procedure and obtaining the dispersion equation

Substituting (4) in (3) we obtain the following equation of motion in displacement
terms:

ω
′(k)
1111

∂ 2u′(k)r′

∂ r′2
+ω

′(k)
1122

∂

∂ r′

(
u′(k)r′

r′

)
+
(

ω
′(k)
1133 +ω

′(k)
1331

)
∂ 2u′(k)r′

∂ r′∂ z′
+

+ω
′(k)
1313

∂ 2u′(k)r′

∂ z′2
+

1
r′

(
ω
′(k)
1111−ω

′(k)
2211

)
×

×
∂u′(k)r′

∂ r′
+
(

ω
′(k)
1122−ω

′(k)
2222

) u′(k)r′

r′2
+
(

ω
′(k)
1133−ω

′(k)
2233

) 1
r′

∂u′(k)3
∂ z′

= ρ
′(k) ∂ 2u′(k)r′

∂ t2 ,

ω
′(k)
3133

∂ 2u′(k)r′

∂ r′∂ z′
+ω

′(k)
3131

∂ 2u′(k)3
∂ r′2

+
1
r′

ω
′(k)
3113

∂u′(k)r′

∂ z′
+

1
r′

ω
′(k)
3131

∂u′(k)3
∂ r′

+ω
′(k)
3311

∂ 2u′(k)r′

∂ r′∂ z′
+

ω
′(k)
3322

1
r′

∂u′(k)r′

∂ z′
+ω

′(k)
3333

∂ 2u′(k)3

∂ z′2
= ρ

′(k) ∂ 2u′(k)3
∂ t2 . (28)

According to the monograph by Guz (2004), we use the following representation
for the displacement:

u′(k)r′ =− ∂ 2

∂ r′∂ z′
X(k),

u′(k)3 =
1

ω ′
(k)
1133 +ω ′

(k)
1313

(
ω
′(k)
1111∆

′
1 +ω

′(k)
3113

∂ 2

∂ z′2
−ρ

′(k) ∂ 2

∂ t2

)
X(k), (29)

where X(k) satisfies the following equation:[(
∆
′
1 +
(

ξ
′(k)
2

)2 ∂ 2

∂ z′2

)(
∆
′
1 +
(

ξ
′(k)
3

)2 ∂ 2

∂ z′2

)

−ρ
′(k)

(
ω ′

(k)
1111 +ω ′

(k)
1331

ω ′
(k)
1111ω ′

(k)
1331

∆
′
1 +

ω ′
(k)
3333 +ω ′

(k)
3113

ω ′
(k)
1111ω ′

(k)
1331

∂ 2

∂ z′2

)
∂ 2

∂ t2 +

+
ρ ′(k)

ω ′
(k)
1111ω ′

(k)
1331

∂ 4

∂ t4

]
X(k) = 0. (30)

In (29) and (30) the following notation is used:

∆
′
1 =

d2

dr′2
+

1
r′

d
dr′

,
(

ξ
′(k)
2,3

)2
= d(k)±

[(
d(k)
)2
−ω

′(k)
3333ω

′(k)
3113

(
ω
′(k)
1111ω

′(k)
1331

)−1
] 1

2

,
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d(k) =
(

2ω
′(k)
1111ω

′(k)
1331

)−1 [
ω
′(k)
1111ω

′(k)
3333 +ω

′(k)
1331ω

′(k)
3113−

(
ω
′(k)
1133 +ω

′(k)
1313

)]
.

(31)

We represent the function X(m) = X(m) (r′,y′3, t) as

X(m) = X(m)
1

(
r′
)

cos
(
kz′−ωt

)
, m = 1,2. (32)

Substituting (32) in (30) and doing some manipulations we obtain the following
equation for X(m)

1 (r′):(
∆
′
1 +
(

ζ
′(m)
2

)2
)(

∆
′
1 +
(

ζ
′(m)
3

)2
)

X(m)
1 (r′) = 0. (33)

The constants ζ ′
(k)
2,3 are determined from the following equation:

ω
′(m)
1111ω

′(m)
1331

(
ζ
′(m)
)4
−

k2
(

ζ
′(m)
)2 [

ω
′(m)
1111

(
ρ

(m)c2−ω
′(m)
3333

)
+ω

′(m)
1331

(
ρ

(m)c2−ω
′(m)
3113

)
+

+
(

ω
′(m)
1133 +ω

′(m)
1313

)2
]
+ k4

(
ρ

(m)c2−ω
′(m)
3333

)(
ρ

(m)c2−ω
′(m)
3113

)
= 0, (34)

where c = ω/k, i.e. c is the phase velocity of the propagating wave. We determine
the following expression for X(m)

1 (r′) from equations (33) and (34):

X(1)
1

(
r′
)

=

A(1)
2 E(1)

0

(
kr′ζ ′(1)

2

)
+A(1)

3 E(1)
0

(
kr′ζ ′(1)

3

)
+B(1)

2 G(1)
0

(
kr′ζ ′(1)

2

)
+B(1)

3 G(1)
0

(
kr′ζ ′(1)

3

)
,

X(2)
1

(
r′
)

=

A(2)
2 E(2)

0

(
kr′ζ ′(2)

2

)
+A(2)

3 E(2)
0

(
kr′ζ ′(2)

3

)
+B(2)

2 G(2)
0

(
kr′ζ ′(2)

2

)
+B(2)

3 G(2)
0

(
kr′ζ ′(2)

3

)
,

(35)

where

E(k)
0

(
kr′ζ ′(k)m

)
=

J0

(
kr′ζ ′(k)m

)
i f

(
ζ

(k)
m

)2
> 0,

I0

(
kr′
∣∣∣ζ ′(k)m

∣∣∣) i f
(

ζ
(k)
m

)2
< 0,

.
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G(k)
0

(
kr′ζ ′(k)m

)
=

Y0

(
kr′ζ ′(k)m

)
i f

(
ζ

(k)
m

)2
> 0,

K0

(
kr′
∣∣∣ζ ′(k)m

∣∣∣) i f
(

ζ
(k)
m

)2
< 0.

(36)

In (36) J0(x) and Y0(x)are Bessel functions of the first and second kind of order
zero and I0(x) and K0(x) are Bessel functions of a purely imaginary argument of
order zero and Macdonald function of order zero, respectively.

Thus, using (4), (29), (32), (35), and (36) we obtain the following dispersion equa-
tion from (23) and (27):

det
∥∥βi j

∥∥= 0, i; j = 1,2,3,4,5,6,7,8. (37)

The expression of βi j are given in Appendix A by formulae (A1) and (A2).

4 Numerical results and discussion

Assume that ρ(2)/ρ(1) = 1.0, λ (2)/µ(2) = λ (1)/µ(1) = 1.5, consider the dispersion
curves c = c(kR) and analyze the influence of the non-dimensional shear-spring
parameter F on these curves for various values of elongation parameters λ

(2)
3 and

λ
(1)
3 . To simplify the following discussions we introduce the following notation:

c(k)
20 =

√
µ(k)

ρ(k) , c(k)
2 (λ (k)

3 ) =

√
ω ′

(k)
1313

ρ ′(k)
, (38)

where c(k)
20 = c(k)

2 (1.0).

4.1 On the algorithm of the calculation

The numerical results of the dispersion of the considered wave propagation prob-
lem are obtained from the numerical solution to equation (38) which is solved by
utilizing the well known “bisection method”. In this case, for fixed values of the
problem parameters for each value of kR, the roots of the dispersion equation with
respect to c/c(2)

2 are found.

In the present paper the main purpose of the numerical investigations is the study of
the influence of shear-spring type imperfectness on the contact conditions between
the inner and outer cylinders of the pre-strained compound cylinder on the funda-
mental modes. However, for construction of the dispersion curves corresponding
to these modes it is necessary to use the certain N number roots of equation (37). In
this case, the graphs of the dependencies among the roots

(
c/c(2)

2

)
1
,
(

c/c(2)
2

)
2
, . . . ,
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c/c(2)

2

)
N

and kR create the net on the plane
{

c/c(2)
2 ,kR

}
. Note that, in general,

the graph corresponding to the dependence between
(

c/c(2)
2

)
n

and kR, contains
dispersive and non-dispersive parts related to various dispersion modes. Below,
under construction of the dispersion curves, we mainly use the dispersive parts of
these graphs.

In the present paper we analyze the dispersion of the first (fundamental) mode.

4.2 Numerical results related to perfect contact conditions

First, we consider the case where the contact conditions on the interface between
the layers of the cylinder are perfect, i.e. the case where F = 0 in equation (27).
Recall that Akbarov and Guliev (2009) made the corresponding analysis for the
bi-material solid cylinder.

According to the procedure described in this paper, in the case where F = 0 we
determine the following low and high wave number limits for the wave propagation
velocity in the first mode:

c

c(2)
20

=
e(2)
(

λ
(2)
3

)2
η(2) + e(1)

(
λ

(1)
3

)2
η(1)µ(1)/µ(2)

η(2) +η(1)ρ(1)/ρ(2)

as kR→ 0,

c

c(2)
20

= min
(

c(1)
R (λ (1)

3 )
/

c(2)
20 ;c(2)

R (λ (2)
3 )
/

c(2)
20

)
(39)

as kR → ∞, where c(2)
R (λ (2)

3 )
(

c(1)
R (λ (1)

3 )
)

is the Rayleigh wave velocity in the
strained inner (outer) cylinder material and the notation

e(k) = 2
(

1+λ
(k)/
(

2
(

λ
(k) + µ

(k)
)))

,

η
(2) =

2−h(2)/R(
1+h(1)/h(2)

)(
2+h(1)/R−h(2)/R

) ,
η

(1) =
2+h(1)/R(

1+h(1)/h(2)
)(

2+h(1)/R−h(2)/R
) . (40)

is also used in (39). For the case under consideration the values of c(k)
R (λ (k)

3 )(k =
1,2) are determined from the following characteristic equation

ℜk(c
(k)
R (λ (k)

3 ),λ (k)
3 ,µ

(k)/λ
(k)) =
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(
(X (k))2−

2(λ (k)
3 )3

λ
(k)
1 +λ

(k)
3

)
2(λ (k)

3 )2

(λ (k)
1 )2(λ (k)

1 +λ
(k)
3 )

[
1+2µ(k)/λ (k)

λ
(k)
3

×

(
(X (k))2− (λ (k)

3 )3(2+λ
(k)/µ

(k))
)

+
λ (k)

λ
(k)
1 µ(k)

]2

−µ(k)

λ (k)

1+2µ(k)/λ (k)

λ
(k)
3

(
(X (k))2− (λ (k)

3 )3(2 +λ
(k)/µ

(k))
)

(
(X (k))2−

2(λ (k)
3 )3

λ
(k)
1 +λ

(k)
3

)
2(λ (k)

3 )2

(λ (k)
1 )2(λ (k)

1 +λ
(k)
3 )

+
4(λ (k)

1 )2λ
(k)
3

(λ (k)
1 +λ

(k)
3 )2

]2

= 0, (41)

where X (k) = c(k)
R (λ (k)

3 )/c(k)
20 . Note that in the case where λ

(k)
3 = λ

(k)
1 = λ

(k)
2 = 1.0

this characteristic equation coincide with the corresponding one obtained in the
classical linear theory of elasto-dynamics.

 

 Figure 2: Dispersion curves obtained for the perfect contact conditions for the hol-
low and solid bi-material cylinders under initial stretching of those

Now we consider the numerical results, which are obtained with the numerical so-
lution of the dispersion equation (37). In the present paper we consider the case
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where the material of the inner cylinder is stiffer than the material of the outer
cylinder and µ(2)/µ(1) =2.0. Moreover, all numerical results which will be dis-
cussed in the present subsection are obtained under h(1)/R =1.0. Moreover, we
assume that h(2)/R =0.5 if otherwise not specified.

Fig. 2 shows the influence of the initial stretching of the layers of the cylinder on
the dispersion curves. In Fig. 2 the corresponding results obtained by Akbarov and
Guliev (2009) are also presented. The influence of the initial compression of the
cylinder under consideration on the dispersion curves is illustrated by the graphs
given in Fig. 3. Note that in Fig. 3 the corresponding results related to the bi-
material solid cylinder which were not analyzed by Akbarov and Guliev (2009),
are also given. Remember, that in Akbarov and Guliev’s (2009) paper, the influ-
ence of the pre-stretching of the constituents of the cylinder on the wave propa-
gation velocity was studied only. It follows from the results that the values of the
wave propagation velocity obtained for the hollow bi-layered cylinder approaches
the corresponding ones obtained for the bi-material solid cylinder. This conclu-
sion agrees with the well-known mechanical consideration. Moreover, these results
show that the initial stretching (compressing) of the cylinder causes to increase (to
decrease) the wave propagation velocity. In this case the values of c/c(2)

20 obtained
for the hollow cylinder are less than the corresponding ones obtained for the solid
cylinder. Because of this, we consider the case where c(2)

20 > c(1)
20 , µ(2) > µ(1) and

λ
(1)
3 = λ

(2)
3 .

Now we return to the analysis of the numerical results on the influences of the non-
dimensional shear-spring parameter F . First we consider the case where the initial
strains are absent in the constituents of the compound cylinder.

4.3 Numerical results related to the case where λ
(2)
3 = λ

(1)
3 = 1.0

Consider the dispersion curves given in Fig. 4. These curves are constructed for
various values of the shear-spring parameter F which characterizes the degree of
the imperfectness of the contact conditions.

The analyses of the foregoing numerical results show that as a result of the shear-
spring type imperfectness of the contact conditions, instead of the dispersion curves
corresponding to the fundamental dispersive mode constructed under satisfaction of
perfect contact conditions (i.e. for F = 0) and illustrated in Figs. 2 and 3, two types
of mode arise. The first (the second) appears below (over) the dispersion curve
corresponding to the first mode constructed for F = 0. Throughout the discussion
below the aforementioned first (second) type dispersion curve will be called the
first (second) branch of the fundamental mode obtained under imperfect contact
conditions, i.e. for F > 0.
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Figure 3: Dispersion curves obtained for the perfect contact conditions for the hol-
low and solid bi-material cylinders under initial compression of those

The graphs illustrated above are constructed under µ(2)/µ(1) = 2. For estimation
how the change of µ(2)/µ(1)acts on the behavior of these graphs we consider Fig.
5 which shows dispersion curves constructed for various µ(2)/µ(1) under perfect
contact between the layers of the cylinder, i.e. under F = 0. It follows from Fig.
5 that the dispersion curves “moves” wholly down with µ(2)/µ(1), i.e. the values
of c/c(2)

20 decrease with µ(2)/µ(1). Moreover, Fig. 5 shows that in the case where
µ(2)/µ(1) = 1, i.e. the dispersion curves obtained for the homogeneous hollow
cylinder coincide with the well-known results related to the classical Pochhammer-
Chree problems for the hollow cylinder (see, for example, Eringen and Suhubi
(1975)). According to the results given in Fig. 5 we can conclude that the graphs
given in Fig. 4 must also “move” down wholly with µ(2)/µ(1).

We denote the velocity of the wave propagation velocity for F = 0 with c, but the
wave propagation velocity of the first (second) branch for F > 0 we denote with
cIF(cIIF). It follows from the numerical results given in Fig. 4 that the following
relation takes place:

cIF < c < cIIF . (42)

Consider the low wave number limit of the wave propagation velocity as kR→ 0
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Figure 4: Dispersion curves obtained for the imperfect contact conditions for the
hollow bi-layered cylinder

for both the first and the second branches of the dispersion curves. The numerical
results show that the first branch of the dispersion curves has “cut off” values of
kR (denoted by (kR)c f ), i.e. the dispersion curves related to the first branch appear
after certain values of kR. In this case the values of (kR)c f depend on the non-
dimensional shear-spring parameter F . According to the numerical results, we can
conclude that:

(kR)c f → ∞ (43)

as F → 0.

The wave propagation velocity in the second branch of the fundamental mode has a
finite limit as kR→ 0 and this limit coincides with that obtained for the case where
the contact conditions are perfect, i.e. for the case where F = 0. The specified limit
is determined by the expression:

cIIF

c(2)
20

=
e(2)η(2) + e(1)η(1)µ(1)/µ(2)

η(2) +η(1)ρ(1)/ρ(2) (44)

as kR→ 0, which coincides with the first expression in (39) under λ
(2)
3 = λ

(1)
3 = 1.0.

This statement, i.e. the independence of the low wave number limit as kR→ 0 on
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Figure 5: The influence of the ratio µ(2)/µ(1)on the character of the dispersion
curves constructed under F = 0

the imperfectness of the contact conditions agrees with the physical considerations
and has been also pointed out in papers by Berger et al. (2000) and Kepceler (2010)
for torsional wave propagation in a compounded cylinder.

Consider the high wave number limit values as kR→∞. It follows from Fig. 4 and
other results (which are not given here) that for the values of kR >> 10 for the case
under consideration the following high wave number limit values occur:

cIF → c(1)
R −0, cIIF → c(1)

R +0 (45)

as kR→ ∞.

Note that the expression (45) can be generalized for all possible values of the ratio
µ(2)/µ(1), as follows:

cIF →min
{

c(1)
R −0; c(2)

R −0; cS−0
}

, cIIF →min
{

c(1)
R +0; c(2)

R +0; cS +0
}

(46)

as kR→∞, where c(1)
R (c(2)

R ) is the Rayleigh wave velocity in the inner (outer) cylin-
der material and cS is the Stoneley wave velocity. The characteristic equation for
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the Rayleigh wave velocity is given above by equation (41), but the characteristic
equation for the Stoneley wave velocity for the case under consideration is

det‖αnm‖= 0, n;m = 1,2,3,4 (47)

The explicit expressions of αnm = αnm(cS(λ
(1)
3 ,λ

(2)
3 ),µ(1)/λ (1),µ(2)/λ (2))are given

in Appendix B by formulae (B1) and (B2). Consequently, according to the forego-
ing discussions, we get

det
∥∥βi j

∥∥⇒ det‖αnm(cS)‖ ·ℜ1(c
(1)
R ) ·ℜ2(c

(2)
R ) (48)

as kR→∞, where det
∥∥βi j

∥∥ is the right side of the dispersion equation (37), det‖αnm(cS)‖
is a right side of the characteristic equation (47) for Stoneley waves, but the expres-
sions for ℜ1(c

(1)
R ) and ℜ2(c

(2)
R )are determined through (41).

Now we analyze the character of the dispersion curves. The dispersion curves
obtained for the first branch show that after a certain value (denoted by FI∗) of
the shear-spring parameter F , the dependence between cIF and kR becomes non-
monotonic. In other words, in the cases where F > FI∗ in the near right vicinity of
(kR)c f ., the values of cIF (denoted by (kR)Ic f .) increase sharply with kR and have
their maximum at a certain value of kR. So, we can write:

dcIF

d(kR)

∣∣∣∣
kR=(kR)Icr.

= 0. (49)

In the cases where kR >(kR)Icr.the values of cIF decrease monotonically with kR.

Consider the behavior of the second branch of the dispersion curves. It follows
from the foregoing results that before a certain value of kR(denoted by (kR)m) the
second branch of the fundamental mode obtained for the case where F > 0 merges
with that obtained for the corresponding case where F = 0. The values of (kR)m
depend on the shear-spring parameter F and the ratios h(1)/R and h(2)/R. Analyses
of the results given in Fig. 4 and other ones (which are not given here) show that
the following estimation occurs:

(kR)m→ 0 (50)

as F → ∞.

The results also show that the values of cIIF increase with F . However, the char-
acter of the second branch of the dispersion curves becomes more complicated
with an increase in F . There exist such values of kR under which the local max-
imum or minimum for the wave propagation velocity cIIF appears. The values of
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kR(denoted by (kR)IIcr.) which correspond to these local maximums or minimums
are determined from the following relation:

dcIIF

d(kR)

∣∣∣∣
kR=(kR)IIcr.

= 0. (51)

It should be noted that the cases for which the relation (51) occurs, appear after
certain values of the shear-spring parameter F . Moreover, we note that the ex-
istence of (49) and (51) type relations means that where kR = (kR)Icr.or where
kR = (kR)IIcr.the group velocity of the wave propagation is equal to its phase ve-
locity. Consequently, the point kR = (kR)Icr. or the point kR = (kR)IIcr.separates
the parts of the dispersion curves, which correspond to anomalous and normal dis-
persions.

 

 
Figure 6: Limit dispersion curve obtained by increasing the shear-spring parameter
F

As noted above, the case where F = 0 corresponds to the perfect interface condi-
tions but the case where F = ∞ corresponds to the fully slipping interface condi-
tions. It follows from the results discussed above that:

cIIF → c+0 (52)
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as F → 0.

This statement agrees with the well known mechanical considerations. Consider
the behavior of the dispersion curves as F → ∞. For this purpose analyze Fig. 6
which shows the dispersion curves constructed for the case where 0 ≤ F ≤ 1000
when

{
h(1)/R = 1.0; h(2)/R = 0.5

}
. It follows from these results that the curves

cIF = cIF(kR) and cIIF = cIIF(kR) approach their limits as F increases. In this case
for each fixed kR, the velocities cIF and cIIF increase monotonically with F and the
difference between the values of cIF/c(2)

20 (or cIIF/c(2)
20 ) obtained in the cases where

F = 500 and F = 1000, is less than 10−5. Consequently, the results obtained when
F = 1000, can be taken with very high accuracy as results corresponding to the
fully slipping interface conditions.

With this we exhaust the discussions of the numerical results related to the case
where the initial strains are absent in the layers of the hollow cylinder.

 

 
Figure 7: Dispersion curves related to the second and third modes constructed for
various values of the parameter F

All the results discussed above relate to the dispersion curves of the fundamental
(the first mode) of the axisymmetric wave propagation under consideration. It is
also interest, how the shear-spring parameter F influences on the dispersion curves
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higher modes. For this purpose we consider dispersion curves constructed for vari-
ous Ffor the second and third modes and illustrated in Fig. 7. It follows from these
results that the considered type imperfectness of the contact conditions between
the layers of the cylinder change also significantly the character of the dispersion
curves of the higher modes. Nevertheless, the dispersion curves of the higher modes
have only one branch similar to that obtained within the scope of the perfect contact
conditions. Note that the detail investigations of the influence of the parameter F
on the dispersion curves of the higher modes may be subject of the separate paper
which will be made by the authors in future.

4.4 Numerical results related to the pre-strained case

The influence of the initial strains on the dispersion curves in the case where the
contact conditions are perfect, i.e. in the case where F = 0, is illustrated by the
graphs given in Figs. 2 and 3. Thus, consider the numerical results which illustrate
the influence of the initial strains of the layers of the cylinder on the dispersion
curves in the case where the contact on the interface of the layers of the cylinder
is imperfect, i.e. the case where F > 0. These numerical results are given in Figs
8 and 9 for the first and second branches respectively of the fundamental mode.
Note that to improve the illustrations the dispersion curves constructed under initial
stretching (Figs.8a and 9a) and under initial compressing (Fig. 8b and 9b) of the
cylinder are given separately. It follows from the foregoing numerical results that
the considered type initial strains in the compound cylinder do not change (in the
qualitative sense) the character of the influence of the imperfectness of the interface
conditions on the character of the dispersion curves. Consequently, the considered
type initial strains cause an increase (under initial stretching) or a decrease (under
initial compression) in the values of the wave propagation velocity. However, in
this case the relation (43) must be rewritten as follows:

cIF(λ (1)
3 ,λ

(2)
3 ) < c(λ (1)

3 ,λ
(2)
3 ) < cIIF(λ (1)

3 ,λ
(2)
3 ). (53)

Here cIF(λ (1)
3 ,λ

(2)
3 ), cIIF(λ (1)

3 ,λ
(2)
3 ) and c(λ (1)

3 ,λ
(2)
3 ) are the values of cIF , cIIF and

c respectively in the pre-strained case.

At the same time, the numerical results show that the relation (44) also holds for the
pre-strained case. Nevertheless, the initial strains significantly change the values of
(kR)c f .so that under initial stretching, the values of (kR)c f .decrease with λ

(1)
3 (=

λ
(2)
3 ).

Consider the influence of µ(2)/µ(1) on the dispersion curves constructed under
F = 0. These curves are given in Fig. 10 under initial stretching (Fig. 10a) and un-
der initial compressing (Fig. 10b) of the layers of the cylinder. It follows from these
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a 

 

b 

 Figure 8: The influence of the initial stretching (a) and compressing (b) of the
cylinder on the second branch of the dispersion curves.

   a b

 Figure 9: The influence of the initial stretching (a) and compressing (b) of the
cylinder on the first branch of the dispersion curves



126 Copyright © 2012 Tech Science Press CMC, vol.30, no.2, pp.99-144, 2012

 

a 

 

b 

 Figure 10: The influence of the ratio µ(2)/µ(1) on the character of the dispersion
curves obtained for the initially stretched (a) and initially compressed hollow cylin-
der under F = 0

graphs that, as in the non-prestrained case, the dispersion curves “moves” down
wholly with µ(2)/µ(1). Note that the dispersion curves constructed in the case
where µ(2)/µ(1) = 1 correspond to that which relate to the finitely pre-deformed
homogeneous hollow cylinder. To the authors best knowledge, there is not inves-
tigation published in past on the wave propagation in the finitely pre-deformed
hollow cylinder, the elasticity relations for which are describes through the har-
monic potential. Consequently, the results given in Fig. 10 are also new ones in the
noted above sense. Moreover, according to these results we can conclude that an
increase in the values of µ(2)/µ(1)the dispersion curves obtained under F > 0 must
also “move” down wholly.

The graphs given in Figs. 6 and 7 illustrate that in the pre-strained case, the low
wave number limit as (kR)→ 0 of the wave propagation velocity related to the sec-
ond branch of the fundamental mode does not depend on the shear-spring parameter
F and this limit value is determined by the first expression in (39). From the nu-
merical results it also follows that in the pre-strained case the expression (45) for
the high wave number limit for the wave propagation velocities must be changed
with the following one:

cIF(λ (1)
3 ,λ

(2)
3 )→min

{
c(1)

R (λ (1)
3 )−0, c(2)

R (λ (2)
3 )−0, cS(λ

(1)
3 ,λ

(2)
3 )−0

}
,
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     a  b 

    c      d 

 

Figure 11: The influence of h(2)/R on the dispersion curves of the first branch in
the cases where F = 0.3 (a), 1.0 (b), 3 (c) and 5(d) underλ (1)

3 = λ
(2)
3 =1.0

cIIF(λ (1)
3 ,λ

(2)
3 )→min

{
c(1)

R (λ (1)
3 )+0, c(2)

R (λ (2)
3 )+0, cS(λ

(1)
3 ,λ

(2)
3 )+0

}
(54)

as kR→ ∞, where cS(λ
(1)
3 ,λ

(2)
3 ) in (53) is the Stoneley wave velocity in the pre-

strained case.

Moreover, the analyses of the numerical results allow us to write the following
relation:

cIIF(λ (1)
3 ,λ

(2)
3 )→ c(λ (1)

3 ,λ
(2)
3 )+0 (55)

as F → 0, and conclude that the values of (kR)I cr. and (kR)II cr. decrease with the
parameter λ

(1)
3 (= λ

(2)
3 ).
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    a 
 b 

  c   d 
 

Figure 12: The influence of h(2)/R on the dispersion curves of the second branch
in the cases where F = 0.3 (a), 1.0 (b), 3 (c) and 5(d) underλ (1)

3 = λ
(2)
3 =1.0

4.5 Comparison of the obtained numerical results with the corresponding ones
obtained for the bi-material solid cylinder

At first, we note that in the qualitative sense all the foregoing numerical results are
similar with those obtained for the bi-material solid cylinder (Akbarov and Ipek
(2010)). The difference between the results obtained in the authors’ present and
previous papers is caused by the parameter h(2)/R, which characterizes the thick-
ness of the inner hollow cylinder. Now we consider how the change in the ratio
h(2)/R influences the dispersion curves under imperfect contact conditions between
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the layers of the cylinder. For this purpose, we analyze the graphs given in Figs.
11 and 12. These graphs are constructed for the first and second branches of the
fundamental mode respectively in the cases where F = 0.3(Figs. 11a and 12a), 1.0
(Figs. 11b and 12b), 3.0 (Figs. 11c and 12c) and 5.0 (Figs. 11d and 12d) in the
absence of the initial strains in the constituents of the cylinder, i.e. under λ

(1)
3 =

λ
(2)
3 = 1.0.

According to mechanical considerations, the results obtained for the bi-layered hol-
low cylinder must approach the corresponding ones obtained for the bi-material
solid cylinder with h(2)/R. We denote the wave propagation velocity of the first
and second branches respectively in the hollow (solid) bi-material cylinder through
cI h (cI s) and cII h (cII s) respectively. It follows from the results given in Figs. 11
and 12 that the relation:

cI h < cI s and cI h→ cI s−0 (56)

as h(2)/R→ 1 for all considered kR, occurs for the case under consideration. The
comparison between the values of cII h and cII s shows that the relation between
them depends on the values of h(2)/R, kR and the shear-spring parameter F . For
relatively small values of F , for instance in the case where F = 0.3, it can be written
that:

cII h < cII s and cII h→ cII s−0 (57)

as h(2)/R→ 1 for all considered kR.

However, in the cases where F ≥ 3 the relation (56) holds under certain restrictions
on the values of kR and the range of this restriction depends on the values of h(2)/R.
At the same time, Fig. 12 shows that the character of the dispersion curves of the
second branch depends significantly on the thickness of the inner hollow cylinder,
i.e. on the values of h(2)/R. For example, in the case where F ≥ 3 for relatively
small values of h(2)/R under kR = (kR)IIcr. (in relation (51)) the value of cII h has its
local minimum, but after a certain h(2)/R the value of cII h has its local maximum.
Note that the similar type of differences between cII h and cII s are also obtained for
the pre-strained bi-material cylinder.

5 Conclusions

Thus, in the present paper within the scope of the piecewise homogeneous body
model utilizing the 3D linearized theory of elastic waves in initially stressed bod-
ies, the effect of the imperfectness of the contact conditions on the dispersion of the
longitudinal axisymmetric waves in the pre-strained bi-layered hollow cylinder, is
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studied. It is assumed that the materials of the constituents are hyper-elastic com-
pressible ones and the elasticity relations of these materials are described by the
harmonic potential. The shear-spring type imperfectness of the contact conditions
is considered and the degree of this imperfectness is estimated through the shear-
spring parameter F . The cases where F = 0 and F = ∞ correspond to the perfect
and the fully slipping interface conditions, respectively. The solution method for
the formulated corresponding eigen-value problem and the algorithm for construct-
ing the dispersion curves are developed. From the numerical results the following
conclusions are reached:

1. as a result of the shear-spring type imperfectness of the contact conditions
two branches of the fundamental mode appear, the first of them disappears
but the second approaches the dispersion curve obtained for the perfect con-
tact conditions;

2. the shear-spring type imperfectness of the contact conditions change also sig-
nificantly the character of the dispersion curves of the higher modes, how-
ever, these dispersion curves have one branches only similar to that obtained
within the scope of the perfect contact conditions;

3. the dispersion curves of the foregoing two branches of the fundamental mode
approach the corresponding limit dispersion curve related to the fully slip-
ping interface conditions as the shear-spring parameter F increases;

4. before a certain value of kR(denoted by (kR)m) the second branch of the fun-
damental mode obtained for the case where F > 0 merges with that obtained
for the case where F = 0 and the values of (kR)m depend not only on the
shear-spring parameter F but also on the ratios h(1)/R and h(2)/R: the values
of (kR)m decrease with F , but increase with a decrease in h(1)/R, as well as
with a decrease in h(2)/R;

5. the shear-spring type imperfectness of the contact conditions does not change
the low and high wave number limits;

6. the wave propagation velocity in the first (second) branch of the fundamental
dispersion mode is less (greater) than that obtained in the perfect case;

7. there exists “cut off” values for kR(denoted by (kR)c f .) for the first branch of
the dispersion curve of the fundamental mode and (kR)c f .→ 0 as F → ∞, as
well as (kR)c f .→ ∞ as F → 0;
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8. the initial strains of the layers of the compound cylinder qualitatively change
only the influence of the considered imperfectness of the interface conditions
on the behavior of the dispersion curves;

9. the wave propagation velocity obtained for the hollow layered cylinder satis-
fies the relations (55) and (56) for the case under consideration;

10. the character of the dispersion curves of the second branch depends signifi-
cantly on the thickness of the inner hollow cylinder.

Although the discussed numerical results are obtained for the selected values of
the problem parameters, they also have a general meaning for the estimation of the
influence of the imperfectness of the interface conditions on the dispersion of the
axisymmetric longitudinal waves in the bi-layered hollow cylinder.
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Appendix A

We write the expressions for calculation of the terms βi j which enter the dispersion
equation (37)
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In relation (A1) the following notation is used:
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Appendix B

We write the expressions for calculation of the terms αnm which enter the dispersion
equation (47)
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where α
(k)
1 and α

(k)
2 k = 1,2 are the positive roots of the equation
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Note that in (B1) and (B2) the ρ ′(k),ω ′(k)3311,.., ω ′
(k)
3333are determined through the

expressions (21) and (22).
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