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Dynamical Newton-Like Methods with Adaptive Stepsize
for Solving Nonlinear Algebraic Equations

Cheng-Yu Ku1,2,3 and Weichung Yeih1,2

Abstract: In this paper, a dynamical Newton-like method with the adaptive step-
size based on the construction of a scalar homotopy function to transform a vector
function of non-linear algebraic equations (NAEs) into a time-dependent scalar
function by introducing a fictitious time-like variable is proposed. With the intro-
duction of the fictitious time-like function, we derived the adaptive stepsize using
the dynamics of the residual vector. Based on the proposed dynamical Newton-like
method, we can also derive the dynamical Newton method (DNM) and the dynam-
ical Jacobian-inverse free method (DJIFM) with the transformation matrix as the
inverse of the Jacobian and the identity matrix, respectively. These two dynamical
Newton-like methods are then adopted for the solution of NAEs. Numerical illus-
trations demonstrate that taking advantages of the dynamical Newton-like method
with the adaptive stepsize the proposed two dynamical Newton-like methods can
release limitations of the conventional Newton method such as root jumping, the
divergence at inflection points, root oscillations, and the divergence of the root.
Results reveal that with the use of the fictitious time-like function the proposed
method presents exponential convergence. In addition, taking the advantages of the
transformation matrix, the proposed method does not need to calculate the inverse
of the Jacobian matrix and thus has great numerical stability.

Keywords: the scalar homotopy method, adaptive stepsize, Jacobian, dynamical
Newton-like method, Newton’s method.

1 Introduction

Most physical systems are inherently nonlinear in nature. To deal with many prac-
tical nonlinear engineering problems, nonlinear problems are of interest to engi-
neers, physicists and mathematicians. For solving nonlinear engineering problems,
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numerical methods including the finite element method, the boundary element
method, the distinct element method, and the meshless method used in the compu-
tational mechanics [Atluri (2002)] usually need to solve a system of non-linear al-
gebraic equations. Over the past years, many contributions have been made towards
the numerical solutions of Non-linear Algebraic Equation (NAEs). Most of the
methods for solving NAEs are based on the iteration scheme. The iteration-based
method, such as Newton’s method, also known as the Newton–Raphson method, is
perhaps the most welll-known one for finding successively better approximations
to the solutions of a real-valued non-linear system [Press et al. (2007)]. Since it
converges quadratically, Newton’s method can often converge remarkably quickly
if the initial guess is sufficiently close to the solution. However, there are some
limitations for Newton’s method such as root jumping, the divergence at inflection
points, oscillations, and the divergence of the root. The conventional Newton-like
algorithm is sensitive to the initial guess of solution, and it is very expensive in the
computations of the Jacobian matrix and its inverse at each iterative step, especially
for large scale nonlinear problems. Therefore, modifications of Newton’s method,
such as the arc-length methods or Jacobian-Free Newton-Krylov method [Knoll
and Keyes (2004); Lemieux et al. (2010)] have been extensively developed for this
purpose.

Recently, Liu and Atluri (2008) proposed a time integration method named the
Fictitious Time Integration Method (FTIM). The FTIM was first used to solve a
non-linear system of algebraic equations by introducing a fictitious time. The sta-
tionary point of these evolution equations is the solution for the original algebraic
equation. In addition to the FTIM, the homotopy method [Liao (1992); He (2003,
2005); Ku, Yeih and Liu (2010)] can also be used to solve the NAEs using the
similar fictitious time concept. Later, the concept of the general dynamical method
[Ku, Yeih and Liu (2011)] based on the construction of a scalar homotopy func-
tion to transform a vector function of non-linear algebraic equations (NAEs) into
a time-dependent scalar function by introducing a fictitious time-like variable was
proposed. Several dynamical Newton-like methods including the Dynamical New-
ton Method (DNM), the Dynamical Jacobian-Inverse Free Method (DJIFM) and
the Manifold-Based Exponentially Convergent Algorithm (MBECA) were devel-
oped.

In this paper, we introduce a dynamical Newton-like method with the adaptive
stepsize based on the general dynamical method proposed by Ku, Yeih and Liu
in 2011. With the introduction of the fictitious time-like function, the adaptive
stepsize is derived by using the dynamics of the residual vector. Several numerical
illustrations including root jumping, the divergence at inflection points, solution
oscillations, and the divergence of the root were conducted. The formulation of the
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proposed method is first described as the follows.

2 The General Dynamical Method

We consider the following NAEs:

Fi (x1, . . . ,xn) = 0, i = 1, . . . ,n. (1)

Using x := (x1, . . . ,xn)T and F := (F1, . . . ,Fn)T , Eq. (1) can be written as F(x) =
0. Solving Eq. (1) by a first-order Taylor approximation, we can easily see that
Newton’s method for solving F(x) = 0 is given by

xk+1 = xk− [B(xk)]−1F(xk), (2)

where B is a n×n Jacobian matrix with its i j-th component being given by ∂Fi/∂x j.
Newton’s method can only guarantee the local convergence, if certain conditions
are satisfied, and hence, depending on the type of the function and the initial guess
of the solution, it may or may not converge. In addition, it is expensive in the
computations of the Jacobian matrix and its inverse at each iterative step.

On the other hand, for solving the NAEs,

F(x) = 0, (3)

the homotopy method represents a way to enhance the convergence from the local
convergence to the global convergence. All the homotopy methods are based on
the construction of a vector function, H(x,τ) which is called the homotopy func-
tion. The homotopy function serves the objective of continuously transforming a
function G(x) into F(x) by introducing a homotopy parameter τ . The homotopy
parameter τ can be treated as a time-like fictitious variable, and the homotopy func-
tion can be any continuous function such that: H(x, 0) = G(x) and H(x,1) = F(x).
Hence we construct H(x, 0) in such a way that its zeros are easily found while we
also require that, once the parameter τ is equal to 1, then H(x,τ) coincides with the
original function F(x).
Among the various homotopy functions that are generally used, the fixed point
homotopy function, i.e. G(x) = x− x0, and the Newton homotopy function, i.e.
G(x) = F(x)−F(x0), are simple and powerful ones that can be successfully applied
to several different problems. The fixed point homotopy function can be written as

H(x, τ) = τF(x)+(1− τ)[x−x0] = 0, (4)

and the Newton homotopy function is

H(x, τ) = τF(x)+(1− τ)[F(x)−F(x0)] = 0, (5)
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where x0 is the given initial values and τ ∈ [0,1]. To conduct a scalar-based homo-
topy continuation method, we first convert the vector equation of F = 0 to a scalar
equation by noticing that

F = 0⇔ ‖F‖2 = 0, (6)

where ‖F‖2 = F2
1 +F2

2 + . . .+F2
n . Obviously, the left-hand side implies the right-

hand side. Conversely, by ‖F‖2 = F2
1 +F2

2 + . . .+F2
n = 0 we have F1 = F2 = . . . =

Fn = 0, and thus F = 0.

Based on the fixed point homotopy function, Liu, Yeih, Kuo, and Atluri (2009)
developed a scalar homotopy function, as:

h(x,τ) =
1
2

τ ‖F(x)‖2 +
1
2
(τ−1)‖x−x0‖2 = 0. (7)

The scalar homotopy method retains the merits of the homotopy method, such as
the global convergence, but it does not involve the complicated computation of the
inverse of the Jacobian matrix. The scalar homotopy method, however, needs a
very small time step to reach the fictitious time, τ = 1, which results in a slow
convergence, in comparison with other methods. In this study, we propose a scalar
homotopy algorithm based on the Newton homotopy function as described in Eq.
(5), which can also be written as follows:

H(x,τ) = F(x)+(τ−1)F(x0) = 0. (8)

Using Eq. (6), we can transform the vector equation into a fictitious time dependent
scalar function h(x,τ) as follows:

h(x,τ) =
1
2
‖F(x)‖2 +

1
2
(τ−1)‖F(x0)‖

2 = 0. (9)

Equation (9) holds for all τ ∈ [0,1]. To motivate this study, we first consider a
fictitious time function Q(t), where t is the fictitious time and Q(t) has to satisfy
that Q(t) > 0, Q(0) = 1, and Q(t) is a monotonically increasing function of t, and
Q(∞) = ∞. Then we introduce the proposed fictitious time function Q(t) into Eq.
(9) and have

h(x, t) =
1
2
‖F(x)‖2− 1

2
1

Q(t)
‖F(x0)‖

2 = 0, (10)

Using the fictitious time function, Q(t), when the fictitious time t = 0 and t = ∞,
we can obtain

h(x, t = 0) =
1
2
‖F(x)‖2− 1

2
‖F(x0)‖

2 = 0 ⇔ F(x) = F(x0) (11)
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h(x, t = ∞) =
1
2
‖F(x)‖2 = 0⇔ F(x) = 0. (12)

It is clear that the tracking of a solution path for the proposed scalar Newton ho-
motopy function, as the homotopy parameter τ is gradually varied from 0 to 1, is
equivalent to the fictitious time varying from t = 0 to t = ∞.

If we assume that h(x, t) = 0 is satisfied for any time greater than zero, multiplying
Q(t) at both sides of Eq. (10) we have

h(x, t) =
1
2

Q(t)‖F(x)‖2− 1
2
‖F(x0)‖

2 = 0. (13)

Liu, Yeih, Kuo and Atluri (2009) and Ku, Yeih, and Liu (2010) used the fixed
point homotopy function and the Newton homotopy function respectively to make
an analogy for the scalar homotopy method to the theory of plasticity. In their
explanation, the above assumption was equivalent to the stability in small for the
plasticity theory. Considering the consistency condition, we derive from Eq. (13)
that:

dh
dt

=
∂h
∂ t

+
∂h
∂x
· dx

dt
= 0. (14)

The derivatives of the scalar function, h(x, t), with respect to x and t can be written
as

∂h
∂ t

=
1
2

Q̇(t)‖F(x)‖2 ∂h
∂x

= Q(t)BTF(x), (15)

Let ẋ = dx
dt , and a possible solution of Eq. (14) for ẋ is

ẋ = λTF. (16)

Inserting Eq. (15) and Eq. (16) into Eq. (14), we can derive

λ =− Q̇(t)
2Q(t)

‖F(x)‖2

FT(x)BTF(x)
. (17)

In Eq. (16), T is the transformation matrix which can be B−1, the identity matrix, I,
BT, or any other square matrices. With the introduction of different transformation
matrices, such asB−1, I, or BT, the proposed general dynamical method can be
transformed into the DNM, the DJIFM and the MBECA, respectively.

Inserting Eq. (17) into Eq. (16), we have

ẋ =− Q̇(t)
2Q(t)

‖F(x)‖2

FT(x)BTF(x)
TF(x). (18)
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The above equation is the general dynamical equation for solving non-linear alge-
braic equations. It is also found that in Eq. (18), we solve NAEs by introducing
a fictitious time function, such that it is a mathematically equivalent system in the
augmented n + 1-dimensional space as the original algebraic equation system is
in the original n-dimensional space. The fixed point of these evolution equations,
which is the root for the original algebraic equation, is obtained by applying nu-
merical integrations on the resultant ordinary differential equations.

3 The Fictitious Time-like Function

There are many ways to choose a suitable function of Q(t). Based on the FTIM
first proposed by Liu and Atluri (2008), the NAEs, F(x) = 0, can be embedded
in a system of nonlinear ODEs: ẋ = −v/q(τ)F(x) where τ is the fictitious time,
q(τ) is a monotonically increasing function of τ . In their study, a simple time-like
function of q(τ) = (1+τ) was chosen. In addition to this original simple time-like
function, Ku, Yeih, Liu, and Chi (2009) proposed a more general function such as
q(τ) = (1+ τ)m. Based on a similar idea and replacing τ as t, we can let

Q̇(t)
Q(t)

=
v

(1+ t)m , 0 < m≤ 1. (19)

Hence, we have

Q(t) = exp
[

v
1−m

[(1+ t)1−m−1]
]
. (20)

Inserting Eq. (19) into Eq. (18), we have

ẋ =
−v

2(1+ t)m
‖F(x)‖2

FT(x)BTF(x)
TF(x) (21)

where m is a control parameter for speeding the convergence as discussed in Ku, et
al. (2009) and v is a damping parameter introducing by Liu and Atluri (2008) for
improving the convergence.

To satisfy the conditions that Q(t) > 0, Q(0) = 1, and Q(t) is a monotonically
increasing function of t, and Q(∞) = ∞, another suitable function of Q(t) can be
easily found and written as

Q(t) = evt . (22)

Inserting Eq. (22) into Eq. (19) and let v = 1, we have

Q̇(t)
Q(t)

= 1. (23)
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Again, inserting Eq. (23) into Eq. (18), we have

ẋ =−1
2
‖F(x)‖2

FT(x)BTF(x)
TF(x) (24)

We can easily find that Eq. (21) and Eq. (24) embeds the fictitious time function in
the evolution of the solution search. To deal with Eq. (21) and Eq. (24), we may
employ a forward Euler scheme and obtain the following equations:

xk+1 = xk− ∆tv
2(1+ t)m

∥∥F(xk)
∥∥2

FT(xk)B(xk)T(xk)F(xk)
T(xk)F(xk). (25)

xk+1 = xk− ∆t
2

∥∥F(xk)
∥∥2

FT(xk)B(xk)T(xk)F(xk)
T(xk)F(xk). (26)

where ∆t is the fictitious time step. In the above equations, it is found that the
numerator and denominator of the fraction in Eqs. (25) and (26) are scalars if we
adopt any one of the transformation matrices from B−1, I, and BT. For simplicity,
let u = TF(x). Rewriting Eq. (24), we can obtain the evolution dynamics of x as:

ẋ =− Q̇(t)
2Q(t)

‖F(x)‖2

FT(x)Bu
u (27)

By defining v = Bu, one can rewrite Eq. (27) as:

ẋ =− Q̇(t)
2Q(t)

‖F(x)‖2

FT(x)v
u (28)

4 Dynamics of the Residual Vector

Let us take a look of the evolution of the residual vector F, it can be written as:

Ḟ(x(t)) = Bẋ. (29)

Substituting Eq. (28) into Eq. (29), we then have:

Ḟ(x(t)) =
−

.

Q(t)
2Q(t)

‖F(x)‖2

FT(x)v
v (30)

Using the forward Euler scheme, we can approximately express Eq. (30) as

F(x(t +∆t)) = F(x(t))−∆t
Q̇(t)

2Q(t)
‖F(x)‖2

FT (x)v
v (31)
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where ∆t is the time increment. For simplicity, we let

β := ∆t
Q̇(t)
2Q(t)

. (32)

Since we require that the evolution path of x should always remain on the space-
time manifold, we then can obtain the following expressions from Eq. (10):

‖F(x(t))‖2 =
‖F(x0)‖2

Q(t)

and

‖F(x(t +∆t))‖2 =
‖F(x0)‖2

Q(t +∆t)
(33)

Taking the square norm of Eq. (33) for both sides and using Eqs. (31) and (32), we
can obtain

‖F(x0)‖2

Q(t +∆t)
=
‖F(x0)‖2

Q(t)
−2β

‖F(x0)‖2

Q(t)
+β

2 ‖F(x0)‖2

Q(t)
‖F(x)‖2

(FT (x)v)2 ‖v‖
2 . (34)

Rearranging the above equation, we can obtain an algebraic equation for β as

a0β
2−2β +1− Q(t)

Q(t +∆t)
= 0, (35)

where

a0 =
‖F(x)‖2 ‖v‖2

(FT (x)v)2 =
{
‖F(x)‖‖v‖
(FT (x)v)

}2

=
(

1
cosθ

)2

(36)

in which the angle θ denotes the angle between the residual vector F and the vector
v. From the Cauchy-Schwarz inequality, it can be easily verified that a0 ≥ 1. Now
let us define:

s :=
Q(t)

Q(t +∆t)
=
‖F(x(t +∆t))‖2

‖F(x(t))‖2 . (37)

It can be found that this ratio s is the ratio between the square norm of the residual
vector in the next state and the square norm of the residual vector in the current
state. It is for sure that we hope s ≤ 1, such that for each state the norm of the
residual vector decreases. From Eq. (37), Eq. (35) now can be written as

a0β
2−2β +1− s = 0. (38)
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Therefore, we have

s = a0β
2−2β +1. (39)

Rewriting Eq. (39), we can obtain

1
s

=
1

a0β 2−2β +1
. (40)

Since s is the ratio between the square norm of the residual vector in the next state
and the square norm of the residual vector in the current state. Rewriting Eq. (37)
and using the forward Euler scheme, we have

s =
Q(t)

Q(t +∆t)
=

Q(t)
Q(t)+ Q̇(t)∆t

. (41)

Eq. (41) can be rewritten as

1
s

=
Q(t)+ Q̇(t)∆t

Q(t)
= 1+

Q̇(t)
Q(t)

∆t. (42)

Inserting Eq. (32) into the above equation, we obtain

1
s

= 1+2β . (43)

Combining Eqs. (40) and (43), we have the following equation.

1
a0β 2−2β +1

= 1+2β . (44)

Rearranging Eq. (44), we obtain

β
2(2a0β +(a0−4)) = 0. (45)

Accordingly, we have the exact solution of β as

β =
4−a0

2a0
. (46)

From Eq. (36), it is obvious that a0 ≥ 1. Again, we can easily find that β ≤ 1.5. In
addition, the fictitious time-like function should satisfy the conditions that Q(t) > 0,
Q(0) = 1, and Q(t) is a monotonically increasing function of t, and Q(∞) = ∞. It
is obvious to know that β > 0 from Eq. (32). From Eq. (46), it is found that a0 ≤ 4
while β > 0. Accordingly, we can obtain that the appropriate value of a0 should be
1 ≤ a0 ≤ 4. That means if we hope the trajectory of the solution reamains on the
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manifold, the value of a0 should satisfy the above restriction. In the following, we
will discuss how to determine the adaptive stepsize.

A simple estimation of the stepsize is derived from Eq.(46) when 1 ≤ a0 ≤ 4 is
satisfied. Using Eq.(32) and (46) together and using the fact Q(t) = eνt , one can
derive that ∆t = 4−a0

νa0
. For the best choice of a0, the transformation matrix T is B−1

and a0=1. While that case is true and ν=1 we have ∆t=3. However, the above-
mentioned estimaion may overestimate the stepsize. The reasons come from that in
Eq.(31) and Eq.(42) approximations using the forward Euler scheme are adopted.
Then when we use the exact form of Q̇(t) in Eq.(32) may not be appropriate.

Using the Euler scheme, we have

Q(t +∆t) = Q(t)+ Q̇(t)∆t. (47)

It means that Q̇(t) = Q(t+∆t)−Q(t)
∆t .

Inserting the above equation into Eq. (32) and now using Q(t) = evt , we obtain

β =
1
2
(ev∆t −1). (48)

Accordingly, the adaptive step size is

∆t =
1
v

ln(2β +1). (49)

From Eq. (45), we can easily find the solution of ∆t if a0 and v are given. Figure
1 shows the relationship of the stepsize and a0. From Fig. 1, one can find that the
maximum value of a0 should be less than 4 because the stepsize is very close to
zero while a0 = 4. Beside, if a0 = 1 and v = 1, the stepsize is 1.3863, which is
much less than the first estimation, which is 3. To adopt smaller stepsize estimation
as Eq.(49) states is more conservative and in the followings of this article, Eq.(49)
is used to estimate the adaptive stepsize.

5 Numerical illustrations of the Dynamical Newton method

The dynamical Newton method (DNM) developed by Ku, Yeih, and Liu in 2011
can be described as follows.

ẋ =− Q̇(t)
2Q(t)

B−1F(x). (50)

To derive the DNM, the transformation matrix T is set to be B−1 or u = B−1F and
v = F. If the fictitious time function Q(t) = evt is adopted, we derive the DNM as

ẋ =− v
2

B−1F(x). (51)
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Figure 1: The a0 versus the stepsize for different values of v.

Using the forward Euler scheme, we have

xk+1 = xk− v∆t
2

[B(xk)]−1F(xk). (52)

Eq. (30) is identical to Newton’s method if we adopted ∆t = 2 and let v = 1. New-
ton’s method is a simple iterative numerical method to approximate roots of equa-
tions. However, there are some limitations such as root jumping, the divergence at
inflection points, root oscillations, and the divergence of the root. From Eq. (36),
we can easily find that the stepsize ∆t in Eq. (30) can be directly determined from
Eqs. (46) to (48) because the value of a0 is always equal to one in the evolution for
the DNM. Accordingly, we developed the DNM with the adaptive stepsize. The
following examples demonstrate the advantages of using the adaptive stepsize of
the DNM to avoid limitations mentioned above.
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5.1 Example 5.1

We first consider a simple scalar equation as

F (x) = sinx. (53)

This example is to demonstrate the root jumping can be avoided by using the DNM
with the adaptive stepsize. In this example where the function F (x) = sinx is os-
cillating and has a number of roots, one may choose an initial guess close to a root.
However, the guesses may jump and converge to some other root. In this exam-
ple, we first use the Newton method to solve Eq. (53). With the initial guess of
x = 2.4π , the nearest root is x = 2π . However, the result obtained from Newton’s
method shows that the root of Eq. (53) converges to x = 0 instead of x = 2π . Using
the DNM with the adaptive stepsize with the same initial value of x = 2.4π and
v = 0.5, very accurate solution of x = 2π with the residual to the order of 10−6

can be obtained. The root mean square norm versus the fictitious time presents the
exponential convergence as shown in Fig. 2(a). The adaptive stepsize for this ex-
ample is ∆t = 2.77 and the fictitious time step is 12 for reaching the solution. The
solution path of both methods is shown in Fig. 2(b).

5.2 Example 5.2

The second example is a simple nonlinear equation as

F (x) = (x−1)3 +0.512. (54)

Selection of the initial guess or an iteration value of the root that is close to the
inflection point of the function F (x) may start diverging away from the root in the
Newton method. This example is to demonstrate the divergence at inflection points
can be reduced by using the DNM with the adaptive stepsize. In this example,
we first use the Newton method to solve Eq. (54). With the same initial guess
of x = 5.1155 and v = 0.5, we adopted the Newton method and the DNM with the
adaptive stepsize of ∆t = 2.77. The root mean square norm versus the fictitious time
for both methods is shown in Fig. 3(a). It is found that there is a dramatic jump
when the number of step is 6 in Newton’s method. However, for our proposed
method the jump of the root mean square norm is relatively small compared to
Newton’s method. Both methods can converge to the solution of x = 0.2. However,
our proposed method converges to the solution in only 24 fictitious time steps. It is
much faster than the Newton method in which 57 iteration steps are needed for the
convergence. The solution paths for both methods are shown in Fig. 3(b) and Fig.
3(c).
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Figure 2(a): The exponential convergence for Example 5.1.
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Figure 2(b): Comparison of the solution path for Example 5.1.
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Figure 3(a): Comparison of the convergence for Example 5.2.
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Figure 3(b): The solution path of this study for Example 5.2.
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Figure 3(c): The solution path of Newton’s method for Example 5.2.

5.3 Example 5.3

The third example is a simple nonlinear equation as

F (x) = x4 +4x3 +4x2− x−1. (55)

This example is to demonstrate the oscillations of finding the root can be avoided
by using the DNM with the adaptive stepsize. Since F (−1) > 0 and F (0) < 0, it is
known that there exists a solution in (−1, 0) by the intermediate-value theorem. In
this example, we use the Newton method and the DNM with the adaptive stepsize
to solve Eq. (55). Results obtained from the Newton method shows that the root of
Eq. (55) oscillate between –1 and 0 and consequently don’t converge to the solution
if the initial value of 0 is adopted. Using the DNM with the adaptive stepsize with
the same initial value of 0 and v = 0.5, very accurate solution of x =−0.4751 with
the residual to the order of 10−6 can be obtained. The root mean square norm versus
the fictitious time presents the exponential convergence as shown in Fig. 4(a). The
adaptive stepsize for this example is ∆t = 2.77 and the fictitious time step is 12 for
reaching the solution. The solution path of both methods is shown in Fig. 4(b).
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Figure 4(a): The exponential convergence for Example 5.3.
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Figure 4(b): Comparison of the solution path for Example 5.3.
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5.4 Example 5.4

This is an example of where Newton’s method goes to the wrong solution. Consider
the equation

F (x) =
x

1+ x2 . (56)

This example is to demonstrate the divergence of finding the root can be avoided
by using the DNM with the adaptive stepsize. Clearly, x = 0 is the solution to Eq.
(56). In this example, we use the Newton method and the DNM with the adaptive
stepsize to solve Eq. (56). Results obtained from the Newton method shows that
instead of converging to the solution of x = 0, the root of Eq. (56) diverges to
infinity if the initial value of x = 0.6 is adopted. Using the DNM with the adaptive
stepsize with the same initial value of x = 0 and v = 0.5, very accurate solution of
x =−3.84×10−7 with the residual to the order of 10−6 can be obtained. The root
mean square norm versus the fictitious time presents the exponential convergence
as shown in Fig. 5(a). The adaptive stepsize for this example is ∆t = 2.77 and
the fictitious time step is 12 for reaching the solution. The solution path of both
methods is shown in Fig. 5(b).

6 Numerical illustrations of the Dynamical Jacobian-Inverse Free Method

The previous section has demonstrated the advantages of using the DNM with the
adaptive stepsize. However, for solving NAEs the computation of the inverse of
the Jacobian matrix is needed which may have limitations in cases where the de-
terminant of the Jacobian matrix is close to zero. The dynamical Jacobian-inverse
free method (DJIFM) developed by Ku, Yeih, and Liu in 2011 does not need to
calculate the inverse of the Jacobian matrix and has a great numerical stability. To
derive the DJIFM, we let the transformation matrix, T, be the identity matrix, I or
u = IF(i.e. v = BF). We have

ẋ =− Q̇(t)
2Q(t)

‖F(x)‖2

FT(x)BF(x)
F(x). (57)

If we choose the fictitious time function Q(t) = evt , we derive the DJIFM as

xk+1 = xk− v∆t
2

∥∥F(xk)
∥∥2

FT(xk)B(xk)F(xk)
F(xk). (58)

In Eq. (58), it is found that the numerator and denominator of the fraction in above
are only scalars. Accordingly, we can avoid computing the inverse of the Jacobian
matrix, and thus can improve the numerical stability. In this study, the adaptive
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Figure 5(a): The exponential convergence for Example 5.4.
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Figure 5(b): Comparison of the solution path for Example 5.4.
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stepsize ∆t in Eq. (36) can be determined from Eq. (46) for the DJIFM. To clar-
ify the characteristics of the DJIFM with adaptive stepsize, several examples were
conducted as follows.

6.1 Example 6.1

In the first example, we study the following system of two algebraic equations:

F1 (u,v) = u2 + v = 0,
F2 (u,v) =−v2 +16 = 0.

(59)

In this test, we compare the numerical stability of Newton’s method and the DJIFM
with the adaptive stepsize. We start from an initial value of (u,v) = (1, 0). Results
obtained show that the conventional Newton method and the DNM diverge because
the initial value causes singular Jacobian matrix. Since the DJIFM with the adaptive
stepsize need not compute the inverse the Jacobian matrix, with the same initial
value of (u,v) = (1, 0), and v = 0.5, very accurate solution of (u,v) = (2, − 4)
with the residual to the order of 10−6 can be obtained. The fictitious time step is
12 for reaching the solution. We set the maximum value of a0 is 3.97 to avoid the
stepsize close to zero numerically. The root mean square norm versus the fictitious
time presents the exponential convergence as shown in Fig. 6(a). The a0 versus the
fictitious time step and the stepsize versus the fictitious time step are shown in Fig.
6(b) and Fig. 6(c), respectively.

6.2 Example 6.2

In the second example, we study the following system of two NAEs:

F1 (x1,x2) = x2
1 + x2

2−2 = 0,

F2 (x1,x2) = e(x1−1) + x2
2−2 = 0,

(60)

where the Jacobian matrix is

B =
[

2x1 2x2

e(x1−1) 2x2

]
. (61)

This is an interesting example because the iteration for Newton’s method stagnates
with an initial value of (x1,x2) = (3, 5), as illustrated by Kelly (2003). The solution
search fails because the derivative of the target function,B, is nearly singular. In this
test, we investigate this example again using the conventional Newton method, the
DJIFM with the adaptive stepsize. Starting from the same initial value, (x1,x2) =
(3, 5), Newton’s method does not converge to the solution. On the other hand, our
proposed method converges to the solution of (x1,x2) = (−0.4777,−1.3311) with
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Figure 6(a): The exponential convergence rate for Example 6.1.
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Figure 6(b): Evolution of a0 for Example 6.1.
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Figure 6(c): Evolution of the fictitious time stepsize for Example 6.1.

the root mean square norm in the order of 10−6. The fictitious time step is 113 for
reaching the solution. Again, starting from the same initial value, (x1,x2) = (3,1),
Newton’s method still does not converge to the solution. With the same initial
value and v = 1.0, very accurate solution of (x1,x2) = (1,1) with the residual to
the order of 10−6 can be obtained. The fictitious time step is 46 for reaching the
solution. We set the maximum value of a0 is 3.8 to avoid the stepsize close to
zero numerically. The root mean square norm versus the fictitious time presents
the exponential convergence as shown in Fig. 7(a). The a0 versus the fictitious
time step and the stepsize versus the fictitious time step are shown in Fig. 7(b)
and Fig. 7(c), respectively. This example reveals that the proposed method has the
advantages to obtain the solution which the solution search fails in the conventional
Newton method.
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Figure 7(a): The exponential convergence rate for Example 6.2.
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Figure 7(b): Evolution of a0 for Example 6.2.
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Figure 7(c): Evolution of the fictitious time stepsize for Example 6.2.

6.3 Example 6.3

The last example to be investigated is to solve the following boundary value prob-
lem.

u′′ = 3/2u2, (62)

The boundary conditions are u(0) = 4, u(1) = 1. Equation (62) has an exact solu-
tion as follows.

u(x) =
4

(1+ x)2 . (63)

By introducing a finite difference discritization of u at grid points, we can obtain

Fi =
1

∆x2 (ui+1−2ui +ui−1)−
3
2

u2
i , (64)

with the boundary conditions of

u0 = 4, un+1 = 1 (65)
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where ∆x = 1
(n+1) .

In this example, we adopt the proposed method and let the initial value of u = 1 at
grid points and the number of the grid point n = 19 to solve Eq. (62). With v = 1.0,
very accurate solution, shown in Fig. 8(a) with the residual to the order of 10−6

can be obtained. The fictitious time step is 35 for reaching the solution. We set the
maximum value of a0 is 3.8 to avoid the stepsize close to zero numerically. The root
mean square norm versus the fictitious time presents the exponential convergence
as shown in Fig. 8(b). The a0 versus the fictitious time step and the stepsize versus
the fictitious time step are shown in Fig. 8(c) and Fig. 8(d), respectively.

7 Conclusions

In this paper, a dynamical Newton-like method with adaptive stepsize based on
the construction of a scalar homotopy function to transform a vector function of
NAEs into a time-dependent scalar function by introducing a fictitious time-like
variable is proposed. The important fundamental concepts and the construction of
the dynamical Newton-like method with adaptive stepsize are clearly addressed.
Several numerical illustrations are conducted. Findings from this study are drawn
as follows.

1. Taking advantages of the dynamical Newton-like method with adaptive step-
size, the proposed two dynamical Newton-like methods can release limita-
tions of the conventional Newton method such as root jumping, the diver-
gence at inflection points, root oscillations, and the divergence of the root.

2. The formulation derived in this study reveals that the conventional iterative
scheme can be fully described by the proposed general dynamical method if
certain fictitious time-like function and fictitious time step are adopted. In
addition, the characteristics of the convergence for solving problems can be
prescribed by the selected fictitious time function.

3. In this study, the exponential time-like function is adopted in the formulation
for finding the adaptive stepsize. Results reveal that with the use of the ficti-
tious time-like function the proposed method presents exponentially conver-
gent. Other possible fictitious time-like functions to reach a fast convergence
rate are suggested to study in the future.
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Figure 8(a): The exponential convergence rate for Example 6.3.
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Figure 8(b): Comparison of the exact solution and the computed results for Exam-
ple 6.3.
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Figure 8(c): Evolution of a0 for Example 6.3.
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Figure 8(d): Evolution of the fictitious time stepsize for Example 6.3.
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