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On the Compression Viewed as a Geometric
Transformation
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Abstract: A modeling of the compression by using the property of Helmholtz
equation to be invariant under geometric transformations is presented in this paper.
The versatility of the geometric transformations is illustrated in order to obtain a
new interpretation of the compression process. The physical spatial compression
leads, most of the times, to new materials with inhomogeneous and anisotropic
properties. The compression can be theoretically controlled by the geometric trans-
formations. As an example, new architectures for auxetic materials can be built up
by applying the geometric transformations. The new versions are finding their full
correspondents in the results of the experiments in which the conventional foams
are subjected to compressive cyclic loading.
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1 Introduction

Pendry, Shurig and Smith (2006) proved that a finite size object surrounded by a
coating consisting of a specially designed metamaterial would become invisible for
electromagnetic waves at any frequency. The idea is that the sound sees the space
differently [Dupont et al. (2011)]. For the sound, the concept of distance is modi-
fied by the acoustic properties of the regions through which the sound travels. In ge-
ometrical acoustics, the idea of the acoustical path when travelling an infinitesimal
distance ds, is the corresponding acoustical path length c−1ds, where c−1 =

√
ρ/κ
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with ρ is the fluid density and κ is the compression modulus of the fluid. Cum-
mer and Schurig (2007) demonstrated that acoustic waves in a fluid undergo the
same geometric transformation as electromagnetic waves do and therefore retain
their form. For example, the 3D equation for the pressure waves propagating in a
bounded fluid region Ω⊂ R3 is the Helmholtz equation

∇ · (ρ−1
∇p)+

ω2

κ
p = 0, (1.1)

where p is the pressure, ρ is the rank-2 tensor of the fluid density, κ is the com-
pression modulus of the fluid, and ω is the wave frequency.

Geometric transformations applied to certain types of elastodynamic waves in struc-
tural mechanics received less attention, since the Navier equations do not usually
retain their form under geometric changes [Bigoni et al. (1998); Norris (2008)].
For example, the in-plane propagation of time-harmonic elastic waves is governed
by the Navier equations

∇ ·C : ∇U +ρω
2U +b = 0, (1.2)

where u is the displacement, ρ the density, C the 4th-order material tensor of the
linear elastic material and b(x) represents the spatial distribution of a simple har-
monic body force b̂(x, t) = b(x)exp(iωt), with the wave-frequency and t the time.
Brun, Guenneau and Movchan (2009) demonstrated that the Navier equations (1.2)
retain their form under the transformation

r′ = r0 +
r− r01

r1
r, θ

′ = θ (1.3)

for r ≤ r1, r = r′, θ = θ ′, for r > r1, where r0 and r1 are the inner and outer radii
of the circular domain, respectively.

Let us consider the geometric transformation from the coordinate system (x′,y′,z′)
of the compressed space to the original coordinate system(x,y,z), given byx(x′,y′,z′),
y(x′,y′,z′) and z(x′,y′,z′). The change of coordinates is characterized by the trans-
formation of the differentials through the Jacobian J of this transformation, i.e.dx

dy
dz

= Jxx′

dx′

dy′

dz′

 , (1.4)

From the geometrical point of view, the change of coordinates implies that, in the
transformed region, one can work with an associated metric tensor [Zolla et al.
(2007); Guenneau et al. (2011)]

T =
JT

xx′ Jxx′

det(Jxx′)
. (1.5)
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In terms of the material parameters, one can replace the material from the origi-
nal domain (homogeneous and isotropic) by an equivalent compressed one that is
inhomogeneous (its characteristics depend on the spherical (r′,θ ′,φ ′) coordinates)
and anisotropic (described by a tensor), and whose properties, in terms of Jx′x, are
given by

ρ
′ = J−T

x′x ·ρ · J
−1
x′x ·det(Jx′x), κ

′ = κ det(Jx′x), (1.6)

or, equivalently, in terms of Jxx′

ρ
′ =

JT
xx′ ·ρ · Jx′x

det(Jxx′)
, κ

′ =
κ

det(Jxx′)
. (1.7)

Here, ρ ′ is a second order tensor. When the Jacobian matrix is diagonal, (1.6)
and (1.7) can be more easily written. Multiplying (1.1) by a test function ϕ and
integrating by parts, one obtains [Dupont et al. (2011)]

−
∫
Ω

(
∇(x,y,z)ϕ ·ρ−1

∇(x,y,z)p
)
dV +

∫ (
ω

2
κ
−1 pϕ

)
dV = 0. (1.8)

In (1.8) the surface integral, corresponding to a Neumann integral over the bound-
ary ∂Ω, is zero. By applying the coordinate transformation (x,y,z)→ (x′,y′,z′) to
(1.8) and using (1.4), one obtains

−
∫
Ω

(
JT

x′x∇(x′,y′,z′)ϕ ·ρ−1JT
x′x∇(x,y,z)p

)
det(Jxx′)dV ′+

∫ (
det(Jxx′)ω2

κ
−1 pϕ

)
dV ′= 0,

(1.9)

in terms of Jxx′ , and

−
∫
Ω

((
∇(x′,y′,z′)ϕ

)T Jx′xρ−1JT
x′x

det(Jx′x)
∇(x′,y′,z′)p

)
dV ′+

∫ (
κ−1

det(Jx′x)
ω

2 pϕ

)
dV ′ = 0,

(1.10)

in terms of Jx′x.

This theory is applied in this paper to model the compression of the conventional
foams. The scope is to transform conventional foam which occupies the disk r≤R2
into auxetic material which fills the annulusR1 ≤ r≤ R2. The new material is inho-
mogeneous and anisotropic. The problem is related to the current research in invis-
ibility cloaks starting from the works by Pendry, Schurig and Smith (2006) ; Brun,
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Guenneau and Movchan (2009) (cloaking via changes of coordinates); Leonhardt
(2006) (cloaking via conformal mapping); Milton and Nicorovici (2006) (cloak-
ing by reaction); Alu and Engheta (2003, 2005) (plasmonic cloaking); Greenleaf,
Lassas and Uhlmann (2003) (cloaking in inverse problems); Milton (2007) (elas-
tic metamaterials); Munteanu and Chiroiu (2011) (acoustic cloaking); Cummers et
al. (2008) (seismic cloaking); Fu, Chen and Qin (2011); Marin and Karageorghis
(2009); Johansson and Marin (2009): (variational aspects); Kalidindi et al. (2010)
(building material knowledge systems).

Milton, Briane and Willis (2006) showed that geometric transformations cannot
be applied to equations which are not invariant under coordinate transformations
and, consequently, if cloaking exists for such equations (for example the elasticity
equations), it would be of a different nature from acoustic and electromagnetic.

The touchstone of our technique is that the governing equations of the non-auxetic
foams are invariant under geometric transformations, more precisely, the equations
are reduced to the Helmholtz equations.

2 Formulation of the Problem

The geometric transformation may be linear or nonlinear. A linear geometric trans-
formation (1.4) which maps the disk r ≤ R2 into an annulus R1 ≤ r ≤ R2 [Pendry,
Schurig and Smith (2006); Chen and Lakes (1989)] is given by

r′ = R1 + r
R2−R1

R2
, 0≤ r ≤ R2,

θ
′ = θ , 0≤ θ ≤ 2π, (2.1)

x′3 = x3, x3 ∈ R,

where r′, θ ′, x′3 are radially contracted cylindrical coordinates r, θ , x3. The Carte-
sian basis (x1,x2,x3) is defined as x1 = r cosθ , x2 = r sinθ . The Jacobean of the
transformation from polar to stretched polar coordinates is given by J. In the
stretched space, the associated metric tensor is given by (1.5)

T =
JT

rr′ Jrr′

det(Jrr′)
. (2.2)

Qiu et al. (2009) classified the geometric transformation functions in terms of the
negative (i.e., concave-down) or positive (i.e., concave-up) sign of the second order
derivative of this function. The concave-down nonlinear transformation compresses
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a sphere of radius R2 in the original space Ω into a shell region R1 < r′ < R2 in the
compressed space Ω′ as

r(β ) =
Rβ+1

2

Rβ

2 −Rβ

1

(
1−
(

R1

r′

)β
)

, (2.3)

where β denotes the degree of the nonlinearity in the transformation. By taking
β → 0 in (2.3), the linear case is obtained, namely

r(β ) =
R2Ln(r′/R1)
Ln(R2/R1)

. (2.4)

All curves belonging to (2.3) have negative second order derivative with respect to
the physical space r′. This class of transformations is termed as the concave-down
transformation. The transformation function (2.3) depends on the radial component
r′ in the spherical coordinate system (r′,θ ′,φ ′).
The concave-up nonlinear transformation compresses a sphere of the radius R2 in
the original space Ω into a shell region R1 < r′ < R2 in the compressed space Ω′ as

r(β ) =
R2Rβ

1

Rβ

2 −Rβ

1

((
r′

R1

)β

−1

)
. (2.5)

As β → 0, one obtains again the linear case (2.4). This class of transformations is
termed as the concave-up transformation because (2.5) has positive second order
derivatives.

Once the above geometric transforms are written, let us formulate the problem to
be solved in this paper. Let us suppose that the original domain is a cylinder of
radius R2 and length l. This domain is filled with conventional non-auxetic cellular
foam. The spatial compression is obtained by applying the geometric transforma-
tion (2.1). The transformed domain is a shell cylinder of internal and external radii
R1 and R2, respectively, and the length l′.

As example, this paper is building new architectures for auxetic materials by ap-
plying the geometric transformations. These theoretically versions find their full
correspondents in the experiments of compression the conventional foams.

In the following we present the basic elements regarding the auxetic materials. The
term auxetic is coming from the Greek word auxetos, meaning that which may be
increased. Instead of getting thinner like an elongated elastic band, the auxetic
material grows fatter, expanding laterally when stretched [Lakes (1986), (1987),
(1991)]. Since 1987, when isotropic auxetic foam was manufactured for the first
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time, negative Poisson’s ratio materials have created interest for potential engineer-
ing applications. A feature that the auxetic materials showed compared to the other
foams is the significant damping capacity with increase up to 16 times compared to
the conventional foam [Scarpa et al. (2006); Chiroiu et al. (2009); Evans (1991);
Donescu, Chiroiu and Munteanu (2009)]. Scientists have known about auxetic ma-
terials for over a hundred years, though without giving them much a special atten-
tion, and treating them as an accident or a curiosity [Alderson, Alderson and Evans
(1997)]. The auxetic behavior is found in materials from the molecular and micro-
scopic levels, up to the macroscopic level. Negative Poisson’s ratios are observed
in real materials with a high degree of anisotropy, such as honeycomb structures,
reticulated metal foams, re-entrant structures, the skin covering a cow’s teats, cer-
tain rocks and minerals, living bone tissue, etc. All the major classes of polymers,
composites, metals and ceramics, can exist in the auxetic version [Mihailescu and
Chiroiu (2005)].

Cellular solids are two phase composite materials in which one phase is a solid and
the other is a fluid, most often air. The positive Poisson’s ratio is the result of the
convex shape of cell surfaces. By volume compression, a part of the cell surface
may acquire first a zeroth and then negative curvature. When the number of such
inverted cells dominates, compressibility of the material rises till the appearance of
the negative Poisson’s ratio [Shilko and Konyok (2004); Gaspar et al. (2005)].

Figure 2.1 shows the simplest 2D lattice structures for closed-cell solids: (a) square
structure, (b) rectangle structure, (c) regular hexagonal structure, d) triangular struc-
ture and d) irregular structure. Figure 2.2 illustrates models of auxetic structures
obtained from aforementioned materials by appearance of the negative Poisson’s
ratio: a), b) re-entrant honeycomb network, c) Shilko and Konyok model of the
inverted closed-cell foam, and d) re-entrant regular array of rectangular nodules
interconnected by fibrils [Evans and Alderson (2000)].

The conventional foam exhibits pores with average diameter around 1mm while the
auxetic foam has average diameter possible down to a few micrometers or down to
a few nanometers.

A comparative analysis between the cyclic loading compressive behaviour of con-
ventional non-auxetic foam and the auxetic foams was performed by Bezazi and
Scarpa in 2007. They analyzed the transformation of conventional foam into its
auxetic version using a manufacturing process involving compression [Chan and
Evans (1997); Scarpa et al. (2004)].

Bezazi and Scarpa (2007) used cylindrical foam samples of 30 mm of diameter and
170 mm of length, and after compression they obtained final diameter of 20 mm
and length of 100 mm. The measured density of the auxetic foam was 0.118g / cm3.
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Figure 2.1: Regular 2D cellular solids.

 
Figure 2.2: Model structures of the inverted closed-cell foam.
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The Poisson’s ratio depends on the compressive strain. So, the conventional foam
has a Poisson’s ratio positive of 0.25 at compressive strain of 10%, which decreases
sharply with the increase of compressive loading, to become slightly negative from
60 to 80% of tensile strain. The auxetic foam exhibits a negative Poisson’s ratio of
−0.185 at compressive strain from 10 to 25%, showing a sharp increase for rising
compressive strain, reaching then a zero value at 55% of compressive strain and a
positive Poisson’s ratio of 1.33 at 80%. The results of the compressive Poisson’s
ratio of auxetic foams obtained by Bezazi and Scarpa in 2007, are consistent with
the ones presented in the literature [Scarpa et al. (2004); Blake and Isard (1998);
Scarpa, Ciffo and Yates (2004); Lakes and Elms (1993)].

3 The Theory of Auxetic Materials

In order to write the equations governing the behavior of the conventional non-
auxetic cellular foam, we remind that the microstructure of these foams can be
modeled by the micropolar theory.

For this, we suppose that the material is a micropolar solid with chiral effects, i.e.
a noncentrosymmetric material. The micropolar and classical theories of elasticity
are continuum theories, which make no reference to atoms or other structural fea-
tures of the material, which is described. Elasticity theory represents more than an
analytical description of the phenomenological behavior since it can be derived as a
first approximation of the interaction between atoms in the solid [Cosserat (1909);
Kröner (1963)]. Interatomic forces are of short range; but they exert more influence
than one atomic space. The characteristic length l in this case should be on the or-
der of the atomic spacing. Phenomena associated with micropolar elasticity are
likely to be of larger magnitude, and therefore of greater interest in materials such
as cellular solids with larger scale structural features. In fibrous composites, the
characteristic length l may be of the order of the spacing between fibers [Hlavacek
(1975), (1976)], in cellular solids it may be comparable to the average cell size
[Adomeit (1967); Berglund (1982)].

Consider a chiral Cosserat medium medium, in a Cartesian coordinates system
(x,y,z). The equations of motion in the absence of body forces and body cou-
ples are [Eringen (1966), (1968); Mindlin (1964), (1965); Chiroiu, Munteanu and
Gliozzi (2010)]

σkl,k−ρ ül = 0, mrk,r + εklrσlr−ρ jϕ̈k = 0, k, l = 1,2,3. (3.1)

Here σkl is the stress tensor, mkl is the couple stress tensor, u is the displacement
vector, ϕk is the microrotation vector which in Cosserat elasticity is kinematically
different from the macrorotation vector rk = 1

2 εklmum,l , and εklm is the Levi-Civita
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permutation symbol. We remember that ϕk refers to the rotation of points them-
selves, while rk refers to the rotation associated with movement of nearby points.
In (3.1) ρ is the mass density and j the microinertia. The constitutive equations are
given by [Donescu, Chiroiu and Munteanu (2009)]

σkl = λerrδkl +(2µ +κ)ekl +κεklm(rm−ϕm) +C1ϕr,rδkl +C2ϕk,l +C3ϕl,k,

mkl = αϕr,rδkl +βϕk,l + γϕl,k +C1errδkl +(C2 +C3)ekl +(C3−C2)εklm(rm−ϕm),
(3.2)

where ekl = (uk.l + ul,k)/2 is the macrostrain vector. λ , and µ are Lamé elastic
constants, κ is the Cosserat rotation modulus and α,β ,γ the Cosserat rotation gra-
dient moduli, and Ci, i = 1,2,3, the chiral elastic constants associated with noncen-
trosymmetry [Cosserat (1909); Kröner (1963); Lakes and Benedict (1982); Lakes
(2001)]. The materials which are not invariant to coordinates inversions can have a
qualitatively different behavior in comparison with isotropic solids. An elastic chi-
ral material (noncentrosymmetric material) is isotropic with respect to coordinate
rotations but not with respect to inversions. For Ci = 0 the equations of isotropic
micropolar elasticity are recovered. Forα = β = γ = κ = 0, (3.4) reduces to the
constitutive equations of classical isotropic linear elasticity theory. From the re-
quirement that the internal energy must be nonnegative (the material is stable), we
obtain restrictions on the elastic constants 0 ≤ 3λ + 2µ + κ , 0 ≤ 2µ + κ , 0 ≤ κ ,
−γ ≤ β ≤ γ , 0≤ γ and any positive or negative C1,C2,C3 [Gauthier (1982); Lakes
and Benedict (1982)].

By definition, the set composed of the asymmetric tensors σkl , mkl , ekl , k, l = 1,2,3,
and the vectors uk, ϕk, namely F = {σkl,mkl, uk,ϕk, k, l = 1,2,3} is said to be an
elastodynamic state on the bounded medium, if it satisfies (3.1) and (3.2). It is easy
to prove that the state F can be decomposited in the form

F = F1 +F2, (3.3)

where F1 = {σ11,σ13,σ33,m22,u1,u3,ϕ2} and F2 = {σ22,m11,m13,m33,u2,ϕ1,ϕ3}
[Donescu, Chiroiu and Munteanu (2009)]. By introducing (3.2) into (3.1), after
a proper manipulation of equations, the following equations in the unknowns u =
(u1,u2,u3) and ϕ = (ϕ1,ϕ2,ϕ3) are found.

(λ +2µ +κ)∇∇u− (µ +κ)K2
0 ∇×∇×u+κ(1−K2

0 )∇×ϕ = ρ ü, (3.4)

(α +β + γ)∇∇ϕ− γK2
0 ∇×∇×ϕ +κ(1−K2

0 )∇×u−2κ(1−K2
0 )ϕ = ρ jϕ̈, (3.5)
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where

K2
0 = 1+

(C1 +C2 +C3)2

(λ +2µ +κ)(α +β + γ)
.

We see that (3.4) and (3.5) are decoupled into two sets of equations with respect
to F1, F2, respectively. For simplicity, without any loss of generality, the particular
case in which all quantities depend only on x (radial direction r) and y (longitudinal
direction) is considered. We will focus on the 2D set of equations corresponding
toF1, the other set being solved in a similar manner. By introducing the dimension-
less quantities

x′ =
ω

c1
x, y′ =

ω

c1
y, v′i =

ω

c1
ui, i = 1,2,

φ
′
2 =

µK2
0

ρ jω2 ϕ2, t ′ = ωt, σ
′
i j =

1
µK2

0
σi j,

m′i j =
c1

γωK2
0

mi j, ω
2 =

κ(1−K2
0 )

ρ j
, c2

1 =
λ +2µ +κ

ρ
, i, j = 1,3,

the equations (3.4) and (3.5) reduce to by suppressing the dashes

(s1 + s2)v1,xx + s1v3,xy + s2v1,yy− s3φ2,y +ω
2v1 = 0,

(s1 + s2)v3,yy + s1v1,xy + s2v3,xx + s3φ2,x +ω
2v3 = 0, (3.6)

φ2,xx +φ2,yy− s5φ2 + s6(v1,y− v3,x)+ s4ω
2
φ2 = 0,

where

s1 =
λ + µK2

0

ρc2
1

, s2 =
κ(1−K2

0 )+ µK2
0

ρc2
1

, s3 =
κ j(1−K2

0 )ω2

µK2
0 c2

1
,

s4 =
ρ jc2

1

γk2
0

, s5 =
2c2

1κ(1−K2
0 )

ω2γK2
0

, s6 =
c2

1µ

ω2γ
. (3.7)

The equations (3.6) can be rewritten under the form

∇ ·S : ∇U +ω
2U = 0, (3.8)

where ρ is the scalar density of the elastic medium, S is the fourth-order material
tensor, ω is the wave angular frequency, and U(x1,x2,x3, t)=U(x1,x2,x3)exp(−iωt)
is the vector defined as U = (v1,v3,φ2). The equations (3.8) retain their form under
this transforms (2.1), (2.3) and (2.5).
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Under a change of coordinates (x′,y′,z′) to (x,y,z) given by (3.1) such that U ′(x′) =
J−T

x′x U(x), J, eq. (3.8) takes the form

∇
′ ·S′ : ∇

′U ′+ω
′2U ′ = 0, (3.9)

with U ′ = (v′1,v
′
3,φ
′
2). Eqs. (3.9) can be written explicitly as

(s′1 + s′2)v
′
1,x′x′ + s′1v′3,x′y′ + s′2v1,y′y′− s′3φ

′
2,y′ +ω

′2v′1 = 0,

(s′1 + s′2)v
′
3,y′y′ + s′1v′1,x′y′ + s′2v′3,x′x′ + s′3φ

′
2,x′ +ω

′2v′3 = 0, (3.10)

φ
′
2,x′x′ +φ

′
2,y′y′− s′5φ

′
2 + s′6(v

′
1,y′− v′3,x′)+ s′4ω

′2
φ
′
2 = 0,

with

s′1 =
λ ′+ µ ′K2

0

ρ ′c′21
, s′2 =

κ ′(1−K′20)+ µ ′K′20
ρ ′c′21

, s′3 =
κ ′ j(1−K′20)ω

′2

µ ′K′20c′21

s′4 =
γ ′K2

0

ρ ′ jc′21
, s′5 =

2c′21κ ′(1−K′20)
ω ′2γ ′K′20

, s′6 =
c′21µ ′

ω ′2γ ′
, (3.11)

K′20 = 1+
(c′1 + c′2 + c′3)2

(λ ′+2µ ′+κ ′)(α ′+β ′+ γ ′)
,

where

λ
′ =

λ

det(Jxx′)
, µ

′ =
µ

det(Jxx′)
, κ

′ =
κ

det(Jxx′)
,

α
′ =

α

det(Jxx′)
, β

′ =
β

det(Jxx′)
, γ

′ =
γ

det(Jxx′)
,

ρ
′ =

ρ

det(Jxx′)
, κ

′ =
κ

det(Jxx′)
, ρ

′ =
ρ

det(Jxx′)
, c′i =

Ci

det(Jxx′)
, i = 1,2,3.

(3.12)

When we change the coordinate system, automatically we replace the initial mate-
rial properties by equivalent material properties given by (3.11) and (3.12).
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4 Results

The original material is conventional closed-cell polyurethane foam with ρconv =
27kg/m3 density and Poisson’s ratio at tensile test νtens = 0.47 and the compres-
sive test νcomp =0.27. The cylindrical specimen has R2 =15mm initial radius and
l =170mm initial length. The following constants are considered: λ =2.59GPa,
µ =0.77GPa, κ =0.0144GPa, α =1.77×104N, β =3.37 ×104N, γ =0.33×104N,
C1 =−0.5×104N/m, C2 =−2.9×104N/m, C3 =−6.8×104N/m, j =2×10−7m2.

We must say that the condition of a positive Young’s modulus and −1 < ν < 0.5
corresponds to the usual range of properties for stability of the material. The ex-
istence of negative material constants (shear modulus, bulk modulus, stiffness) is
also permitted (experimentally reported in Wang and Lakes (2004), Teodorescu et
al. (2005a,b)).

The Poisson’s ratio ν = νyx(for tensile and compressive tests) was calculated as
the negative ratio between the radial and longitudinal strains using a best fit to the
strain-strain graph

νyx =−εx

εy
. (4.1)

The most important physical parameter to dominate the negative Poisson’s ratio

transformation is the compression ratioϑ = (R′22−R′21)l
′

R2
2l , where prime denotes the

final parameters.

The existing methods concerning the solving of (3.10) are mainly based on the
homogenization approach [Kumar and McDowell (2004)]. Another method is the
missing ribs method by Smith et al. (2000). We solve the equations (3.12) by
applying the Laplace and Fourier transforms.

Figure 4.1.shows the variation of the Poisoon’s ratio with respect to 1−ϑ (equiva-
lent to the compressive strain) for conventional foam (the upper curve) and auxetic
foam (the lower curve) respectively. We observe that the conventional foam be-
comes auxetic (−0.15 < v < 0) for0.55 < 1−ϑ < 0.77, or 0.23 < ϑ < 0.45. It is
very interesting to see that the auxetic foam is changing the sign for its Poisson’s
ratio for0.46 > 1−ϑ . It is of interest to underline that the results provides an over-
all agreement with the experimental values for the auxetic foam [Bezazi and Scarpa
(2007); Shilko and Konyok (2004)].

The initial domain with R2 =15mm and l =170mm is transformed into a shell
cylinder with l′ =100mm, R′2 =15mm and 14.415mm< R′1 <14.7mm. The trans-
formed annulus domains are presented in Fig. 4.2, for ϑ =0.25, 0.26, 0.3 and 0.4.
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Figure 4.1: Poisson’s ratio versus compressive strain for conventional and auxetic
foams.

Let us introduce three reduced moduli defined as

K′1 =
K′210

K2
0

, K′2 =
K′211

K′20
, K′3 =

K′212

K′20
, (4.2)

where K2
10, K2

11 and K2
12 are given by

K2
10 =

(c′2 + c′3)2

4(2µ ′+κ ′)(β ′+ γ ′)
, K2

11 =
(c′2− c′3)2

4(2µ ′+κ ′)(γ ′−β ′)
, (4.3)

K2
12 =

(3c′1 + c′2 + c′3)2

4(3λ ′+2µ ′+κ ′)(3α ′+β ′+ γ ′)
,

and K′20 is given by (3.11)3.

The dependence of the properties of the auxetic foam on the Poisson’s ratio ν and
the coordinates is illustrates next. The variation of the reduced moduli on ν is
displayed in Figure 4.3. For a given ν it is possible to determine a set of permissible
material constants, negative or not.

Each set of constants may represent a certain possible structure with demonstrable
auxetic properties. The variation of the Young’s modulus with respect to radial
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Figure 4.2: Transformed domains.

 
Figure 4.3: Reduced moduli versus Poisson’s ratio.
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Figure 4.4: Variation of the Young’s modulus with respect to radial coordinate.

 
Figure 4.5: Variation of the chiral elastic constantsC1,C2,C3with respect to radial
coordinate.
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coordinate R1 ≤ r ≤ R2 is presented in Figure 4.4 for ϑ =0.25, 0.26, 0.3 and 0.4
(the corresponding thicknesses for the annulus R1 ≤ r≤ R2 are 0.322mm, 0.34mm,
0.3888 and 0.519 respectively).

The variation of the chiral elastic constantsC1,C2 and C3 with respect to radial
coordinate r is illustrated in Figure 4.5, for ϑ =0.26 and 0.4. We see that these
constants are negative.

5 Conclusions

A new technique for transforming the conventional foams into auxetic foams is
proposed in this paper by exploiting the property of the governing equations to be
written in a covariant form such that the metric is only involved in the material
parameters. The geometric transformations lead to material properties that are, if
not impossible to obtain, at least challenging for manufacture of new materials.
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