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Shape-Effect in the Effective Laws of Plain and
Rubberized Concrete

E. Ferretti1

Abstract: The procedure of the effective law outlined in this paper [Ferretti (2001);
Ferretti and Di Leo (2003); Ferretti (2004b)] is an experimental procedure for iden-
tifying the constitutive law in uniaxial compression of brittle heterogeneous mate-
rials, and is based on the physical, analytical and numerical discussions about the
existence or otherwise of strain-softening [Ferretti (2004a); Ferretti (2005)]. This
procedure allows us to correct several incongruities that characterize the average
stress versus average strain diagrams: it produces evidence against strain-softening
in uniaxial compression [Ferretti (2004b)], whose existence may be questioned
from a physical point of view [Ferretti (2004a); Ferretti (2005)], it provides ef-
fective stress versus effective strain laws that are size-effect insensitive [Ferretti
(2004b)] and identifies Poisson’s ratio and volumetric strain, which are independent
of the degree of damage during the compression test [Ferretti (2004c)], as should
be the case for all constitutive parameters. The procedure also allows us to explain
the gradual change of shape in the average stress versus average strain laws when
a confinement pressure is applied to the specimen [Ferretti and Di Leo (2003)].
Moreover, the procedure emphasizes how the final stage in compressed concrete
specimens is largely characterized by the propagation of a macro-crack, rather than
by crushing. This puts a question mark on the existence of creep, which, according
to the identified effective parameters, seems mainly to be a structural effect due to
crack propagation [Ferretti and Di Leo (2008)]. In this paper, the identification pro-
cedure of the effective law is applied to cubic and cylindrical concrete specimens,
in order to verify whether or not the effective law is sensitive to shape-effect. Two
different concrete mixtures were used, the one of plain and the other of rubberized
concrete. New relationships were also proposed for design purposes, both for plain
and rubberized concrete.
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1 Introduction

The main motivation at the basis of the identification procedure of the effective
law for brittle materials, such as concrete, is the idea that the structural behavior
of the specimen used in uniaxial compression tests must be differentiated from
the constitutive behavior of the specimen material. This idea emanates from the
failure mechanism of brittle specimens, which is characterized by the propagation
of macro-cracks (Fig. 1) that modify the resistant structure of the specimen (Fig. 2)
throughout the compression test. As a consequence, an identifying model, and not
a scale factor (Fig. 3), is needed in order to derive the stress-strain law, σ−ε , which
pertains to the material, from the experimental load-displacement law, N−u, which
pertains to the structure. This means that the σ − ε and N− u curves may not be
homothetic, posing the question about the possible plot of the material law, which,
in the following, will be called the effective law, σe f f −εe f f , in order to distinguish
it from the average stress versus average strain law, σ̄ − ε̄ , traditionally assumed as
the constitutive law. 

 

 

 

Figure 1: Vertical cracks on the surface of a concrete specimen originated by the
splitting of incoherent material isolated by the propagation of internal macro-cracks

Figure 2: Concrete specimen at the end of the test, after removal of the outer part



Shape-Effect in the Effective Laws of Plain and Rubberized Concrete 239

Figure 3: Traditional identification of mono-axial constitutive law by experimental
tests

Ferretti and Di Leo (2003) and Ferretti (2005) have widely discussed how some
theoretical research of the last century [Hadamard (1903); Hudson, Brown, and
Fairhurst (1971); Dresher and Vardoulakis (1982); Bergan (1983); Hegemier and
Read (1983); Sandler and Wright (1983); Wu and Freud (1983)], demonstrating
that strain-softening is not a material property, and subsequently forgotten when the
experimental N−u laws, which are the softening laws, seemed to state the opposite,
assume a new significance in this context. Ferretti (2004a) likewise moves in this
direction, analyzing the problem of the existence of strain-softening from analytical
and physical perspectives.

Ferretti and Di Leo (2003) and Ferretti (2004b) presented some details of the iden-
tification procedure of the effective law, providing results for cylinders of varying
H/(2R) ratio (slenderness ratio). These results actually show that the effective law
is not a softening law, supporting the aforementioned theoretical research with an
experimental procedure. Moreover, the effective laws for varying H/(2R) ratios
do not seem to be sensitive to size-effect, which must be the case for a properly
identified constitutive relationship.

The effective law’s insensitiveness to parameters that are not related to the mate-
rial directly is further investigated by Ferretti (2004c), who provides a discussion
on the proper identification of Poisson’s ratio and volumetric strain (dilatancy).
It was found that Poisson’s ratio is almost independent of the longitudinal strain,
while it grows indefinitely when it is identified using ε̄ instead of εe f f . More-
over, it was found that concrete never exhibits dilatancy. What we know as con-
crete dilatancy [Brace, Paulding, and Scholz (1966); Di Leo, Di Tommaso, and
Merlari (1979)] is an apparent effect, caused by an identification technique that
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inadequately evaluates the influence on the acquired data of a failure mechanism
with splitting of the material isolated by the propagation of the dominant crack
(Fig. 2). A further consequence of this inadequate identification technique is the
common belief that concrete exhibits a viscous behavior when subjected to con-
stant loads. Indeed, the identification procedure of the effective law shows that
displacement time-dependence is determined, mostly, not by material viscosity, but
by crack propagation [Ferretti and Di Leo (2008)].

In conclusion, the effective law is not affected by some of the incongruities, such
as size effect, that burden the σ̄ − ε̄ law, which should be constitutive, that is,
only depending on the material. The constancy of Poisson’s ratio also leads us
to conclude that the σe f f − εe f f law is more representative of the constitutive be-
havior than the σ̄ − ε̄ law, since even Poisson’s ratio itself should be dependent
on the material only. Nevertheless, one further point must be discussed before
the effective law can be adopted as a constitutive law useful in numerical analy-
ses, specifically, is the effective law suitable for modeling nonlocal effects? The
question arises from the observation that the effective law is a local material law,
with the stress at a given point depending exclusively on the current values, and
also on the previous history, of deformation at that point only. Since research car-
ried out over many years has shown that the classical local continuum concept,
leading to constitutive models falling within the category of simple nonpolar ma-
terials [Noll (1972)], does not seem to be adequate for modeling heterogeneous
materials [Duhem (1893); Rayleigh (1918); Oseen (1933); Chandrasekhar (1950);
Hodgkin (1964); Krumhansl (1965); Rogula (1965); Eringen (1966); Kunin (1966);
Kröner (1968); Edelen, Green, and Laws (1971); Eringen (1972); Eringen, and
Edelen (1972); Eringen, and Kim (1974); Eringen, Speziale, and Kim (1977);
Eringen (1981); Rogula (1982); Eringen (1983); Bažant, Belytschko, and Chang
(1984); Bažant, and Chang (1984); Pijaudier-Cabot, and Bažant (1987); Bažant,
and Lin (1988a); Bažant, and Lin (1988b); Bažant, and Pijaudier-Cabot (1988);
Saouridis (1988); Bažant, and Pijaudier-Cabot (1989); Bažant, and Ožbolt (1990);
Bažant, Tabbara, Kazemi, and Pijaudier-Cabot (1990); Bažant (1991); Saouridis,
and Mazars (1992); Schlangen, and van Mier (1992); Planas, Elices, and Guinea
(1993); Schlangen (1993); Bažant (1994); Huerta, and Pijaudier-Cabot (1994);
Leblond, Perrin, and Devaux (1994); Nilsson (1994); Vermeer, and Brinkgreve
(1994); Jirásek, and Bažant (1995); Tvergaard, and Needleman (1995); Drugan,
and Willis (1996); Ožbolt, and Bažant (1996); Planas, Guinea, and Elices (1996);
Strömberg, and Ristinmaa (1996); Nilsson (1997); van Mier (1997); Jirásek (1998a);
Jirásek (1998b); Jirásek, and Zimmermann (1998); Needleman, and Tvergaard
(1998); Borino, Fuschi, and Polizzotto (1999); Jirásek (1999); Chen, Wu, and Be-
lytschko (2000); Hu, and Wittmann (2000); Jirásek, and Bažant (2001); Gao, and
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Huang (2001); Luciano, and Willis (2001); Bažant, and Jirásek (2002); Jirásek,
and Patzák (2002); Jirásek, and Rolshoven (2002)], it follows that the answer may
seem negative. This is not the case, since it has been shown [Ferretti (2005)] that
nonlocal constitutive laws between stress and strain tensors are not strictly needed
to construct a material model. They are required only if a differential formulation
is used, since differential operators are local. The effective law is suitable for mod-
eling nonlocal effects if used with a formulation which is nonlocal in itself, such as
the Cell Method (CM) [Ferretti (2005)].

In order to use the effective law in modeling, the separation between structural and
material behavior must also be taken into account in numerical analyses. That is,
we must allow the domain to upload when a crack propagation condition is reached,
causing the resistant structure to modify during modeling. In Ferretti (2003), a CM
code for modeling crack propagation in concrete cylinders in uniaxial compression
was presented for the first time, in which a nodal relaxation technique was used
for uploading the domain. The cylinders have different H/(2R) ratios, as did the
cylinders used in Ferretti and Di Leo (2003). It was found that, using the same
effective law for all cylinders, different N− u curves were obtained for different
H/(2R) ratios and all the N−u curves are softening curves. The numerical results
fit well with the experimental results of Ferretti and Di Leo (2003). In conclusion,
it was numerically verified that the propagation of a macro-crack in compressed
cylinders is the single factor responsible for the softening behavior in the N − u
curves when the material is not a strain-softening material. The different shape of
the N − u curves in function of the H/(2R) ratio is explained once again by the
propagation of the macro-crack, since the crack propagation speed depends on the
H/(2R) ratio, causing a faster decrement of the resistant area for higher H/(2R)
ratios. The dependence of the shape of the N−u curves on crack propagation only
has also been numerically verified in Ferretti and Di Leo (2003) and Ferretti (2005),
where N− u curves are provided for cylinders wrapped in a differing number of
FRP sheets. Even in this case, the same effective law was used for all cylinders,
and different N−u curves were obtained for the different numbers of FRP sheets.
This can be explained by the fact that crack propagation speed depends upon the
number of sheets, with a slower decrement of the resistant area occurring for a
higher number of sheets.

The effective law has also been used to model crack propagation in four-point bend-
ing concrete beams [Ferretti (2004d)], pullout testing in concrete panels [Ferretti
(2004e)], shear testing in masonry walls [Ferretti, Casadio, and Di Leo (2008)],
and tensioned concrete plates [Ferretti (2009)], in all cases giving the correct crack
propagation path and useful information on stress distribution during propagation.
In particular, in Ferretti, Casadio, and Di Leo (2008), the CM code was modified
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so that multiple-cracks propagation can be modeled.

In the following sections, the main findings of the research into the effective law
are summarized clearly, in order to give a thorough explanation of the experimental
program and related data processing, presented here, to readers with no previous
experience of this identification technique.

1.1 Discussion on the analytical well-posedness of strain-softening

Let us consider the identification procedure of the effective stress using experimen-
tal data acquired for concrete cylindrical specimens in uniaxial compression. The
compression tests are performed in displacement control, by increasing the relative
displacement between the platens of the testing machine, ∆u, monotonically. Of
the two platens of the compression testing machine, the upper one is attached to a
screw, which passes through the cross-head plate, and can be raised or lowered to
adjust for initial clearance, while the lower platen is movable. Since loading takes
place through the upward movement of the lower platen, while the upper platen
does not move, the relative displacement ∆u is equal to the upward displacement of
the lower platen, u:

∆u = u. (1)

The acquired data are the impressed displacement given by the lower platen, u, and
the subsequent external load, N = N (u), measured by the load measuring device
attached to the upper platen. As is well known, plotting the N − u relationship
shows, at first, an ascending branch, then a peak and a descending branch, also
called softening branch (Fig. 3).

In the assumption that the specimen used for uniaxial compression testing modi-
fies its resistant structure during the test, due to crack propagation, the progressive
normalized decrement of area can be estimated at each test step as:

D = D(u) =
An−Ares (u)

An
= 1− Ares (u)

An
, (2)

where An is the nominal area (Fig. 3) and Ares is the resistant area, which varies
with the test step. D varies from 0 (test beginning, when the crack has not yet
enucleated and Ares = An) to 1 (specimen crushing) and gives a measure of how
much the crack propagation has affected the resistant area.

In accordance with the scalar theory of Fracture Mechanics with Damage, D will
be the damage parameter in the following. The analogy with the operation pro-
cess of Fracture Mechanics with Damage is limited to Eq. (2). Indeed, in Fracture
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Mechanics with Damage, D has an analytic formulation and is considered to be uni-
formly distributed on An. Here, D is experimentally evaluated and all the damage
is considered to be localized within the volume of incoherent material.

Using the last equality in Eq. (2), the resistant area can be expressed in function of
the damage parameter as:

Ares = Ares (u) = An (1−D(u)) . (3)

The effective stress, σe f f , is defined to be the average stress acting on the resistant
area, Ares:

σe f f = σe f f (u) =
N (u)

Ares (u)
. (4)

Since, to conserve equilibrium along the load direction, we can write:

N (u) = σ̄ (u)An, (5)

where σ̄ is the average stress on the nominal area An, the effective stress in Eq. (4)
can be also expressed as:

σe f f = σe f f (u) =
An

Ares (u)
σ̄ (u) . (6)

By defining the average strain along the load direction, ε̄ , as the specimen axial
contraction, ∆H, divided by the gauge length, H (specimen height, see Fig. 3):

ε̄ =
∆H
H

=
∆u
H

=
u
H

, (7)

it is possible to express the effective stress in the variable ε̄ , as σe f f = σe f f (ε̄), and
plot it in the σe f f − ε̄ plane. Obviously, in our assumption of a modifying resistant
structure for crack propagation, ε̄ has no physical meaning and, strictly speaking,
it could not be called the average strain either. As a matter of fact, Eq. (7) gives a
strain for the continuum theory only. Here, ε̄ is a normalized (relative) displace-
ment, which originates, in part, by material strain and, in part, by a crack opening.
This position alone represents the main difference between the identification pro-
cedure of the effective law and the traditional identification procedure. The esti-
mation of the material strain, called the effective strain, εe f f , will be shown in §1.2
according to the identification procedure of the effective law.

The question that we want answer in this section is whether or not the sign of the
first derivative of the function σe f f (ε̄) is known in the σe f f − ε̄ plane. That is, we
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want know whether or not it is possible to find analytically whether the σe f f − ε̄

relationship also has a softening branch. In order to answer this question, we have
rewritten Eq.(4) using the change of variable - from u to ε̄ - expressed in Eq. (7) by
the equality between the first and the last terms:

σe f f = σe f f (ε̄) =
N (ε̄)

Ares (ε̄)
. (8)

We then find the first derivative of Eq. (8), in the variable ε̄:

dσe f f (ε̄)
dε̄

=
dN(ε̄)

dε̄
Ares (ε̄)−N (ε̄) dAres(ε̄)

dε̄

A2
res (ε̄)

. (9)

If we define ε̂ = û/H to be the value of the average strain, ε̄ , giving the maximum
load (Fig. 3), then:

N (ε̄)|
ε̄=ε̂

= Nmax, (10)

and we can now observe that:

• N is monotonically non-decreasing until the peak of the relationship N− ε̄:

dN (ε̄)
dε̄

≥ 0 0≤ ε̄ ≤ ε̂, (11)

and monotonically strictly non-increasing beyond the peak:

dN (ε̄)
dε̄

< 0 ε̄ > ε̂, (12)

• since Ares can never increase during the test, while it decreases at each crack
propagation, Ares is monotonically non-increasing in all its domain of defini-
tion:

dAres (ε̄)
dε̄

≤ 0 ∀ε̄, (13)

and can have a zero tangent only in the neighborhood of the origin, where
the material is in its linear-elastic state:

dAres (ε̄)
dε̄

∣∣∣∣
ε̄=0

= 0, (14)

dAres (ε̄)
dε̄

∣∣∣∣
ε̄=ε̂

< 0. (15)
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From Eqs. (11), (13) and (15), it immediately follows that the numerator in Eq. (9)
is strictly positive for 0≤ ε̄ ≤ ε̂ . Consequently, the sign of dσe f f /dε̄ is also strictly
positive for 0≤ ε̄ ≤ ε̂:

dσe f f (ε̄)
dε̄

> 0 0≤ ε̄ ≤ ε̂. (16)

In particular, for ε̄ = ε̂ , Eq. (9) assumes the value:

dσe f f (ε̄)
dε̄

∣∣∣∣
ε̄=ε̂

=− N (ε̄)|
ε̄=ε̂

dAres(ε̄)
dε̄

∣∣∣
ε̄=ε̂

A2
res (ε̄)|

ε̄=ε̂

> 0, (17)

where the strict inequality comes from Eq. (15).

Eq. (17) implies the following important result: a point with a strictly positive tan-
gent in the σe f f − ε̄ relationship corresponds to the peak in the N−u relationship.
Thus, the peak of the N− u relationship does not generate a peak in the σe f f − ε̄

relationship. This is a significant result, since it was obtained without having intro-
duced any other assumptions about the plot of the law describing the decrement of
Ares, except the physically justifiable condition of a non zero tangent in correspon-
dence of the maximum load. The same result obtained for the sign of the tangent
can be transposed to the σe f f − εe f f relationship, since substituting ε̄ with εe f f is
simply another change of variable.

As far as the sign of Eq. (9) for ε̄ > ε̂ is concerned, this depends on the value of ρ ,
the ratio between the two terms in the numerator of Eq. (9):

ρ =
dN(ε̄)

dε̄
Ares(ε̄)

N(ε̄)dAres(ε̄)
dε̄

. (18)

The result is:

0≤ ρ ≤ 1⇒
dσe f f (ε̄)

dε̄
≥ 0 ε̄ > ε̂; (19a)

ρ > 1⇒
dσe f f (ε̄)

dε̄
< 0 ε̄ > ε̂. (19b)

One can also examine the sign for ε̄ > ε̂ of the first derivative of q, which is defined
as the ratio between the normalized resistant area, Ares/An, and the normalized load,
N/Nmax:

q(ε̄) =
Ares(ε̄)

An

N(ε̄)
Nmax

=
σ̄max

σe f f (ε̄)
. (20)
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The derivative gives:

dq(ε̄)
dε̄

=−σ̄max

dσe f f (ε̄)
dε̄

σ2
e f f (ε̄)

=−σ̄max

dN(ε̄)
dε̄

Ares (ε̄)−N (ε̄) dAres(ε̄)
dε̄

N2 . (21)

From Eqs. (21) and (18), it can be observed that the sign of dq/dε̄ is determined
by ρ:

0≤ ρ ≤ 1⇒ dq(ε̄)
dε̄

≤ 0 ε̄ > ε̂; (22a)

ρ > 1⇒ dq(ε̄)
dε̄

> 0 ε̄ > ε̂. (22b)

On the other hand, the sign of dq/dε̄ follows directly from Eqs. (19) and the first
equality in Eq. (21), which states that dq/dε̄ and dσe f f /dε̄ have opposite signs for
all ε̄ .

Combining Eqs. (19) and (22) and keeping in mind the meaning of q, expressed by
Eq. (20), we can state that the slope for ε̄ > ε̂ of the σe f f − ε̄ plot is positive when
the normalized resistant area decreases faster than the normalized load:

dq(ε̄)
dε̄

≤ 0⇒
dσe f f (ε̄)

dε̄
≥ 0 ε̄ > ε̂, (23)

while it is negative when the normalized resistant area decreases slower than the
normalized load:

dq(ε̄)
dε̄

> 0⇒
dσe f f (ε̄)

dε̄
< 0 ε̄ > ε̂. (24)

Thus, the existence of a strain-softening branch for ε̄ > ε̂ depends on the law de-
scribing the resistant area, Ares, or, which is the same as for Eq. (2), on the law
describing the damage parameter, D.

In conclusion, we have demonstrated that the sign of dσe f f /dε̄ is strictly positive
for 0 ≤ ε̄ ≤ ε̂ (Fig. 4), whereas it is only known when the law describing D is
known for ε̄ > ε̂ .

In order to make it possible to discuss the slope of the σe f f − ε̄ relationship also
for the ε̄ > ε̂ range, we have adopted a procedure for identifying D experimentally,
which will be shown in §1.2.
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Figure 4: Results of the algebraic analysis on dσe f f /dε̄

1.2 The identification procedure of the effective law

In order to evaluate D = D(ε̄) experimentally, two damage laws can be employed.
The first damage law, D1 [Daponte and Olivito (1989)], relates the damage param-
eter to the variation of the microseismic signal velocity, V , at the current test step:

D1 = 1− V
V0

, (25)

where V0 is the initial microseismic signal velocity.

To evaluate the damage parameter in a uniaxial compression test, the path along
which the microseismic velocity can be evaluated is one diameter of the middle
cross-section (Fig. 5.a).

N 

N 

2R 

 

H 

a) 

u

i dW

N 

u=ΔH

b)

 

Figure 5: a) Test set-up for the acquisition of D1; b) Evaluation of Wd for the
acquisition of D2

The second damage law, D2 [Ferretti and Di Leo (2003); Ferretti (2004b)], relates
the damage parameter to the dissipated energy at the current test step, Wd (Fig. 5.b),
and the total dissipated energy, Wd,t :

D2 =
Wd

Wd,t
. (26)
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The experimental laws describing D1 and D2 are very similar. These, together with
Eqs. (3) and (4), allow us to identify the effective stress, σe f f , as:

σe f f =
N
An

1
1−D

= σ̄
1

1−D
. (27)

 

Figure 6: Identification of εe f f starting from the known values of σe f f (Eqs. (4),
(3) and (7)) and αe f f

The effective strain εe f f is identified by considering that only the conservative
forces act in a generic unloading-reloading cycle. Consequently, the failure pro-
cess stops in a generic unloading-reloading cycle, which is thereby characterized
by constant values of Ares. In this case, the unloading-reloading behavior is gov-
erned by the material properties only. The average slope of the unloading-reloading
cycle in the σe f f − εe f f curve, tanαe f f (Fig. 6), is therefore equal to the average
slope of the unloading-reloading cycle in the σ̄ − ε̄ curve, tanα , multiplied by the
factor An/Ares, where Ares is the resistant area at the unloading point:

tanαe f f =
An

Ares
tanα. (28)

In the σe f f − εe f f curve, the average slope of the unloading-reloading cycle rep-
resents the effective stiffness at the unloading point. We assume that the effective
stiffness at the unloading point is equal to Es, the secant stiffness in the effective
law:

Es = tanαe f f . (29)

Consequently, the generic point σe f f −εe f f results from the intersection of the two
lines σ = σe f f and σ = Esε (Fig. 6). Imposing equality between the two effective
stiffness (Eq. (29)), is equivalent to assuming that the effective behavior is elastic,
and the (effective) strain is fully recovered after unloading.
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1.3 Experimental validation of the identification procedure

For plotting purposes, note that Eq. (3) may be put in the form:

Ares

An
+D = 1, (30)

which means that the normalized resistant area, Ares/An, is given by the comple-
ment to 1 of the damage parameter, D, and the damage parameter is given by the
complement to 1 of the normalized resistant area. Hence, the same plot provides
both the normalized resistant area and the damage parameter, for any given value
of ε̄ .
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Figure 7: Normalized resistant area and D2 damage law for variable slenderness

Fig. 7 shows the D2 damage laws (values to be read on the right vertical axis) and
related normalized resistant area laws (values to be read on the left vertical axis)
for concrete cylinders with H/R ratios varying from 3 to 8. From Fig. 7 we can
appreciate that the resistant area starts to decrease soon after the beginning of the
testing and the damage process characterizes the entire duration of the test. The
plots in Fig. 7 are size-effect sensitive. Indeed, the higher the H/R ratio, the higher
is D2 and the lower is Ares for any given value of ε̄ . For each plot, a flex point
can be identified for a value of ε̄ which approximately corresponds to ε̂ , defined in
Eq. (10). Thus, the slope of the Ares law (and, consequently, of the D2 law) reaches
its maximum absolute value for ε = ε̂ . This validates the assumption of a non zero
tangent of Ares (and, consequently, of D2) for ε = ε̂ , an assumption which is at the
basis of the analytical findings about the existence of strain-softening for 0≤ ε̄ ≤ ε̂
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(§1.1):

dAres (ε̄)
dε̄

∣∣∣∣
ε̄=ε̂

6= 0;
dD(ε̄)

dε̄

∣∣∣∣
ε̄=ε̂

6= 0. (31)

As far as the existence of strain-softening for ε̄ > ε̂ is concerned, the experimental
evaluation of the damage parameter allows us to plot the function q, defined by
Eq. (20). In Fig. 8, q is plotted in function of the displacement u. The plot of
the function q(ε̄) is homothetic to the relationship in Fig. 8. Since q turns out
to be a positive-valued, monotone, strictly non-increasing function for u > û and,
consequently, for ε̄ > ε̂ , it follows that:

dq(ε̄)
dε̄

< 0 ε̄ > ε̂. (32)
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Figure 8: Scale factor between the per-
centage resistant area and normalized
load laws
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Figure 9: Size effect for the load-
displacement diagrams

Eqs. (23) and (32) allow us to conclude that the effective law, σe f f − εe f f , is not
strain-softening either in the ε̄ > ε̂ range:

dσe f f (ε̄)
dε̄

> 0 ε̄ > ε̂. (33)

The load–displacement diagrams, N− u, for the specimens with H/R = 3÷ 8 are
shown in Fig. 9. They are clearly size-effect sensitive, with the tangent for u = 0 and
the maximum load both decreasing with the increasing of the H/R ratio. The σ̄− ε̄

diagrams also turn out to be size-effect sensitive (Fig. 10), making it impossible to
identify a unique law for the material.

Fig. 11 shows how the unloading law in the σ̄ − ε̄ plane is clearly independent of
the slenderness ratio of the specimen. This result supports the assumption whereby
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Figure 10: Size effect for the average
stress-average strain diagrams

Figure 11: Interpolating law of the av-
erage slope of the unloading-reloading
cycles

all parameters characterizing the unloading-reloading cycles, included their aver-
age slope, are linked to proprieties of the material and do not depend upon the
failure process affecting Ares. Therefore, this result can be considered as an indirect
validation of the assumption whereby Ares does not change during the unloading-
reloading cycles, which is at the basis of the identification procedure of the effective
strain (§1.2). On the other hand, even Fig. 7 supports the same assumption, since
the ratio Ares/An never decreases during an unloading-reloading cycle, on the con-
trary, Ares/An sometimes increases during unloading, due to the partial re-closure
of the macro-crack and the subsequent possibility of transferring load between the
two rough surfaces of the re-closed macro-crack. This leads a part of material iso-
lated by the propagation of the macro-crack to interact with the inner resistant core
until the unloading load is recovered, after reloading.

Figure 12: σe f f − εe f f dispersion range
for variable slenderness and average
curve

FOS 

strain 
gauge 

protective 
coating 

chain 

strain 
gauge 

 
Figure 13: Strain-gauge for circumfer-
ential strain acquisition and FOS sensor
for radial strain acquisition

The σe f f − εe f f relationships obtained for the six geometries fall within the dis-
persion range in Fig. 12. The average curve in Fig. 12 is monotonically non-
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decreasing, as was expected from the preventive analytical analysis (Eq. (33)). It is
worth noting that the monotonicity of the effective law was not assumed a-priori,
but was obtained directly from experimental data, scaling the applied load by the
experimentally evaluated resistant area.

As previously anticipated, one of the main consequences of the model of the inner
resistant core concerns the behavior of Poisson’s ratio and volumetric strain dur-
ing the uniaxial compression test. As a matter of fact, if the propagation of the
macro-crack isolates the outer part of the specimen causing it to lose its capabil-
ity of carrying load, while the inner core (which is biconic in cylinders) represents
the resistant structure of the specimen, it seems more reasonable to acquire strains
within the inner resistant core instead of on the surface of the specimen. The ac-
quisition of a strain along the circumference of the middle cross-section (by means
of the strain-gauge in Fig. 13, for example), εc, has often been used in order to
evaluate the radial strain, εr, since εr and εc have the same value in cylinders:

εr =
∆R
R

=
2π∆R
2πR

=
∆(2πR)

2πR
=

∆cr f
cr f

= εc, (34)

where cr f stands for “circumference”. The value of εr evaluated by means of
Eq. (34), may then be used for estimating Poisson’s ratio, ν , defined as:

ν =−εr

εl
, (35)

where εl is the longitudinal strain given by Eq. (7):

εl = ε̄ =
∆H
H

. (36)

This gives rise to the εr/εl plot in Fig. 14, giving a Poisson’s ratio that rapidly
reaches non-physical values greater than 0.5. The reason for this is that Eq. (34)
does not provide a strain, since the last equality is only valid until the crack starts to
propagate. As the crack propagates throughout the test (see damage laws in Fig. 7),
the variation of the circumference length is due, in part, to material deformation
and, in part, to the space between the two surfaces of the opening crack. Thus,
Eq. (34) cannot be employed to evaluate Poisson’s ratio.

By acquiring the radial strain inside the inner core (using the FOS sensor in Fig. 13,
for example) we find a εr/εl ratio almost independent of εl . This means that Pois-
son’s ratio is almost independent of the loading step, which is physically expectable
since Poisson’s ratio is a constitutive property, that is, a property related to the ma-
terial only.
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Figure 15: Traditional and identified
volume curves

The volumetric strain, εϑ , is the ratio of the change in the volume of a body, which
occurs when the body is placed under pressure, to the original volume of the body:

εϑ =
∆V
V

. (37)

εϑ is equal to the first invariant of strain, I1ε , which is the trace of the strain tensor:

I1ε = ε1 + ε2 + ε3, (38)

where ε1, ε2, and ε3 are the principal strains. In cylindrical specimens, the principal
strains are equal to εl , εr, and εc, with εr = εc. Thus, in cylinders εϑ is bonded to
εl and εr as follows:

εϑ = I1ε = εl + εr + εc = εl +2εr. (39)

Assuming εr given by Eq. (34), the volumetric curve, N− εϑ , proves to be mostly
in the positive field (Fig. 15). This involves the increase in volume of the specimen
under pressure and is known as dilatancy. On the contrary, using the radial strain
acquired internally to the resistant core, the volumetric curve is in the negative field
(Fig. 15). Hence, it appears that there is no real increase in the volume of a concrete
solid when the solid is placed under pressure.

1.4 Numerical validation of the identification procedure

We have already discussed (§1) the possibility of using a local law, such as the
effective law, for modeling nonlocal effects. Here, we will show some numerical
results given by a Cell Method (CM) code using the effective law as constitutive
law.
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Figure 16: Crack path for the bottom-left quarter of the longitudinal section

Fig. 16 shows the crack path identified by the model for a uniaxial compressed
cylindrical specimen, where the direction of propagation is computed step by step,
taking into account the modification of the stress field induced by the previous crack
propagation. The average slope of the crack path in Fig. 16 is approximately 70˚
and reflects the values observed experimentally (Fig. 1) in the cylinders used for
identifying the effective law to be applied for the modeling (Fig. 12).

The code operates in displacement control, identifying the crack length for each
increment of relative displacement given between the platens of the test machine
and computing the external load. The crack length and the external load at each
displacement increment depend upon the H/R ratio. The numerical σ̄ − ε̄ curves
given in Fig. 17 for the 6 tested geometries accord well with the experimental values
(Fig. 10). In particular, it is worth noting how the σ̄ − ε̄ curves are strain-softening
even if the constitutive law being used, the effective law in Fig. 12, is monotonically
non-decreasing. This happens because the crack propagation causes a part of the
longitudinal section to unload, reducing the resistant area at each propagation, and,
as a consequence, a smaller resistant area involves a smaller carried load for any
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Figure 17: Numerically evaluated size-effect on average stress-average strain dia-
grams

Figure 18: Axial stress analysis on the
longitudinal section for plain concrete

Figure 19: Axial stress analysis on the
longitudinal section for wrapped speci-
men

given relative displacement between the platens of the test machine. Fig. 18 shows
the axial stress field on the longitudinal section for a short crack propagation (the
crack tip is located at about 10 cm from the lower platen). Two effects on the stress
field are clearly visible in Fig. 18: the first is given by the constraint provided by
the lower platen, since we have assumed no sliding (perfect adherence) between
the specimen and the platen itself, and the second is the unloading of the material
lying between the crack and the external surface, which also causes unloading of
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the above material, significantly decreasing the resistant area of the specimen.

A further numerical result showing how the local effective law may provide nonlo-
cal analysis concerns the modeling of the compression test for concrete cylinders
wrapped with FRP sheets. The stress field in Fig. 19 shows how the external wrap-
ping counteracts the stress unloading induced by crack propagation. In particular,
the comparison between Figs. 18 and 19 allows a direct estimation of how much
the external wrapping modifies the stress field along the longitudinal section, since
the crack length is the same in both figures. This results in a greater resistant area
for FRP wrapped cylinders, for the same crack length. As a consequence, the dif-
ference between material and specimen behavior is lower, that is, the difference
between the plot of the σe f f − εe f f and N− u laws is lower. This analysis leads
to the conclusion that the well-known disappearance of the softening branch in
the N−u laws of FRP wrapped specimens should not be associated with the high
Young’s modulus for the wrapping, as usually assumed, but with a resistant area
that is closer to the nominal area than in plain concrete: for a number of FRP sheets
sufficient to make the difference between An and Ares negligible, the specimen be-
havior proves to be monotonically non-decreasing, as does the effective law. 
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Figure 20: Numerical load-
displacement curves for unwrapped and
CFRP wrapped specimens
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Figure 21: Numerical and experimental
results for the unwrapped specimens

The numerical N−u curves given by varying the number of FRP sheets only (with-
out modifying the constitutive law, which is the effective law) are shown in Fig. 20.
They are compared with the experimental N−u curves in Figs. 21-23.

The different speed of the Ares decrement during the compression test could also ex-
plain the shape-effect in brittle materials (see Fig. 24 for marble), which involves no
softening branch in the N−u (σ̄ − ε̄) curves for small slenderness ratios, H/(2R),
and a softening becoming increasingly prominent as the H/(2R) ratio increases.
Actually, as initially pointed out by Hudson Brown and Fairhurst (1971), smaller
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Figure 22: Numerical and experimental
results for the one-layer CFRP wrapped
specimens
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Figure 23: Numerical and experimen-
tal results for the three-layer CFRP
wrapped specimens

H/(2R) ratios involves a smaller decrement of Ares and, consequently, a σ̄ − ε̄

curve closer to the monotonically non-decreasing σe f f − εe f f curve (see Figs. 25-
26, where F is the external load N and A0 stands for An, A(ε) for Ares, σ0 for σ̄ ,
σTRUE for σe f f ).

Fig. 17, previously discussed, also shows how the CM code is able to capture the
shape-effect for a small variation range of the H/(2R) ratio.

2 Experimental program

One peculiar aspect of the shape-effect is the different behavior, in terms of load-
displacement diagrams, between cubic and cylindrical concrete specimens. That
is, the shape of the N− u diagrams is different in cylinders than in cubes. Con-
sequently, the shape of the σ̄ − ε̄ diagrams is also different in cylinders than in
cubes (Fig. 27). In particular, as well known, the cylinder strength is between 5%
and 25% less than the cube strength, the percentage difference decreasing with an
increase in the concrete strength. Also, a decrease in either the size or the aspect
ratio of specimens leads to a decrease in the ratio of standard cube strength to that
of other specimens.

Usually, the concrete technology tests the conformity of compressive strength on
cubes with a size of 150 mm, after 28 days, which were mix cured (first 7 days under
water, remaining 21 days exposed to air). Then, a factor of 0.83 (BS 1881: Part
120) is introduced to convert cube to cylinder strength for normal strength concrete.
According to the concrete standard MSZ EN 206-1:2002, the conversion factor
between the strength of cubic specimens with a size of 150 mm and the strength of
cylindrical specimens with a 150 mm diameter and 300 mm height must be changed
into 0.76/0.97 when the specimens are wet cured.
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Figure 24: Influence of specimen shape on the σ̄ − ε̄ curve for marble loaded in
uniaxial compression [Hudson Brown and Fairhurst (1971)]
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Figure 25: Effect of stress definition on
the shape of the stress-strain curve for
large H/(2R) ratio [Hudson Brown and
Fairhurst (1971)]
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Figure 26: Effect of stress definition on
the shape of the stress-strain curve for
small H/(2R) ratio [Hudson Brown and
Fairhurst (1971)]
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Figure 27: Shape-effect for cubic and cylindrical concrete specimens

Since the compressive strength is calculated by dividing the maximum load by
the nominal area, An, the idea at the basis of the present experimentation is to
verify whether or not the difference between cylinder and cube strength vanishes
when the resistant area, Ares, is substituted for An. This verification of the actual
constitutive nature of the effective law was carried out for two different mixtures,
one of plain concrete and the other of rubberized concrete [Ferretti and Bignozzi
(2011); Ferretti and Bignozzi (2012)], obtained by substituting a part of the fine
aggregate with rubber scraps (Fig. 28) produced by grinding discarded tires (PFU
scraps). The composition of the PFU scraps used in the experimentation is shown
in Tab. 1.

Usually, concrete rubberization is used as a technique for recycling waste tires,
joining all the previous techniques for recycling waste tires, thereby giving rise
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Figure 28: Gommamica Powerfill ECO (SBR Styrene Butadiene Rubber) rubber
coarse aggregate, commercialized by Elastrade Srl

Table 1: Composition of the PFU scraps

COMPONENTS Weight%
Rubber (hydrocarbon) 50-55
Lampblack 26-30
Acetone 9-13
Ashes 6-8
Sulfur 1-3

to a wide range of non-structural elements. Recently, concrete rubberization was
shown to be able to produce a mixture that could also be employed for structural
purposes [Ferretti and Bignozzi (2012); Ferretti (2012a)], as a result of an exper-
imental programme that has provided the opportunity of reviewing the classical
solution of Boussinesq’s problem for a homogeneous linear-elastic and isotropic
half-space subjected to a point-load [Ferretti (2012b)].

2.1 Mixtures and specimens preparation

Experimentation was carried out at the LISG-RM laboratory of the Engineering
Faculty of the University of Bologna, Department of Civil, Environmental and Ma-
terials Engineering (DICAM).

The two concrete mixtures used in the experimentation share the same type of
binder (Portland II AL 45.5R Micronmineral), alluvial coarse aggregates (8−15 mm)
and fine aggregates (sand of 0−5 mm and River Po sand of 0−2 mm). In addition,
a 1−2.4 mm rubber aggregate was used for the rubberized mixture (Fig. 28).
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Table 2: Weight composition and W/C ratio of Mixture 1

COMPONENTS kg/m3 Weight%
River Po sand 124.0 5.4
Sand 725.5 31.3
Coarse aggregates 916.2 39.6
Cement 359.2 15.5
Water 188.7 8.1
Admixture 2.4 0.1
Total 2316.0 100.0

W/C 0.52

Table 3: Weight composition and W/C ratio of Mixture 2

COMPONENTS kg/m3 Weight%
River Po sand 130.7 6.6
Sand 493.8 24.7
Coarse aggregates 794.1 39.8
PFU scraps 87.7 4.4
Cement 328.0 16.4
Water 159.8 8.0
Admixture 2.6 0.1
Total 1996.7 100.0

W/C 0.48
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The two mixtures were designed to reach super fluid consistency, class S5 con-
sistency (Italian standards UNI EN 206-1:2006 and UNI 11104:2004). Since a
considerable amount of water is required to reach super fluid consistency, lead-
ing to a decrease in strength and resistance to frost and aggressive environments
in hardened concrete and to an increased danger of segregation and bleeding, we
used a polyacrylic superplasticizer admixture (Axim Creactive LX fluxing agent)
to ensure that the quantity of water utilized was not excessive.

In this paper, the plain and the rubberized mixture will be called Mixture 1 and Mix-
ture 2, respectively. The compositions of the two mixtures and their water/cement
ratios, W/C, are shown in Tabs. 2 and 3.

 

Figure 29: Laboratory batch mixer

 

Figure 30: Preparation of the specimens

Coarse and fine natural aggregates and rubber aggregates (for Mixture 2 only) were
fed into the concrete mixer in that order (Fig. 29) and mixed for 5 mins. The cement
was then added and mixed with aggregates for a further 2 mins. Finally, 75% of
the water and the admixture with the remaining water were added and mixed for 10
mins.

In order to derive qualitative information only about the sensitiveness of the effec-
tive law to the shape-effect, only two specimens were tested for each shape-mixture
combination. This meets the requirement whereby at least two standard-cured spec-
imens made from the same concrete sample must be tested at the same age. In con-
clusion, the tested specimens are: two Mixture 1 cubes, two Mixture 1 cylinders,
two Mixture 2 cubes, and two Mixture 2 cylinders.

A further requirement concerns the specimen’s dimensions, as the cylinder’s diam-
eter and the cube’s edge should be at least 3 times the nominal maximum size of
the coarse aggregate used in the concrete. Moreover, the ASTM Standard for a test
cylindrical specimen is about 150 mm (5.9 inches)×300 mm (diameter) (11.8 inches)
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(high). Our cubic specimens are 150 mm square and the cylindrical specimens are
150 mm in diameter and 300 mm in height.

The concrete was poured into the cubic and cylindrical molds in layers approxi-
mately 5 cm thick and tempered properly (UNI EN 12350-1 and UNI EN 12390-1)
to eliminate any voids (Fig. 30). Each layer was compacted using a tamping rod
(hemispheric-nosed steel rod 16 mm diameter and 60 cm length, bullet pointed at
lower end) and not less than 35 strokes per layer. The rodding was distributed
evenly over the specimen area, taking care to penetrate slightly into the previous
layer when packing the second and/or following layers. Finally, the top surface was
leveled and smoothed over with a trowel.

 

Figure 31: Curing room under con-
trolled thermo-hygrometric conditions

 

Figure 32: Automatic cylinder-end
grinder

The test specimens were stored in moist air for 24 hours. After this period, the
specimens were marked and removed from the molds. According to the UNI EN
12390-2 specifications, all specimens prepared from each batch of concrete were
cured under identical conditions in a curing room (Fig. 31), before testing them at
the same age.

According to UNI EN 12390-1 specifications, to provide a uniform load distribu-
tion when testing, the ends of the specimen should be perpendicular to the cylin-
der axis, with a tolerance of 0.5◦, and they should be plane to within 0.05 mm
(0.002 inches). To achieve this, we ground the ends of cylindrical specimens using
an automatic grinder provided with a diamond cutting wheel with a 800 mm diame-
ter (Fig. 32), whilst grinding was not necessary for the cubes, since these need only
to be placed in the testing-machine in such a way to ensure that the load is applied
to the opposite sides of the cube cast. End-grinding allows compression testing to
start immediately, without using capping materials. This eliminates the fumes and
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waiting time associated with capping the compound.

 

Figure 33: Analogical centesimal com-
parator and carpenter’s square for
checking planeness and perpendicular-
ity

 

Figure 34: Hot glue gun loaded with a
glue stick and probes for microseismic
analysis: the red probe is the transmit-
ting sensor, while the green probe is the
receiving sensor

After grinding the cylinders, planeness was checked using a straight-edge and a
feeler gauge with an acquisition range of between 0.025 and 0.254 mm (0.001 and
0.010 in.) (see Fig. 33 for the feeler gauge, which is an analogical centesimal com-
parator), taking a minimum of three measurements on different diameters, while
the perpendicularity was checked using a carpenter’s square with one arm longer
than the specimen to be tested, the 90-degree angle accurate within 0.1 degree, and
the outer edges machined straight within 0.025 mm (0.001 ins.) along their entire
length (Fig. 33). In both cases, the specimen end was positioned over a suitable
metal plate (Fig. 33) placed on a bench and leveled up so that it was horizontal.

Cubic and cylindrical specimens were instrumented with two probes for microseis-
mic analysis (Fig. 34) and two LVDTs (Linear Variable Displacement Transducers),
which are inductive displacement transducers (Fig. 35).

The microseismic probes were attached to the cleaned specimen surface, on the
middle-height cross-section (Fig. 35), by means of hot glue (Fig. 34). For the cubic
specimens, the gluing points are the central points of the two sides of the cube cast
opposite to the loaded sides. Gluing the microseismic probes is a manual operation
that needs to be carried out very quickly, when the glue applied to the specimen
is still liquid, so that the film of glue between the probes and the specimen is as
thin as possible, to avoid the inclusion of air bubbles. This will ensure that a good
microseismic signal can be received by the receiving sensor.
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Figure 35: Positioning of the instru-
mented cylindrical specimen on the
compression-testing machine

 

Figure 36: Compression-testing ma-
chine and acquisition apparatus

The lower plate of the compression-testing machine is provided with concentric
circular marks (Fig. 35), for centering purposes. Cylindrical specimens were cen-
tered on the lower plate by using the centering marks. A circular metal plate 4 cm
(1.57 ins.) thick and 28.4 cm (11.18 ins.) in diameter was placed on the lower plate
(Fig. 36) when testing cubic specimens, in order to space the two plates as far as
needed to locate the two LVDT transducers, since the height of the magnetic sup-
port of the two LVDT transducers is greater than the specimen size. The flat sur-
faces of the circular plate are plane with a tolerance of not more than ±0.013 mm
(0.0005 ins.) and are parallel to within 0.05 degrees. The sides of the metal plate are
engraved with eight equally spaced lines perpendicular to the flat ends, while the
flat ends are engraved with concentric circular marks, in both cases for centering
purposes. The metal plate was centered on the lower plate of the compression-
testing machine by using the eight equispaced lines and the cubic specimens were
centered using the centering marks engraved on the flat ends.

The two LVDT transducers were fixed to a magnetic support (Fig. 35) and po-
sitioned along one diameter of the circular marks engraved on the lower plate
(Fig. 35), at an equal distance from the plate center. The displacement u giving
the average vertical strain ε̄ according to Eq. (7) has been evaluated as the average
displacement provided by the two LVDTs.

The compression tests were performed in accordance to the technical standard UNI
EN 12390-3. The loading rate of the hydraulic machine was maintained in a range
between 0.15 and 0.35 MPa/s (20 to 50 psi/s), as required, during the latter half
of the loading phase.
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2.2 Results on plain concrete

The acquired load displacement relationships, N−u, and the related average stress-
average strain relationships, σ̄− ε̄ , for plain concrete are shown in Figs. 37 and 38,
respectively, where the compressive stresses and strains are positive.
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Figure 37: Load-displacement dia-
grams for Mixture 1
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Figure 38: Shape-effect on the average
stress-average strain diagrams for Mix-
ture 1
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Figure 39: Shape-effect on the decre-
ment of resistant area for Mixture 1
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Figure 40: Effective stress-effective
strain diagrams for cubic and cylindri-
cal specimens and average effective law
for Mixture 1

As can be easily observed in both Figs. 37 and 38, specimens of the same geometry
give almost the same results, while the shape-effect between cubic and cylindrical
specimens is clearly evident, leading to a maximum load for cylinders that is 15%
lower than the maximum load for cubes (Fig. 38). Moreover, the post-peak branch
of the σ̄ − ε̄ relationships in cubic specimens is very far from the post-peak branch
in cylindrical specimens.
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Applying the identification procedure of the effective law to the tested specimens,
we found that the law describing the resistant area is sensitive to the specimen’s
shape, leading to an Ares decrement faster in cylinders than in cubes (Fig. 39), with
Ares computed, according to Eqs. (3) and (7), as:

Ares = Ares (ε̄) = An (1−D(ε̄)) , (40)

where D is the microseismic damage parameter defined in Eq. (25). Consequently,
the ratio between cubic effective strength and cylindrical effective strength,
σe f fmax/εe f fmax , is different to the ratio between cubic strength and cylindrical strength,
σ̄max/ε̄max, where σe f f is computed according to Eq. (8) and εe f f is identified fol-
lowing the scheme set out in Fig. 6.

The effective laws identified for cubic and cylindrical specimens are shown in
Fig. 40, together with the average effective law for the four plain concrete spec-
imens. As can be seen in Fig. 40, no shape-effect seems to characterize the effec-
tive law for plain concrete, since the effective laws for cubic specimens intersect
the effective laws for cylindrical specimens in a random manner. Moreover, even
in this experimentation, the softening branch disappears in the effective law and
is substituted by two branches, the first approximately horizontal and the second
hardening.

The apparent high difference between the average hardening slopes of cubes and
cylinders cannot be related to a shape-effect for high strains, due to the low number
of tested specimens and the experimental uncertainties that characterize data acqui-
sition in the last part of the compression test. Fig. 40 only allows us to state that
a final almost linear hardening branch exists in the effective law of plain concrete,
both for cubes and cylinders. The slope of this final branch must be investigated by
means of further experimentation.

For quantitative purposes, with the aim of deriving the effective characteristic strength
for cubes, σck, e f fcub , and cylinders, σck, e f fcyl , of course, many more than two com-
pression tests are required for each shape (we estimate 100 compression tests).
Nevertheless, Fig. 40 allows us to assume that the effective laws for cubes and
cylinders will intersect in a random manner in all cases. Consequently, taking as
the effective characteristic strength, σck, e f f , the average effective strength in the
approximated horizontal branch, to be on the safe side, we find:

σck, e f fcub
∼= σck, e f fcyl . (41)

2.3 Results on rubberized concrete

The acquired load displacement relationships, N− u, for rubberized concrete are
shown in Fig. 41. From the comparison between Figs. 37 and 41, we can appreciate
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how rubber aggregates involve a decrement of maximum load in both the cubic and
the cylindrical specimens.
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Figure 41: Load-displacement dia-
grams for Mixture 2
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Figure 42: Shape-effect on the decre-
ment of resistant area for Mixture 2

As for plain concrete, the N−u relationships in Fig. 41 lead, by changing the scale,
to σ̄ − ε̄ relationships that exhibit an evident shape-effect between cubic and cylin-
drical specimens, resulting in a maximum load for cylinders that is 16% lower than
the maximum load for cubes. Even in this case, however, the law describing Ares is
sensitive to the specimen shape, providing an Ares decrement faster in cylinders than
in cubes (Fig. 42). Once more, this leads to effective laws that do not exhibit any
shape-effect (Fig. 43), with an effective characteristic strength for cubes, σck, e f fcub ,
comparable to the effective characteristic strength for cylinders, σck, e f fcyl .
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Figure 43: Effective stress-effective
strain diagrams for cubic and cylindri-
cal specimens and average effective law
for Mixture 2
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for concrete
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3 New design relationships

As can be seen in Figs. 40 and 43, if we neglect the hardening branches (to be on
the safe side) the average effective laws resemble the design relationship between
concrete stress, σc, and concrete strain, εc, used in the semi-probabilistic limit state
design method (Fig. 44).

The design relationship is composed of two branches, the first parabolic and the sec-
ond horizontal. Due to its shape, the design relationship is also called the parabola-
rectangle stress-strain diagram.

In Fig. 44, the compressive stresses and strains are assumed to be positive. In
particular, the strain at the end of the parabolic branch assumes the conventional
value εc0, equal to:

εc0 = 2h, (42)

and the ultimate strain, εcu, is equal to:

εcu = 3.5h. (43)

Moreover, the cylindrical design strength fcd is given by:

fcd =
0.85 fck

γc
. (44)

where:

• fck is the cylindrical characteristic strength, closer to the in-situ characteristic
strength than the cubic characteristic strength, Rck, which is the experimen-
tally evaluated strength (on cubic specimens) and is related to fck by means
of the conversion factor 0.83:

fck = 0.83Rck for
H
D
≥ 2. (45)

Rck is defined as the lower fractile of order p (or the p% lower fractile), that
is, the cubic strength having the p% probability of not being exceeded. It
is derived from the experimental strengths, Rci, i = 1,2, ...,n, given by the n
performed compression tests on cubic specimens, as:

Rck = Rcm− kδ , (46)

where, for p = 5, as usually assumed, k is equal to:

k = 1.645, (47)
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and Rcm and δ are, respectively, the average value:

Rcm =
1
n

n

∑
i=1

Rci, (48)

and the mean square error of the Gaussian distribution approximating the
statistics of the experimental strength, Rc, which is a discrete random vari-
able, when the number of performed tests is very high (n≥ 100):

δ =

√√√√ n
∑

i=1
(Rci−Rcm)2

n−1
. (49)

• The coefficient 0.85 takes into account the difference between the duration
of the laboratory tests (short duration) and the application duration of real
loads (long duration).

• γc is a factor of safety, which, for ultimate loads, is equal to (DM 14/01/2008):

γc = 1.5. (50)

For 10 ≤ n < 100, the statistics of Rc can be still approximated to a Gaussian dis-
tribution, but the value of k in Eq. (47) must be changed according to the number
of performed tests and the desired degree of confidence. Tab. 4 presents the values
of k for 10≤ n≤ 30 and a confidence degree of 90% [La Tegola (1977)].

Table 4: Adjustment of the coefficient k for 10≤ n≤ 30 (90% confidence degree)

n k
10 2.14
12 2.07
14 2.02
16 1.98
18 1.95
20 1.93
23 1.90
26 1.88
30 1.85

If a lower number of performed tests is available (n < 10), the Gaussian distribution
is no longer adequate for describing the statistics of Rc. Consequently, Eq. (46) can
no longer be employed for estimating Rck.
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Standards are more restrictive for the Italian regulations UNI EN 13791:2008 and
DM 14/01/2008, and they state that the statistical approach must be abandoned
whenever n < 15. If this is the case, Eq. (46) must be substituted by the following
relationship giving the in-situ evaluation of Rck when at least 3 tests have been
performed on core samples:

Rck =
1

0.83
min

{
fcm− k̄; fc,lowest +4

}
, (51)

where all strengths are expressed in N/mm2, fcm is the average cylindrical strength,
fc,lowest is the lower cylindrical strength, and k̄ = k̄ (n) depends on n according to
Tab. 5.

Table 5: Relationship between k̄ and n, for 3 ≤ n < 15 (UNI EN 13791:2008 and
DM 14/01/2008)

n k̄
[
N/mm2

]
3-6 7
7-9 6

10-14 5

For n≥ 15, UNI EN 13791:2008 and DM 14/01/2008 give the in-situ Rck, evaluated
on the core samples, as:

Rck =
1

0.83
min{ fcm− kδ ; fc,lowest +4} , (52)

where the mean square error, δ , must satisfy the condition:

δ ≥ 2 N/mm2, (53)

and, for n = 15 or in absence of further prescriptions:

k = 1.48. (54)

By substituting Eqs. (45) and (50) into Eq. (44), we finally obtain the relationship
between fcd and Rck, for H/D≥ 2:

fcd =
0.85 ·0.83Rck

1.5
= 0.47Rck. (55)

It is now worth remembering that the design relationship in Fig. 44 has no exper-
imental foundation: it is just a numerical relationship that has been shown to fit
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the structural behavior well if used in numerical modeling. The identification pro-
cedure of the effective law allows us for the first time to derive an experimentally
founded relationship that has the same shape of the design relationship.

In this section, we will use the identified effective laws to verify the reliability of
the design relationship for plain concrete. The identified effective laws will be
also used for proposing a design relationship for rubberized concrete, for which no
technical standard has yet been formulated.

3.1 Plain concrete

According to DM 14/01/2008, the parabolic branch of the design relationship is
given by the second-order function:

σc = 1000 fcd
(
εc−250ε

2
c
)

εc ≤ 2h. (56)

where fcd is expressed by Eq. (44), whilst the second branch is given by the func-
tion:

σc = fcd 2h < εc ≤ 3.5h. (57)

So that the design relationship of Mixture 1 can be plotted, the value of Rck must be
known, in order to derive fcd using Eq. (55). Since n < 15, the statistical approach
cannot be used and Rck must be derived from Eq. (51). The two cubic strengths,
Rc1 and Rc2:

Rc1 = 54.06 N/mm2, (58)

Rc2 = 58.08 N/mm2, (59)

can be converted into cylindrical strengths, fc1 and fc2 (Tab. 6), by means of the
conversion factor 0.83, and used together with the cylindrical strengths fc3 and fc4
of the two cylindrical specimens for evaluating fcm and fc,lowest . Since a total of
n = 4 cylindrical strengths are therefore available (Tab. 6), the parameter k̄ given
by Tab. 5 is:

k̄ = 7. (60)

Table 6: Cylindrical strengths for the evaluation of Rck

fc1
[
N/mm2

]
fc2
[
N/mm2

]
fc3
[
N/mm2

]
fc4
[
N/mm2

]
44.87 48.21 46.65 48.70
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The result is:

Rck = 48.32 N/mm2, (61)

which, substituted into Eq. (55), provides a value of design cylindrical strength
equal to:

fcd = 22.73 N/mm2. (62)

As far as the opportunity of using Eq. (51) for the evaluation of Rck is concerned,
it must be pointed out that Eq. (51) establishes a relationship between the cubic
characteristic strength and the cylindrical strengths of core samples, while our ex-
perimentation was performed on casted specimens. It is well known that extracting
a core sample damages the specimen to be tested, causing the compressive strength
to decrease. According to DM 14/01/2008, the compressive strength measured on
core samples must be increased by a factor FTor, called the torment factor, which is
inversely proportional to the compressive strength itself (Tab. 7).

Now, since:

min{ fc1, fc2}
1.02

> 40, (63)

we fall into the last case presented in Tab. 7:

FTor = 1.00, (64)

and Eq. (51) can be used for casted specimens without including any corrective
factor.

Table 7: Torment factor in function of the compressive strength measured on core
samples

fc,carrot
[
N/mm2

]
FTor

10-15 1.15
16-20 1.12
21-25 1.10
26-30 1.07
31-35 1.05
36-40 1.02
> 40 1.00
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 Figure 45: Interpolation of the coefficient k (90% confidence degree) 
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Figure 46: Comparison between the
parabola-rectangle relationship and the
design relationship given by the effec-
tive laws
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Figure 47: Comparison between the
new parabola-rectangle relationship and
the design relationship given by the ef-
fective laws

It must be noticed that the cylindrical design strength provided by Eq. (62) is not
very far from the fcd given by the statistical approach. Actually, by approximating
the experimental data with a Gaussian distribution and interpolating the values of k
in Tab. 4, we can estimate k for n = 4. The interpolation function of equation:

k =
3.06748
n0.794772 +1.645, (65)

shown in Fig. 45 together with the interpolated data, gives the value:

k (n = 4) = 2.664. (66)

This second time, the two cylindrical strengths, fc3 and fc4:

fc3 = 46.65 N/mm2, (67)
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fc4 = 48.70 N/mm2, (68)

can be converted into cubic strengths, Rc3 and Rc4, and used together with the cubic
strengths Rc1 and Rc2 of the two cubic specimens for evaluating Rck. The n = 4
available cubic strengths are shown in Tab. 8.

Table 8: Cubic strengths for the evaluation of Rck

Rc1
[
N/mm2

]
Rc2

[
N/mm2

]
Rc3

[
N/mm2

]
Rc4

[
N/mm2

]
54.06 58.08 56.21 58.68

The result is:

Rcm = 56.76 N/mm2, (69)

δ = 2.09, (70)

Rck = 51.20 N/mm2, (71)

fcd = 24.08 N/mm2. (72)

The parabola-rectangle relationship given by Eqs. (56) and (57), with fcd provided
by Eq. (72), is shown in Fig. 46.

For comparison purposes, in Fig. 46 a design relationship derived from the effective
laws has also been plotted. This second design relationship is given by the two
functions:

σ = σ̄e f f εc ≤ 1.2h, (73)

σ = σcd,e f f =
0.85σck,e f f

1.5
1.2h < εc ≤ 3.5h, (74)

where σ̄e f f is the average effective stress in Fig. 40 and σck,e f f is the 5% lower frac-
tile of the average effective stresses σ̄ci,e f f , evaluated in the four pseudo-horizontal
branches of the effective laws (Tab. 9).

Table 9: Average stresses in the pseudo-horizontal branches of the effective laws

σ̄c1,e f f
[
N/mm2

]
σ̄c2,e f f

[
N/mm2

]
σ̄c3,e f f

[
N/mm2

]
σ̄c4,e f f

[
N/mm2

]
55.30 57.05 49.39 54.55

The statistical approach for k = 2.66 gives:

σ̄cm,e f f = 54.07 N/mm2, (75)
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δ = 3.29, (76)

σck,e f f = σ̄cm,e f f − kδ = 45.30 N/mm2, (77)

σcd,e f f = 25.67 N/mm2. (78)

As can be seen in Fig. 46, the parabola-rectangle relationship given by Eqs. (56) and
(57) slightly overestimates the initial slope and underestimates the ultimate design
stress. According to this analysis, we can conclude that the parabola-rectangle
relationship is cautionary as far as the ultimate stress is concerned. It therefore
seems that the identification procedure of the effective law may be employed for
deriving a new parabola-rectangle relationship, to exploit the effective properties
of concrete better.

As previously pointed out, the number of performed compression tests is not suf-
ficient for giving quantitative evaluations. It follows that only a qualitative new
proposal is possible here. The parabola-rectangle relationship that gives a better
approximation to the design relationship given by the effective laws in Fig. 40 is
plotted in Fig. 47 and is expressed by the function:

σc = 1000σcd,e f f
(
0.9εc−202.5ε

2
c
)

εc ≤
1

450
, (79)

for the first branch, and by the function:

σc = σcd,e f f
1

450
< εc ≤ 3.5h. (80)

for the second branch. It is still a cautionary relationship, but the ultimate stress
has been increased by 7%. 
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Figure 48: Comparison between the
parabola-rectangle relationship and the
design relationship given by the effec-
tive laws
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3.2 Rubberized concrete

For rubberized concrete, it is reasonable to assume that the design relationship
depends upon the percentage of rubber aggregates. In the absence of a technical
standard for rubberized concrete, the parabola-rectangle relationship in Fig. 48 has
been drafted according to Eqs. (56) and (57), with the four Rci obtained as for plain
concrete and set out in Tab. 10.

Table 10: Cubic strengths for the evaluation of Rck

Rc1
[
N/mm2

]
Rc2

[
N/mm2

]
Rc3

[
N/mm2

]
Rc4

[
N/mm2

]
20.10 21.81 21.05 21.40

The statistical approach with k = 2.66 provides:

Rcm = 21.09 N/mm2, (81)

δ = 0.73, (82)

Rck = 19.14 N/mm2, (83)

fcd = 9.00 N/mm2. (84)

A possible standard for the percentage of rubber aggregates used is given by the
relationship:

Rck =
1

0.83
min{ fcm−3; fc,lowest +2} , (85)

giving the following values for Rck and fcd :

Rck = 17.47 N/mm2, (86)

fcd = 8.23 N/mm2. (87)

In Fig. 48, the design relationship derived from the effective laws is given by the
two functions:

σ = σ̄e f f εc ≤ 0.88h, (88)

σ = σcd,e f f =
0.85σck,e f f

1.5
0.88h < εc ≤ 3.5h, (89)

where σ̄e f f is the average effective stress in Fig. 43 and σck,e f f is the 5% lower frac-
tile of the average effective stresses σ̄ci,e f f , evaluated in the four pseudo-horizontal
branches of the effective laws (Tab. 11):
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Table 11: Average stresses in the pseudo-horizontal branches of the effective laws

σ̄c1,e f f
[
N/mm2

]
σ̄c2,e f f

[
N/mm2

]
σ̄c3,e f f

[
N/mm2

]
σ̄c4,e f f

[
N/mm2

]
21.22 21.99 19.19 20.39

σ̄cm,e f f = 20.70 N/mm2, (90)

δ = 1.20, (91)

σck,e f f = σ̄cm,e f f − kδ = 17.50 N/mm2, (92)

σcd,e f f = 9.92 N/mm2. (93)

As can be seen in Fig. 48, in this second occasion, the parabola-rectangle relation-
ship underestimates both the initial slope and the ultimate stress.

The new parabola-rectangle relationship set out in Fig. 49 is given by the function:

σc = 1000σcd,e f f
(
1.2εc−360ε

2
c
)

εc ≤
1

600
, (94)

for the first branch, and by the function:

σc = σcd,e f f
1

600
< εc ≤ 3.5h, (95)

for the design of the second branch. The new relationship (Fig. 49) fits the initial
slope well and allows for an ultimate stress increment of 10%.

4 Conclusions

The experimentation presented here has shown that the effective law is also mono-
tonically non-decreasing for rubberized concrete, besides offering the same rela-
tionship for both cubic and cylindrical specimens. This last result is of particular
significance, since insensitiveness to shape-effect is one of the principle require-
ments for constitutive parameters, thereby describing the identification procedure
of the effective law as a properly posed identification technique. As a consequence
of these findings and of further properties of the effective law, as set out in previ-
ous papers by the author, we may conclude that the question of strain-softening,
widely discussed in Ferretti (2005) from a numerical point of view, may have been
resolved, with the identification procedure of the effective law producing final ex-
perimental evidence against its existence. Moreover, it has been also shown how
the effective law is capable of providing an experimental evaluation of the design
relationships, making it also possible to formulate new standards for both plain and
rubberized concrete.



Shape-Effect in the Effective Laws of Plain and Rubberized Concrete 279

5 Future developments

The functions shown in Eqs. (94) and (95) give a good design relationship for the
rubber percentage used in this experimentation only. Further experiments with
differing amounts of rubber aggregates are needed to derive a design relationship
that is also a function of the rubber percentage.
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