
Copyright © 2012 Tech Science Press CMC, vol.30, no.2, pp.145-176, 2012

A Three-Dimensional Model of Shape Memory Alloys
under Coupled Transformation and Plastic Deformation

B. Chen1,2, X. Peng1,2,3, X. Chen1,2, J. Wang4, H. Wang4 and N. Hu1,5,6

Abstract: A three-dimensional phenomenological model for coupled transfor-
mation and plastic behavior of shape memory alloys (SMAs) is presented. The
strain is separated into elastic, thermal, transformation and plastic strain parts, and
two yield functions are adopted to describe respectively the transformation and
plastic deformation. An integral algorithm is suggested, including the update of the
stress and the tangent stiffness. Numerical examples and the comparison with ex-
perimental results show that the proposed approach can well describe the behavior
of the SMAs subjected to complicated thermal-mechanical loading, demonstrating
the validity of the model in the description of the constitutive behavior of SMAs, in-
cluding shape memory effect, pseudoelasticity, coupled transformation and plastic
deformation, and effect of plastic deformation on the inverse transformation, etc.
The corresponding user material subroutine UMAT is developed and embedded
into FE code ABAQUS, with which the installation process of SMA pipe joints is
simulated and the residual contact pressure between connected pipes and the joint
is predicted.

Keywords: shape memory alloys, transformation, plastic deformation, constitu-
tive model

1 Introduction

The remarkable properties of shape memory alloys (SMAs) have been receiving
increasing attention due to the successful and potential applications in many fields,
such as aerospace, medical, and petroleum industries, etc. As a consequence,
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the interest in the research of the thermal-mechanical behavior of SMAs was also
rapidly growing.

Significant progresses have been made in constitutive modeling of SMAs since
1990s. The models can generally be categorized as microscopic, micro-macro and
phenomenological ones. In the microscopic and micro-macro models, microme-
chanics is often combined with continuum mechanics for the description of the
macroscopic behavior of SMAs [Sun and Hwang(1993a,b); Lexcellent et al.(1996);
Siredey et al.(1999); Gao et al.(2000a,b); Peng et al.(2001); Blanc and Lexcel-
lent (2004); Patoor et al.(2006); Lagoudas et al.(2006); Liu et al.(2011); Kang et
al.(2010)]. These models are useful for understanding the fundamental features at
micro-level, but most of them are not easily applied in the analysis of practical en-
gineering problems. The phenomenological models [Boyd and Lagoudas (1996);
Auricchio et al.(1997); Raniecki and Lexcellent (1998)] are usually based on con-
tinuum thermodynamics with internal state variables taking into account the effects
of the changes in microstructures. These models can, in general, be applied effi-
ciently to predict the behavior of SMA components and devices.

In the phenomenological models, the behavior of SMAs is often described with
strain, stress, temperature, entropy and internal variables that are often introduced
to describe the change in internal structures. If the behavior of an SMA involves
mainly elasticity and phase transformation, the typical internal state variables used
are the martensite volume fraction and macroscopic transformation strain, respec-
tively. Correspondingly, the models with internal variables can further be classified
into two groups. In one group, the martensite volume fraction, ξ , is taken as an in-
ternal variable, and the transformation kinetics, i.e., the evolution of ξ is assumed
to be related to the current temperature and macroscopic stress state. Tanaka et al.
(1995) proposed a set of exponential functions to describe respectively the forward
and inverse transformations by making use of the von-Mises equivalent stress and
temperature. Liang and Rogers (1990) suggested an evolution of ξ with cosine
functions. Brinson et al. (1993) suggested a different method to describe the trans-
formation kinetics, in which ξ is divided into two parts, determined by temperature
and stress respectively. Peng et al. (2001) proposed a model for SMAs with the
concept that an SMA is composed of austenite and martensite and its constitutive
behavior is the combination of the individual behavior of each of the two phases,
in which Tanaka’s transformation kinetics rule was adopted.

The models in the other group were usually developed within the framework of
thermodynamics. Constitutive equations were mainly specified as two parts: state
equations for the entities conjugating the control variables, and kinetic equations
for the internal variables. The state equations can be obtained directly or formu-
lated by the partial derivative of a free energy function in the sense of the Clausius–
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Duhem inequality. The kinetic equations of internal variables often depend on the
equations relating the rates of the internal variables to the current state and its time
derivatives. Leclercq and Lexcellent (1996) proposed a model in the framework
of irreversible thermodynamics with internal variables, in which a specific free en-
ergy function and two internal variables were introduced. The two variables were
defined as the volume fraction of self-accommodation (pure thermal effect) and
oriented (stress-induced) product phase. Popov and Lagoudas (2007) presented a
model that could take into account both the direct conversion of austenite into de-
twinned martensite and the detwinning of self-accommodated martensite. In the
model by Bo and Lagoudas (1999a, b, c) and Lagoudas et al. (1999), the incre-
ments of both the elastic potential and the Gibbs chemical energy over a representa-
tive volume element (RVE) with respect to an infinitesimal increment of martensite
were introduced, and a set of internal variables, including the martensite volume
fraction, the macroscopic transformation strain, the back stress and the drag stress
due to both martensitic transformation and its interaction with plastic strain were
adopted. Panico and Brinson (2007) also proposed a model in the framework of
the classical irreversible thermodynamics, which could take into account the effect
of multiaxial stress states and non-proportional loading histories, and account for
the evolution of both twinned and detwinned martensite. The model by Helm and
Haupt (2003) is based on a free energy function and the evolution of internal state
variables, in which the energy stored during a thermal-mechanical process could
be considered. The model proposed by Souza et al. (1998) can capture both shape
memory effect (SME) and pseudoelasticity (PE) in a small strain regime, and the
macroscopic kinetics of stress-induced phase transformations could be described
with a transformation strain tensor. Auricchio and Petrini (2002) discussed some
improvements to the model by Souza et al. (1998), developed the corresponding in-
tegration algorithm, and discussed some typical aspects in SMA modeling, such as
asymmetry of tension and compression permanent inelasticity, as well as different
independent internal variables [Auricchio et al.(2004a,b, 2007, 2010)]. Zaki and
Moumni (2007) developed a model for the behavior of SMAs under cyclic loading,
in which three new state variables, internal stress, residual strain and cumulated
martensite volume fraction, were introduced.

In practical application, stress concentration may inevitably exist, which may in-
duce local plastic deformation. Under complex loading, the interaction between
irreversible plastic strain and recoverable transformation strain should be consid-
ered. Zhao and Zhang (1992) found that in SMA Ni47Ti44Nb9 there exists a char-
acteristic deformation temperature (Ms+30˚C) and a critical strain range (16%), at
which deformation can effectively increase the inverse transformation temperature
and transformation hysteretic loop. In order to explain this phenomenon, Piao et al
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(1993) investigated the transformation behavior of several SMAs, and speculated
that the elastic strain energy stored during the forward transformation might be re-
laxed by plastic deformation. As a result, the inverse transformation temperature,
such as As and A f , could be increased. Casciati et al. (2011) investigated the fatigue
characteristics of multigrain samples of a specific Cu-based alloy under several
loading-unloading cycles with different strain amplitude. Some researchers [Paiva
et al.(2005); Patoor et al.(2009); Lagoudas et al.(2009, 2010); Zaki et al.(2007)]
investigated the residual irreversible strain during martensitic deformation. Peng et
al. (2012) developed a dual-phase mixture model for the constitutive behavior of
shape memory alloys, involving coupled transformation, reorientation and plastic
deformation. Although this coupling between transformation and plastic deforma-
tion may contain some important information for the extension of the application
of SMAs, the model involving plastic strain that occurs after transformation and its
effect on the following inverse transformation has not yet been sufficiently investi-
gated, especially for the urgent need of engineering applications.

Inspired by the theories of Souza et al.(1998) and Auricchio and Petrini (2002),
we intend to establish a unified model for the description of SME and PE, tak-
ing into account the effects of plastic deformation, as well as its interaction with
transformation. In Section 2 the governing equations are obtained based on the
given assumptions; in Section 3 the incremental form of the governing equations
are derived. The integration algorithm of the model is developed in Section 3; and
Section 4 is devoted to the numerical simulation and the comparison with exper-
imental results. At the end of Section 4, the proposed constitutive model and the
numerical approach are applied to the simulation of a pipe joint assembly progress;
the conclusion and discussion are given in Section 5.

2 3-D modeling of SMAs considering effect of plastic strain

The modeling of the SMAs treated in this work starts from the assumption that the
free energy is the function of elastic strain εεεe, transformation strain εεε t , tensor ααα

and accumulated plastic strain p associated with plasticity-induced hardening, and
temperature T (Lemaitre and Chaboche, 1990), i.e.,

Φ = Φ(εεεe, εεε
t , ααα, p, T ), (1)

where

εεε
e = εεε− ε

t −εεε
p−εεε

θ , (2)

εεε and εεε p are total strain and plastic strain, respectively, and εεεθ = θ(T − T0) is
thermal strain, θθθ is the coefficient tensor of thermal expansion and T0 is a refer-
ence temperature. Φ can further be expressed as the sum of the contributions from
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elastic, transformation and plastic deformation as well as temperature, taking into
account the interaction between transformation and plasticity,

Φ(εεεe,εεε t ,ααα, p,T ) = Φ
e(εεεe,T )+Φ

t(εεε t ,T )+Φ
p(ααα, p,T )+Φ

θ (T )+Φ
c(εεε t , p), (3)

where Φe(εεεe,T ) = 1
2ρ

εεεe : C : εεεe,

Φ
t(εεε t ,T ) =

1
3ρ

Ct
ε

t : εεε
t +

1
ρ

τM(T )
∥∥εεε

t
∥∥+

1
ρ

Γ(εεε t),

Φ
p(ααα, p,T ) =

1
3ρ

Cp
α : ααα +

1
ρ

Y (p),

Φ
θ (T ) = cv[(T −T0)−T ln(

T
T0

)],

Φ
c(εεε t , p) =− 1

ρ
Q(p)

∥∥εεε
t
∥∥ ,

C is the standard isotropic elasticity tensor, Cp and Ct are material parameters,
ρ and cv are density and specific heat, respectively, which are assumed invariant
during phase change, ‖•‖ denotes the Euclidean norm of an arbitrary tensor "•" of
rank two, τM(T ) is defined as

τM(T ) =

{
B(T −M0) if T > M0

0 if T ≤M0
, (4)

where the parameter B represents the sensitivity of the stress with respect to tem-
perature T , and M0 is the reference temperature below which no twinned martensite
is observed (Souza et al., 1998), and Γ(εεε t) as well as εεε t satisfies the following phe-
nomenological physical constraints

γ ≥ 0,∥∥εεε
t
∥∥− εL ≤ 0,

Γ(εεε t) = γ(
∥∥εεε

t
∥∥− εL) = 0,

(5)

in which γ is a Lagrange multiplier, εL is related to the saturated state of phase
transformation. The function of Γ(εεε t) is similar to the additional indicator function
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adopted by Souza et al. (1998) and Frémond et al. (1987, 1996) for the saturated
phase transformations. Y (p) and Q(p) will be specified later.

Making using of the derivative of Equation (3) with respect to time

Φ̇ =
∂Φ

∂εεεe : ε̇εε
e +

∂Φ

∂T
Ṫ +

∂Φ

∂εεε t : ε̇εε
t +

∂Φ

∂ααα
: α̇αα +

∂Φ

∂ p
ṗ, (6)

and the Clausius–Duhem inequality [Lemaitre and Chaboche (1990)],

σσσ : ε̇εε−ρ(Φ̇+η Ṫ )≥ 0 (7)

one obtains

σσσ : ε̇εε−ρ(Φ̇+η Ṫ ) = (σσσ −ρ
∂Φ

∂εεεe )ε̇εεe +ρ(−η− ∂Φ

∂T
+

1
ρ

σσσ : θθθ)Ṫ

+σσσ : ε̇εε
t +σσσ : ε̇εε

p−ρ
∂Φ

∂εεε t : ε̇εε
t −ρ

∂Φ

∂ααα
: α̇αα− ∂Φ

∂ p
ṗ≥ 0.

(8)

It implies a general elasticity law of the form

σσσ = ρ
∂Φ

∂εεεe = C : (εεε−εεε
t −εεε

p−εεε
θ ) (9)

and

η =−∂Φ

∂T
+

1
ρ

σσσ : θθθ = cv ln(
T
T0

)− 1
ρ

B
∥∥εεε

t
∥∥+

1
ρ

σσσ : θθθ . (10)

where σσσ and η are stress and entropy, respectively. From Equation (3) we get
following two stress-like counterparts

χχχ
t = ρ

∂Φ

∂εεε t =
2
3

Ct
εεε

t +(τM(T )−Q(p)+ γ)Nεεε t
(11)

and

χχχ
p = ρ

∂Φ

∂ααα
=

2
3

Cp
ααα (12)

where χχχ t and χχχ p can be regarded as transformation back stress and plastic back
stress, respectively. The direction of εεε t is defined as

Nεεε t
= εεε

t/
∥∥εεε

t
∥∥. (13)
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Since ‖εεε t‖ = 0 as εεε t = 0, ‖εεε t‖ =
√
‖εεε t‖2 +δ −

√
δ is defined to replace the

‖εεε t‖ in the denominator on the RHS of Eq. (13) to avoid singularity [Auric-
chio et al. (2010)], where δ is a user-defined small positive number. The func-
tion Q(p) affects directly the occurrence of transformation. We define Q(p) =
Q0(1−exp(−ξ p))based on the fact that there is a close relation between the inverse
transformation start temperature As and the permanent strain [Piao et al. (1993)],
where Q0 and ξ are the material parameters. Bo and Lagoudas (1999b) used this
form of the equation to describe the phenomenon that plastic deformation increases
continuously, and the overall effect of the dislocations on the phase transformation
will reach a certain limit. Then the following drag stress of plastic is defined as

R = ρ
∂Φ

∂ p
= Y ′(p)−Q′(p)

∥∥εεε
t
∥∥= R0 (1− exp(−ζ p))−Y0 exp(−ξ p)

∥∥εεε
t
∥∥ , (14)

whereR0,ζ and Y0 are the material parameters. The first term on the RHS of Equa-
tion (14) is often used to describe the plastic deformation induced isotopic harden-
ing [Lemaitre and Chaboche (1990)], and the last term on the RHS of the equation
is an additional term related to the coupling of transformation and plastic deforma-
tion.

Using Equations (8) ∼ (14), we obtain

σσσ : ε̇εε
t +σσσ : ε̇εε

p−χχχ
t : ε̇εε

t −χχχ
p : α̇αα−Rṗ≥ 0. (15)

In order to derive the evolution of the internal variables,εεε t ,εεε p,αααandp, the con-
cept of dissipation potential and the rule of normality are adopted [Lemaitre and
Chaboche (1990)],

ϕ = σσσ : ε̇εε
t +σσσ : ε̇εε

p−χχχ
t : ε̇εε

t −χχχ
p : α̇αα−Rṗ. (16)

Making use of the Legendre-Fenchel transformation that enables to define the cor-
responding potential Ψ(σσσ ,χχχ t ,χχχ p,R,T ) [Lemaitre and Chaboche (1990)], we intro-
duce the following two dissipation potential functions

Ψ
t(σσσ ,χχχ t ,T ) = f t(σσσ ,χχχ t ,T ) (17)

and

Ψ
p(σσσ ,χχχ p,R,T ) = f p(σσσ ,χχχ p,R,T )+

3
4

a
Cp χχχ

p : χχχ
p (18)

to describe respectively the evolution of the internal variables for transformation
and plastic, where a is a parameter, f t(σσσ ,χχχ t ,T ) and f p(σσσ ,χχχ p,R,T ) are the yield
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functions of transformation and plastic deformation, respectively, and are defined
as

f t(σσσ ,χχχ t ,T ) = J2(σσσ ′−χχχ
t)−σ

t
s , (19)

and

f p(σσσ ,χχχ p,R,T ) = J2(σσσ ′−χχχ
p)−R−σ

p
s , (20)

where σ t
s and σ

p
s are related to the yield of transformation and plastic deformation,

J2(βββ ) =

√
3
2

β : ββ : ββ : β (21)

βββ is an arbitrary tensor of rank two. The evolution equations of εεε t ,εεε p,ααα and p can
be obtained as

ε̇εε
t =−λ̇

t ∂Ψt

∂χχχ t = λ̇
t ∂Ψt

∂σσσ
=

3
2

σσσ ′−χχχ t

J2(σσσ ′−χχχ t)
λ̇

t = Nt(σσσ ,χχχ t)λ̇ t (22)

ε̇εε
p = λ̇

p ∂Ψp

∂σσσ
=

3
2

σσσ ′−χχχ p

J2(σσσ ′
−χχχ

p)λ̇ p = Np(σσσ ,χχχ p)λ̇ p (23)

α̇αα =−λ̇
p ∂Ψp

∂χχχ p =
3
2

σσσ ′−χχχ p

J2(σσσ ′
−χχχ

p)λ̇ p− 3
2

a
Cp χχχ

p
λ̇

p = Hp(σσσ ,χχχ p)λ̇ p (24)

ṗ =−λ̇
p ∂Ψp

∂R
= λ̇

p (25)

whereλ̇ p =
√

(2/3)ε̇εε p : ε̇εε
pandλ̇ t =

√
(2/3)ε̇εε t : ε̇εε

t . Using Equations (22∼25), the
Clausius–Duhem inequality can be further specified as

λ̇
t(

∂Ψt

∂σσσ
: σσσ +

∂Ψt

∂χχχ t : χχχ
t)+ λ̇

p(
∂Ψp

∂σσσ
: σσσ +

∂Ψp

∂χχχ p : χχχ
p +

∂Ψp

∂R
R)≥ 0 (26)

It is easy to prove that inequality (26) holds if the following conditions are satisfied

1. Ψt and Ψp are convex, while f t = 0 and f p = 0,

2. Ψt(0,0,T ) = 0 and Ψp(0,0,0,T ) = 0, while f t = 0 and f p = 0.

Obviously, Equations (17) and (18) satisfy the above conditions, therefore, Inequal-
ity (26) is always satisfied with the evolution of εεε t ,εεε p,ααα and p defined in Equations
(22) ∼ (25). From several argumentations on the evolution laws and on the nucle-
ation criteria of transformation and plastic deformation, it is possible to conclude
that material can be either in elastic state, pure phase transformation, pure saturated
transformation state, or plastic deformation occurring simultaneously with the pre-
vious several states.
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3 Incremental constitutive equations

3.1 Return mapping schemes

For the incremental analysis of the material response, we replace all the rate quanti-
ties in Equations (22) ∼ (25) with the corresponding increments within the interval
considered. Suppose the analysis for the nth increment of loading has been finished,
the values of εεεe

n,εεε
t
n,εεε

p
n ,αααn, pn and γn, and the yielding functions f t(σσσ ,χχχ t ,T ) and

f p(σσσ ,χχχ p,R,T ), the kinematic hardening function Hp(σσσ ,χχχ p), and the flow direc-
tions Nt(σσσ ,χχχ t) and Np(σσσ ,χχχ p) at the instant tn have been obtained. Given the incre-
ments ∆T and ∆εεε applied in time interval [tn, tn+1], εεεe

n + 1,εεε
t
n + 1,εεε

p
n + 1,αααn + 1, pn + 1

and γn + 1 at the instant tn+1 can be obtained by solving the following algebraic
equations associated with Equations (11) ∼ (13)

εεε
e
n+1 = εεε

e trial
n+1 −∆λ

tNt(σσσn+1,χχχ
t
n+1)−∆λ

pNp(σσσn+1,χχχ
p
n+1), (27)

εεε
t
n+1 = εεε

t
n +∆λ

tNt(σσσn+1,χχχ
t
n+1), (28)

εεε
p
n+1 = εεε

p
n +∆λ

pNp(σσσn+1,χχχ
p
n+1), (29)

ααα
p
n+1 = ααα

p
n +∆λ

pHp(σσσn+1,χχχ
p
n+1), (30)

subjected to the following constrains

∆λ
t ≥ 0, f t(σσσn+1,χχχ

t
n+1,T )≤ 0, ∆λ

t f t(σσσn+1,χχχ
t
n+1,T ) = 0, (31)

∆λ
p ≥ 0, f p(σσσn+1,χχχ

p
n+1,Rn+1,T )≤ 0, ∆λ

p f p(σσσn+1,χχχ
p
n+1,Rn+1,T ) = 0, (32)

γ ≥ 0,
∥∥εεε

t
n+1
∥∥− εL ≤ 0, γ

(∥∥εεε
t
n+1
∥∥− εL

)
= 0, (33)

where εεεetrial
n+1 = εεεe

n +∆εεε . εεεetrial
n+1 is computed by assuming that the material is elastic

during the interval (correspondingly,εεε ttrial
n+1 = εεε t

n,ααα
trial
n+1 = αααn, ptrial

n+1 = pn). The cor-
responding stress and the back stress can be called elastic trial stress and elastic
trial back stress, given by

σσσ
trial
n+1 = C : εεε

etrial
n+1 , (34)

χχχ
t trial
n+1 =

2
3

Ct
εεε

t trial
n+1 +(τM(T )−Q(ptrial

n+1)+ γ)Nεεε t
, (35)

χχχ
p trial
n+1 =

2
3

Cp
ααα

trial
n+1 , (36)

and

Rtrial
n+1 = R0(1− exp(−ζ ptrial

n+1))−Y0 exp(−ξ ptrial
n+1)

∥∥εεε
t trial
n+1

∥∥ (37)
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Based on the above results, the two limit functions can be computed. If

f t(σσσ t trial
n+1 ,χχχ t trial

n+1 ,T )≤ 0

and

f p(σσσ p trial
n+1 ,χχχ p trial

n+1 ,Rtrial
n+1 ,T )≤ 0 (38)

i.e., the elastic trail stress lies within the elastic domain or on the yield surface,
then the material response should be elastic and the trail stress σσσ trial

n+1 as well as
the internal variables takes the updated ones. Otherwise, an inelastic correction for
the material response will be performed using a Newton-Raphson iteration scheme.
For the material state discussed in Section 2, we can define a set of equations

{f(x)}= {0} (39)

for the unknown {x}. For example, if the material is in the state of saturated phase
transformation and plastic deformation occurs simultaneously, the yield functions
of transformation and plasticity and Lagrangian constraint function Γ(εεε t) will be
equal to zero. The unknown quantity is {x}=

(
σσσn+1,χχχ

t
n+1,χχχ

p
n+1,∆λ t ,∆λ p,γn+1

)T,
and the following residual equations for the residual parts of these quantities should
be satisfied

{f(x)}=



C−1 : σσσn+1−εεεetrial
n+1 +∆λ tNt

n+1 +∆λ pNp
n+1

χχχ t
n+1−

2
3Ctεεε t

n+1− (τM−Q(pn+1)+ γn+1)Nεεε t

n+1
χχχ

p
n+1−

2
3Cpαααn+1

J2(σσσ ′n+1−χχχ t
n+1)−σ t

s
J2(σσσ ′n+1−χχχ

p
n+1)−R(pn+1)−σ

p
s∥∥εεε t

n+1

∥∥− εL


= {0} . (40)

To solve the unknown quantities{x}, the Jacobian matrix is computed:

[D] =
∂ {f(x)}

∂ {x}
=

Q ∆λ t ∂Nt

∂χχχ t ∆λ p ∂Np

∂χχχ p Nt Np 0
−∆λ tP : ∂Nt

∂σσσ
I−∆λ tP : ∂Nt

∂χχχ t 0 −P : Nt Q′(p)Nεεε t −Nεεε t

−2
3Cp∆λ p ∂Np

∂σσσ
0 I− 2

3Cp∆λ p ∂Hp

∂χχχ p 0 −2
3CpHp 0

Nt −Nt 0 0 0 0
Np +m∆λ t ∂Nt

∂σσσ
: Nεεε t

m∆λ t ∂Nt

∂χχχ t : Nεεε t −Np mNεεε t
: Nt −R′(p) 0

∆λ t ∂Nt

∂σσσ
: Nεεε t

∆λ t ∂Nt

∂χχχ t : Nεεε t 0 Nεεε t
: Nt 0 0


(41)
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where

∂Nt

∂χχχ t =−3
2

1
J2(σσσ ′−χχχ t)

(I− 2
3

Nt ⊗Nt), (42)

∂Nt

∂σσσ
=

3
2

1
J2(σσσ ′−χχχ t)

(Idev− 2
3

Nt ⊗Nt), (43)

∂Np

∂χχχ p =−3
2

1
J2(σσσ ′−χχχ p)

(I− 2
3

Np⊗Np), (44)

∂Np

∂σσσ
=

3
2

1
J2(σσσ ′−χχχ p)

(Idev− 2
3

Np⊗Np), (45)

∂Hp

∂χχχ p =
∂Np

∂χχχ p −
3
2

a
Cp I, (46)

Q = C−1 +∆λ
t ∂Nt

∂σσσ
+∆λ

p ∂Np

∂σσσ
, (47)

P =
2
3

CtI+(τM + γ−Q)(I−Nεεε t ⊗Nεεε t
)
/∥∥εεε

t
∥∥, (48)

m =−Y0(exp(−ξ p)), (49)

I and Idev are the identity tensor and the identity deviatoric tensors of rank four,
respectively. In the kth iteration step, Equation (39) can be linearized as

[D]k · {∆x}k +{f(x)}k = {0} , (50)

from which the unknown{∆x} can be solved as

{∆x}k =− [D]−1
k · {f(x)}k . (51)

Staring from the elastic trail, the iteration may continue until {f(x)}= {0} is satis-
fied within a certain tolerance. Moreover, for each possible case, {f(x)} and [D] can
be obtained by simply removing the corresponding rows and columns according to
the constraint conditions for the transformations and plastic deformation.

3.2 Inelastic tangent stiffness tensor

We now address the construction of the inelastic tangent stiffness tensor. Sup-
pose εεεe

n,εεε
t
n,εεε

p
n ,αααn, pn and γnhave been solved and the total strain and tempera-

ture, εεεn+1 and Tn+1, have been prescribed as an input, the stress σσσn+1 can be
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computed. If we define an algorithmic incremental constitutive function σσσn+1 =
σ̃(εεε t

n,εεε
p
n ,αααn, pn,γn,εεεn+1), the consistent tangent operator can be determined with

Din ≡ dσσσn+1

dεεεn+1
=

∂ σ̃n+1

∂εεεn+1

∣∣∣εεε t
n,εεε

p
n ,αααn,pn,γn

(52)

Noticing that εεεetrial
n+1 = εεεn+1−εεε t

n−εεε
p
n−εεεθ

n+1, the stress σσσn+1 can also be expressed
as

σσσn+1 = σ̄(εεε t
n,εεε

p
n ,αααn, pn,γn,εεε

e trial
n+1 +εεε

t
n +εεε

p
n +εεε

θ
n+1), (53)

and the consistent tangent operator can be obtained with

Din =
dσ̃n+1

dεεεn+1
=

∂ σ̄n+1

∂εεεetrial
n+1

. (54)

In order to give the linear tangent relationship between εεεe trial
n+1 and σσσn+1, we lin-

earize the nonlinear system {f(x)} = {0}, including the elastic trial strain as a
variable. The differentiation of the nonlinear system can be expressed as[

Q M
N U

]{
dσσσ

dX

}
=
{

dεεεetrial
n+1
0

}
, (55)

where

{dX}=
{

dχχχ
t
n+1,dχχχ

p
n+1,d∆λ

t ,d∆λ
p,dγn+1

}
, (56)

{M}=
{

∆λ t ∂Nt

∂χχχ t , ∆λ p ∂Np

∂χχχ p , Nt , Np, 0
}

, (57)

{N}=
{
−∆λ tP : ∂Nt

∂σσσ
, −2

3Cp∆λ p ∂Np

∂σσσ
, Nt , Np, ∆λ t ∂Nt

∂σσσ
: Nεεε t}T

, (58)

[U] =


I−∆λ tP : ∂Nt

∂χχχ t 0 −P : Nt Q′(p)Nεεε t −Nεεε t

0 I− 2
3Cp∆λ p ∂Hp

∂χχχ p 0 −2
3CpHp 0

−Nt 0 0 0 0
m∆λ t ∂Nt

∂χχχ t : Nεεε t −Np mNεεε t
: Nt −R′(p) 0

∆λ t ∂Nt

∂χχχ t : Nεεε t
0 Nεεε t

: Nt 0 0

 . (59)

The increment of stress can be computed with

∆σσσn+1 =
[
Q−{M} : [U]−1 : {N}

]−1
:∆εεε

e trial
n+1 , (60)

then the consistent tangent operator can be obtained as

Din =
[
Q−{M} : [U]−1 : {N}

]−1
. (61)
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4 Application and Verification

4.1 Pseudoelasticity and shape memory effect

The shape memory alloy adopted in this subsection is the same as that by Panico
and Brinson (2007). M f , Ms, As and A f were given as 306K, 310K, 317K and 319K,
respectively. Neglecting the insignificant plastic deformation during the processes
related to pseudoelasticity and shape memory effect, the relative material constants
are identified and listed in Table 1.

Table 1: Material constants of an SMA [Panico and Brinson (2007)]

E (GPa) ν B (MPa /K) M0 (K) Ct (MPa) σ t(MPa) εL

68.4 0.36 14.2 310 300 100 0.047

Figure 1 shows the pseudoelastic tensile stress-strain curve of the material at T =325K.
The constitutive behavior of the shape memory alloys is pseudoelastic since T >A f ..
It can be seen that the martensitic transformation strain induced by the applied
stress is totally recovered without considering the impact of plastic deformation.

 
Figure 1: Pseudoelastic behavior at T =325K

Figure 2 shows the shape memory effect of the material. The material undergoes
tensile loading and unloading at martensitic transformation starting temperature Ms
(T=310K), followed by heating to T =320K. It is known that during the loading and
unloading process, the material should mainly be martensite, and the deformation
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due to the detwinning of martensite variants remains after unloading. During the
following heating, the inverse transformation takes place once T >As, and develops
with the increase of temperature until T = A f when the material returns completely
to its parent phase. The transformation strain recovers with the increase of tem-
perature, and disappears as T =A f . Noticing that the values of As and A f are 317K
and 319K, but the calculated results is only about 315K and 316K, which may be
accounted for with that the transformation strain by detwinning affects the value of
the back stress, then affects the inverse transformation temperature. It can be seen
that the typical characteristics of pseudoelasticity and shape memory effect of the
SMA can be described reasonably with the proposed model.

 
Figure 2: Shape memory effect (Tension at T=310K, then unloading followed by
heating to T=320K)

4.2 Effect of plastic deformation on transformation

Wang et al. (2008) studied the effect of plastic deformation on the pseudo-elastic
behavior of an NiTi SMA at room temperature. The stress responses at different
strain amplitudes were presented (Fig. 3). It was found that the hysteretic loop of
the σ - ε curves increases if plastic strain occurs, implying that plastic strain can
impede the inverse transformation.

Since the deformation takes place at a constant temperature, the effects of tem-
perature on the material properties, the strain induced by thermal expansion and
the corresponding stress are not taken into account. Making use of the experimen-
tal curve corresponding to εmax=0.06, the material constants related to elastic and
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transformation deformation can be identified; then the material constants related to
plastic deformation and its effects on transformation can be identified with a stress-
strain curve involving plastic deformation, for example, the curve corresponding to
εmax=0.10. The material constants identified are listed in Table 2.

Table 2: Material constants of an NiTi SMA [Wang et al. (2008)]

E (GPa) ν B (MPa / oC) M0 (oC) Ct (MPa) Cp (MPa) ξ ζ

57 0.3 5.65 -29.2 300 500 15 15
Y0 (MPa) R0 (MPa) Q0 (MPa) σ t

s(MPa) σ
p
s (MPa) a εL θ (1/K)

100 210 300 85.5 550 0 0.068 0

The responses of the SMA subjected to tensile deformation to different strain am-
plitudes are analyzed and shown in Fig. 4. Compared with the experimental re-
sults, it can be seen that the main characteristics of the material can be reasonably
described. Distinct martensitic transformation starts at ε ≈0.004, then the stress
of the material is mainly determined by the martensitic transformation due to the
detwinning of the martensite variants. The forward transformation or detwinning
continues until ε ≈7.2%. Then the resistance against the further straining increases
due to plastic deformation. Marked plastic strain induced hardening can be ob-
served (Fig. 4), which can also be described reasonably with the proposed model.
At the onset of unloading, the response of the material is mainly determined by the
elastic property of the martensite. With the decrease of stress, the resistance against
inverse transformation is released, and inverse transformation may occur when the
resistance decreases to a criterion determined by the previous plastic strain ampli-
tude. It can be seen that the inverse transformation during unloading should occur
at a high level of stress if the previous maximum strain εmax≈7.2% (Fig. 4) when
no plastic deformation takes place.

It can also be seen that with the increase of the plastic strain, the stress corre-
sponding to the inverse transformation decreases monotonically, indicating a larger
hysteresis loop compared with that without taking into account the effect of plastic
deformation [Peng et al. (2012)], which implies that more strain energy will be
dissipated in the inverse transformation process. A reasonable explanation is that
plastic deformation dissipates or releases the elastic energy stored in the material
during a deformation process, therefore, additional energy should be needed for
the inverse transformation of the material. It can also be observed that the residual
strain after unloading is almost the plastic strain that occurred during the previous
loading process. All these characteristics can be reasonably replicated with the
proposed model.
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Figure 3: σ - ε curves of an SMA subjected to different strain amplitudes

 
Figure 4: Experimental and computed σ - ε curves at different strain amplitudes
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Piao et al. (1993) also investigated the origin for the increase of As of a kind
of Ti49.5Ni50.5 polycrystalline alloy at room temperature by pre-deformation, and
found that the increase of As is closely related to the permanent strain. Miyazaki
et al. (1981) divided a stress-strain curve in to three stages (Fig. 5): (I) The initial
linear part corresponding to elastic deformation, followed by a plateau correspond-
ing to stress-induced martensitic transformation, where the transformation strain
increases, indicating the occurrence of the stress-induced transformation, detwin-
ning or twinning to more favorable orientations with increasing stress; (II) A rapid
strain hardening induced by permanent strain due to slip; and (III) The strain hard-
ening tends to saturation and the recoverable strain decreases. The material used
by Piao et al. (1993) is adopted in this subsection and the material constants are
identified and listed in Table 3.

Figure 5 shows the experimental and computed σ -ε curves of the Ti49.5Ni50.5 alloy
at T =298K, lying between Ms=289K and As=307K. The computed result implies
that the proposed model can replicate the main characteristics of the SMA subjected
to large tensile deformation. It should be noted that εL=0.085 is adopted based on
the assumption that transformation and slip take place simultaneously.

Table 3: Material constants of Ti49.5Ni50.5 [Piao et al. (1993)]

E (GPa) ν B (MPa / oC) M0 (oC) Ct (MPa) Cp (MPa) ξ ζ

27.4 0.3 6.10 289 300 300 55 8
Y0 (MPa) R0 (MPa) Q0 (MPa) σ t

s(MPa) σ
p
s (MPa) a εL θ (1/K)

2300 200 200 120 450 0 0.085 0

In order to verify the effect of the pre-deformation on As, we simulate the SME
of the SMA subjected to straining of different amplitudes at 298K, then unload-
ing followed by heating for inverse transformation. Figure 6 shows the computed
shape memory effect of the SMA. It can be seen that different residual strain re-
mains after unloading. During heating, the residual strain keeps unchanged until
the temperature reaches a critical value, As, then part of it recovers with the in-
crease of temperature, and some irrecoverable part remains even if the temperature
increases to over A f (the dashed lines). It can be seen that both As and A f increase
with the increase of the irreversible deformation and tend to be saturated, indicat-
ing that more energy is needed during the inverse transformation to compensate for
that dissipated by irreversible deformation.

Figure 7 shows the evolutionary character of the Ti49.5Ni50.5 alloy under constrained
recovery condition. The specimen is firstly stretched to εmax=0.15 and unloaded at
298K, then the two ends of the specimen are fixed and the specimen is subjected to
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Figure 5: Experimental and computed σ -ε curves at room temperature (298K)

a temperature cycle, as shown in Fig. 7. The variation of stress against temperature
is shown in Fig. 7, where the contribution by thermal expansion has been excluded.
It can be seen that the stress almost undergoes a cycle during a temperature loop,
similar to the experimental observation of SMA Ti50Ni45Cu5[Šittner et al. (2000)].

If ∆As denotes the increase in the austenite transformation start temperature, its
saturation value (∆As)max can easily be evaluated with (∆As)max = Q0/B by using
Equation (11). The comparison of the computed ∆As ∼ ε p curve with the experi-
mental one is shown in Fig. 8, where it can be seen that the proposed model can
satisfactorily describe the experimental result.

We now discuss the mechanism of the variation of ∆As against increasing irre-
versible deformation. It can be found in Equations (11) and (19) that Q(p) affects
directly the conditions for the occurrence of transformation. When plastic defor-
mation occurs, in order for the inverse transformation to occurs, the system needs
a higher temperature or lower level of stress. Piao et al. (1993) proposed a clearer
mechanism for this phenomenon by focusing the attention on the stored elastic
energy in thermoelastic alloys, which can be used in the following inverse trans-
formation. If plastic deformation dissipates this part of energy, additional energy
should be supplied in the following inverse transformation for compensation by
either increasing inverse transformation start temperature (thermal energy) or de-
creasing the applied stress level, which results in a larger area of the hysteretic loop,
indicating more energy are absorbed during the inverse transformation.
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Figure 6: Shape memory effect of SMA subjected to different tensile deformation
(Stretched at 298K to the prescribed strain, unloaded, and then heated to 350K

 
Figure 7: Evolutionary character of SMA under constrained recovery condition
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Figure 8: Variation of ∆As against ε p

The incomplete recovery of the stress-induced transformation strain was found in
the experiments on alloy Ti–50.9at%Ni subjected to cyclic loading at T =319K [Str-
nadel et al.(1995)], which leads to a small residual strain remaining after unloading.
The material constants of alloy Ti–50.9at%Ni are identified with the experimental
results and listed in Table 4.

Table 4: Material constants of alloy Ti–50.9at%Ni [Strnadel et al.(1995)]

E (GPa) ν B (MPa / oC) M0 (oC) Ct (MPa) Cp (MPa) ξ ζ

46.0 0.33 4.10 243 500 10000 0 0
Y0 (MPa) R0 (MPa) Q0 (MPa) σ t

s(MPa) σ
p
s (MPa) a εL θ (1/K)

0 0 0 116 500 0 0.058 0

Figure 9 shows the experimental and the computed σ -ε curves at 319K, where the
proposed model describes reasonably the stress induced transformation and perma-
nent deformation.

4.3 Responses of SMAs under biaxial loadings

McNaney et al. (2003) performed the tension–torsion experiments on thin-walled
superelastic Nitinol tubes, and found significantly different characteristics from
those under uniaxial loading, which are to be simulated with the proposed model.
The material constants are identified with the torsional experimental result by Mc-
Naney et al. (2003) and listed in Table 5.
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Figure 9: Experimental and computed σ -ε curves of Ti–50.9 at%Ni at 319K

Table 5: Material constants of superelastic Nitinol [McNaney et al. (2003)]

E (GPa) ν B (MPa / oC) M0 (oC) Ct (MPa) Cp (MPa) ξ ζ

36.0 0.33 2.2 184.87 1000 0 0 0
Y0 (MPa) R0 (MPa) Q0 (MPa) σ t

s(MPa) σ
p
s (MPa) a εL θ (1/K)

0 0 0 135 ∞ 0 0.061 0

Figure 10 (a) shows a biaxial strain path in theε − γ/
√

3 plane, and Fig. 10 (b)
demonstrates comparison between the experimental and the computed σ eq- εeq

curves by this path, where σ eq and εeq denote equivalent stress and equivalent
strain, respectively. It can be seen in Fig. 10 (b) that the computed σ eq to the
straining part AB over predicts the experimental result, which could be attributed
to the marked difference between the responses under pure tension and under pure
torsion due to the marked difference between the corresponding microstructures of
this kind of materials (Peng et al, 2008), and the material constants that were identi-
fied with the torsional experimental result may over predict the stress under tensile
staining. The response of the material at larger strain amplitude is also computed.
The comparison between the computed and the experimental result shows that the
main characteristic of the material under the biaxial strain path can reasonably be
replicated.
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(a) 

 
(b) 

 Figure 10: Biaxial strain response path and stress response (a) Biaxial strain path
(O→A→B→A→O) (b) Comparison between computed and experimental results
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4.4 An application

Because of the unique shape memory effect, reliable performance, convenient in-
stallation and the other distinct advantages, SMA pipe joints have been used in
many important cases. The installation of an SMA pipe joint is simulated in this
subsection in a general way using the finite element method (FEM).

 
Figure 11: FEM mesh of a SMA pipe joint

The constitutive behavior of SMAs is described with a return-mapping algorithm,
the implementation of the model into the finite element code ABAQUS/Standard
through a User MATerial subroutine (UMAT) has been discussed in Section 3. Fig-
ure 11 shows the finite element mesh of the pipe joint and the pipes to be connected,
where element type C3D8 (an 8-node linear brick element) is adopted. The inner
and outer diameters of the pipe are 15 and 30 mm, respectively. In order to study
the variation of contact pressure against plastic deformation, the installations of
the pipe joints with five different inner diameters, 28.0, 28.4, 28.8, 29.2 and 29.6
mm, are simulated respectively. The thickness of the pipe joint is 10 mm. Before
installation, the inner diameter of each joint is reamed to 31.2 mm at a low tem-
perature (T =289K), then assembled on the pipes to be connected, then it is heated
to T =350K (above the A f taking into account the increase by plastic deformation),
and at last it is cooled to room temperature. The material with the properties listed
in Table 3 is adopted for joint material, keeping in mind Ms=289K and As=307K.
The material of the steel pipes is assumed elastoplastic with the Young’s modulus
E=205GPa, the Poisson’s ratiov=0.28, and the yield stress σ s=454MPa, and the
ultimate stress σ p=790MPa, respectively. In order to focus on the transformation
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behavior, the effect of thermal expansion is excluded from the analysis.

 

 

 

 

 

 

 

 

 (a) 

 

(b) 

 

A

Figure 12: Distribution of σ eq in pipe-joint with inner diameter 28.4 mm (a) after
heated to 350 K, (b) after being cooled to room temperature

Figure 12 (a) shows the distribution of σ eq in the pipe-joint system with inner diam-
eter 28.4 mm after heated to 350 K. Figure 12(b) shows the distribution of equiv-
alent stress in the assembled pipe-joint system after being cooled to room temper-
ature. Figure 13 shows the variation of circumferential strain ε22 and stress σ22
during the installation process at point A marked in Fig. 12(a). It can be seen that
the strain in the SMA pipe joint start to recover when the temperature is increased
to about 308 K attributed to a little plastic strain generate in the material. With in-
creasing temperature, the joint contracts and contacts the pipes, and the stress in the
joint increases rapidly. The variation of σ22 in the joint and the contact pressure, p,
with decreasing temperature at point A are shown in Fig 14.

Figure 15 shows the variation of interfacial contact pressure p against temperature
in the area A, with different inner diameters of the joint, din, as a parameter. It
can be seen that the temperature for the joint of din =28 mm to start contacting
the pipes is about 310 K, it decreases slightly with the increase of din. p increases
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Figure 13: Variations of several variables in assembly process

 
Figure 14: Variations of σ22 and p against T at point A
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Figure 15: Variations of p against T , with din of joint as a parameter at point A

rapidly with the increase of T because of inverse transformation. During cooling,
the stress keeps constant (without considering the effect of thermal expansion) until
the onset of martensitic transformation. Then p decreases with the development of
martensitic transformation until T falls to room temperature.

Figure 16 shows the variation of the contact pressurep near Point A at 350 K and
the contact pressure after cooled to room temperature, corresponding to the joints of
different initial diameters. It can be seen that after installation the contact pressure
between the joint and the pipes is sufficient to prevent from leakage. The recovered
strain, εre, corresponding to different din of the joint is also shown in Fig. 16,
which is defined as that the strain recovered in the joint after the joint contacts
pipes. It can be seen that the contact pressure at 350 K is almost proportional
to the recovered strain. With the increase of din, the contact pressure p at 350K
increases at first and then decreases. When the inner diameter din of all joints is
reamed to 31.2 mm, the joint with smaller initial inner diameter will suffer larger
inelastic deformation, including not only larger recoverable deformation, but also
larger plastic deformation. Too small initial inner diameter may result in severe
plastic deformation and reduces the recoverable capability of the joint. On the other
hand, too large initial inner diameter may also result in insufficient recoverable
capability because of the induced too small recoverable strain. Thus, there is an
optimal dinthat may result in satisfactory both plastic and recoverable deformation,
and generates satisfactory contact pressure. The comparison between the contact
pressures corresponding to different initial inner diameters of the joint 28.8mm
≤ din ≤ 29.6mm may result in satisfactory contact pressure.
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Figure 16: p and εre at 350K and 289K, corresponding to different din of joint

5 Conclusions

In this article, we proposed a three-dimensional constitutive model for shape mem-
ory alloys, considering plastic deformation and its effects. Making use of a free
energy function and following the conventional procedure, we derived the driving
force for the phase transformation and that for the plastic deformation. Two yield
functions are defined to describe the phase transformation and the plastic deforma-
tion, respectively. The corresponding integration algorithm was obtained, including
stress updating algorithm and the tangent stiffness expression. The typical charac-
teristics of SMAs and the effects of plastic deformation are analyzed. The typical
properties of SMAs, such as shape memory effect and pseudoelasticity can be de-
scribed with the model without taking into account plastic deformation. As a sim-
ple application, the installation process of a SMA pipe joint was simulated, which
demonstrates the validity of the proposed model and the corresponding numerical
approach.
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