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Modelling Mesh Independent Transverse Cracks in
Laminated Composites with a Simplified Cohesive

Segment Method

Luiz F. Kawashita1, Alexandre Bedos2 and Stephen R. Hallett3

Abstract: A methodology is proposed for modelling transverse matrix cracks in
laminated composites in a three-dimensional explicit finite element analysis frame-
work. The method is based on the introduction of extra degrees of freedom to rep-
resent the displacement discontinuity and the use of a cohesive zone model to deter-
mine damage evolution and crack propagation. The model is designed for the anal-
ysis of matrix cracks in laminates made of uni-directional fibre-reinforced plies, al-
lowing several assumptions to be made which greatly simplify the algorithm. This
was implemented in the commercial software Abaqus/Explicit as a user-defined el-
ement subroutine (VUEL). The methodology was verified via the analysis of open-
hole tension tests considering both ±45˚ and quasi-isotropic layups. The results
were found to be in qualitative agreement with experimental observations in terms
of the nucleation and propagation of matrix cracks, the progressive delamination
behaviour and the evident interactions between these damage mechanisms.

Keywords: composites, explicit, cohesive, mesh independent, fracture, delami-
nation

1 Introduction

Carbon-fibre reinforced composites manufactured from uni-directional plies are be-
coming the material of choice for large structural components in aerospace appli-
cations. The failure of these materials under quasi-static or impact overloading is
highly complex and usually involves a combination of three damage mechanisms,
namely delamination, transverse cracking and fibre failure [Green et al. (2007),
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Hallett et al (2009)]. In order to achieve optimal designs in terms of weight reduc-
tion, damage tolerance and extended service life the progressive damage behaviour
of the material must be predicted with accuracy. The interactions between the dif-
ferent damage mechanisms can be very complex and difficult to model using analyt-
ical or numerical methods. For this reason much of the design of high-performance
composite structures still relies on large amounts of experimental testing which are
both costly and time-consuming.

In many cases an accurate analysis of the progressive failure of composites requires
the use of fracture mechanics considerations. The ability to model fracture pro-
cesses within the finite element analysis framework has improved considerably af-
ter the introduction of robust numerical tools such as the virtual crack closure tech-
nique (VCCT) [Rybricki and Kanninen (1977)] and cohesive zone models (CZM)
implemented in the form of interface elements [e.g. Alfano and Crisfield (2001),
Camanho et al. (2003), Yang and Cox (2005), Pinho et al. (2006), Jiang et al.
(2007)]. However, a major drawback of these methods is that they require a priori
knowledge of the possible paths of each crack. This is not a significant problem for
delamination which always occurs along well defined inter-ply interfaces; however
it is difficult to pre-determine the locations of intra-ply transverse matrix cracks.
Including these cracks in the finite element mesh additionally makes it extremely
complex and too costly for practical industrial use. It has however been shown that
interaction between matrix cracks and delamination has a critical part to play in
determining the overall failure process [Green et al. (2007), Hallett et al. (2009)].

It is possible to model cracks and other discontinuities independently of the mesh
definition via the introduction of enrichment functions in the finite element ap-
proximation. The extended finite element method (XFEM) [Belytschko and Black
(1999)], which makes use of the partition of unity property of finite element shape
functions [Melenk and Babuska (1996)], has been studied extensively in the past
decade for various problems involving static or moving discontinuities [Fries and
Belytschko (2010)]. Several variants and further developments have also been pro-
posed, and of particular relevance are the consideration of cohesive cracks [Wells
and Sluys (2001), Möes and Belytschko (2002)], the description of the discontinu-
ity using phantom nodes [Hansbo and Hansbo (2004), Song et al. (2006), van der
Meer and Sluys (2009)], the analysis of multiple overlapping cohesive segments
[Remmers et al. (2003)] and the analysis of dynamic crack growth [Menouillard et
al. (2006), Song et al. (2008), Nistor et al. (2008), Remmers et al. (2008)]. Al-
though a number of codes have been developed for academic purposes, commercial
implementations of XFEM are still in their infancy and may lack the robustness to
solve problems involving multiple cracks in complex structures.

The aim of the present work was to develop and implement a simple and effec-
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tive algorithm for the analysis of mesh-independent transverse cracks in laminated
composites. This was intended to be a high-fidelity modelling tool for ply-level
models solved using explicit time-integration schemes. The use of explicit finite
element analysis has been found to be greatly beneficial in overcoming conver-
gence difficulties of implicit analyses in the case of highly non-linear and unstable
composites failure, even when loading is quasi-static [Jiang et al. (2007), Hal-
lett et al. (2009), Kawashita and Hallett (2012)]. Particular emphasis was placed
on numerical robustness so that the technique could be applied in the analysis of
realistic composite structures typical of aerospace applications. The formulation
presented here was specifically designed to model laminates made from unidirec-
tional plies. Therefore several assumptions could be made which greatly simplified
its implementation, enabling its introduction in the commercial finite element soft-
ware Abaqus/Explicit by means of a user-defined element subroutine.

The model presented here is the result of an effort to develop a practical method
for modelling transverse cohesive cracks in ply-level meshes using explicit finite
element software. The main aim was to replace the use of pre-defined crack paths
adopted in previous work [e.g. Jiang et al. (2007), Hallett et al (2009)] with mesh-
independent cohesive cracks that followed a similar set of assumptions.

It should be noted that there is a large body of literature on the analysis of strong
discontinuities and discrete cohesive cracks in finite element models. Relevant pa-
pers include Song et al. (2006), van der Meer and Sluys (2009), Armero and Linder
(2009) among others. The model proposed here presents however a combination
of features that results in great simplicity in terms of its implementation, which
translates into numerical robustness and the ability to analyse large realistic prob-
lems. These features include (i) a series of simplifying assumptions suitable for the
analysis of laminates, (ii) the use of an explicit solver, and (iii) the compatibility of
the code with user-defined element subroutines found in commercial finite element
software.

The next section describes in detail the characteristics of the algorithm and the
main assumptions made. In Section 3 test cases are analysed which demonstrate
the ability of the model to predict the initiation and propagation of multiple matrix
cracks.

2 Model formulation

2.1 Element formulation

The baseline formulation for ‘undamaged’ elements is the 8-node fully-integrated
linear isoparametric hexahedral element. Once a discontinuity is introduced, the
domain is sub-divided using linear pentahedral elements as will be discussed later.
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A linear-elastic orthotropic constitutive law is used to model the fibre-reinforced
plies. However, in order to allow future developments of the code (e.g. the imple-
mentation of continuum damage models and rate-dependent material behaviour),
the constitutive law has been written in terms of an objective stress rate, which
also makes the user-defined elements consistent with the elements provided in
Abaqus/Explicit. The stress rate is based on the rate-of-deformation tensor D and
the spin tensor W,

D =
1
2
(
LT +L

)
, and W =

1
2
(
L−LT ) , (1)

where L is the velocity gradient. The constitutive law is then written in rate form
based on the Jaumman stress rate given by,

σ̇σσ = C : D+W ·σσσ +σσσ ·WT , (2)

where C is the material stiffness matrix. When evaluating the constitutive equation,
a full Gauss quadrature is used as depicted in Figure 1a (which shows a planar
representation of the 3D elements).

original nodes
extra nodes
integration points

 
(a)   (b) 

 Figure 1: Planar representation of a fully-integrated 3D hexahedral element (a)
which is split into pentahedral sub-domains with the introduction of extra nodes
(b).

2.2 Displacement discontinuity and extra nodes

When the element is ‘damaged’ a strong discontinuity is introduced so that two
independent displacement fields exist. To resolve the displacement jump between
these fields, eight ‘extra’ nodes are introduced as shown in Figure 1b. These nodes
are initialised as four coincident pairs so that the initial displacement jump across
the discontinuity is zero. Their initial displacements and velocities are obtained
by linear interpolation of nodal values from the original hexahedral element. For
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example, the velocities of a new node located at the parametric coordinates ξξξ are
initialised by,

v(ξξξ ) =
8

∑
n=1

Nn(ξξξ ) vn, (3)

where Nn are the standard shape functions of the original isoparametric element
and vn are the velocities at the original nodes. Because the extra nodes are initially
positioned along an edge of the original element, equation (3) simplifies to a linear
interpolation between two nodes only.

In order to consider the two displacement fields independently a change is required
from the original integration scheme. The hexahedral element is therefore ‘trian-
gulated’ into multiple pentahedral sub-domains with two integration points each
(which appear as one in the top view of Figure 1b). Stresses and other state
variables are projected onto the new integration points using the same standard
shape functions Nn. This requires the use of modified parametric coordinates ξ̄ξξ

in the range ξ̄i ∈
[
−
√

3,
√

3
]

so that the coordinates of the original Gauss points
ξi =±1/

√
3 become ξ̄i =±1. For example, the stresses at a new integration point

with coordinates ξ̄ξξ are given by,

σσσ

(
ξ̄ξξ

)
=

8

∑
n=1

Nn

(
ξ̄ξξ

)
σσσn, (4)

where σσσn are the stresses at the original Gauss points.

Once the element has been divided into sub-domains and the new nodes and inte-
gration points have been initialised, the element operations (interpolation of field
variables, evaluation of the constitutive equation and integration of internal forces)
are then performed for every sub-domain independently using the appropriate shape
functions for the linear pentahedral element.

The code is structured to cope with changes in the interpolation and integration
schemes with minimal disruption to the solution. This is also facilitated by the
‘element-by-element’ nature of the explicit solution algorithm which does not re-
quire the assembly of global matrices. At the start of the simulation enough mem-
ory is allocated for each element taking into account the maximum number of inte-
gration points and extra nodes that could be required upon fracturing. The element
computations are coded in a way that allows for simple looping over multiple sub-
domains of either hexahedral or pentahedral formulation. Although the initialisa-
tion of new nodes and integration points require a number of additional operations,
they are performed only once when an element fractures. After that, two pentahe-
dral sub-domains will have roughly the same computational cost of one hexahedral
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element for interpolation and integration. However further computational costs will
incur with the introduction of a cohesive segment as described next.

2.3 Cohesive law

Damage evolution and crack propagation are determined using a cohesive zone
modelling (CZM) approach. This method avoids the need for treating singular
or oscillatory stress fields that appear in linear elastic analyses because the grad-
ual softening behaviour of the interface ensures finite tractions within the cohesive
zone. It is also a proven modelling tool for analysing composites delamination and
fracture [Petrossian and Wisnom (1998), Alfano and Crisfeld (2001), Camanho et
al. (2003), Yang and Cox (2005)] and is particularly robust when using explicit
time-integration [Pinho et al. (2006), Jiang et al. (2007)]. The main disadvantage
of CZM is the requirement for good resolution of the cohesive zone ahead of the
crack tip, which means that relatively fine meshes are usually needed for accuracy
[Turon et al. (2007), Harper and Hallett (2008)].

The eight extra nodes added to each fractured element form a quadrilateral cohe-
sive segment where the displacement jump is interpolated linearly. Here a single
cohesive integration point is used for simplicity, as this has been shown to be accu-
rate in practical applications [Hallett et al. (2009)]. The mixed-mode formulation
presented by Jiang et al. (2007) is employed, and the reader should refer to that
article for further details about the model. Traction-separation laws of linear soft-
ening are assumed as shown in Figure 2a. The subscripts I and II refer to mode-I
(opening) and resultant mode-II (shear) respectively, while the subscript m denotes
an arbitrary mode-mixity. The superscripts e and f refer to the critical separations
at the elastic limit and failure, respectively.

To initiate fracture a quadratic criterion is used, i.e.√√√√√(〈σ22〉
σmax

I

)2

+


√

(σ12)
2 +(σ23)

2

σmax
II

2

= 1, (5)

where the numerical indices follow the usual notation for composite materials (1
for the fibre direction and 3 for the out-of-plane direction), σmax

I and σmax
II are

the cohesive strengths in mode-I and mode-II, respectively, and 〈•〉 denotes the
McCauley operator. It should be noted that equation (5) is based on the assumption
that the transverse crack is orthogonal to the plane 1-2 of the material. In reality, the
presence of transverse shear stresses σ23 may cause the transverse crack to initiate
at a different angle with respect to the plane 1-2. This could require lower resultant
shear stresses for crack initiation, however it would also produce larger crack areas
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Figure 2: (a) mixed-mode bilinear traction-separation law and (b) decomposition
into mode-I (opening) and mode-II (shear) components

which would dissipate more cohesive energy. Therefore equation (5) is thought to
offer a good approximation especially for laminates containing large numbers of
thin plies.

For damage propagation a power-law interaction is assumed between the strain
energy release rates (SERR) in modes I and II,(

GI

GIC

)n

+
(

GII

GIIC

)n

= 1, (6)

where GIC and GIIC are the critical SERR for pure modes I and II respectively. The
power-law coefficient n is found by fitting experimental data from mixed-mode
tests. This coefficient was set to 1 in this work, which gives a good fit for the mate-
rial under consideration [Jiang et al. (2007)]; therefore equation (6) will retrieve a
linear interaction criterion.

The graphical interpretation of the adopted mixed-mode formulation is shown in
Figure 2b. The ratio between modes I and II is estimated at every time step based
on the current ratio between the displacement jump components. Again following
the usual notation for composite materials we have,

δI = 〈δ22〉 and δII =
√

(δ12)
2 +(δ23)

2. (7)
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Overclosure of the crack surfaces is minimised with the enforcement of a constant
penalty stiffness of magnitude KI which opposes the interpenetration of the surfaces
when δI is negative. Frictionless contact is assumed throughout.

When a cohesive segment is introduced in a pristine element, the initial displace-
ment jump must be zero while the initial cohesive tractions must match the local
stress state. Therefore, the use of a cohesive law of finite stiffness requires the
traction-separation curve, Figure 2a, to be ‘shifted’ to the left so that the maxi-
mum traction occurs at zero separation [van der Meer et al. (2012)]. This shifted
displacement jump is defined as,

δ̃ = δ −δe, (8)

which applies to both modes of loading (I and II).

Equation (8) shows that if the stresses in the vicinity of an active cohesive segment
are relaxed the interface will acquire a residual displacement jump of −δe. This
means that a small permanent deformation is introduced locally whenever a new a
cohesive segment is initialised, with its magnitude being inversely proportional to
the assumed cohesive stiffness. Although this residual deformation is unwanted, its
effects will be minor and only observable if active cohesive segments are unloaded
prior to failure. Therefore this effect will be negligible when compared for example
with the global stiffness change that is introduced when potential cracks are meshed
using cohesive elements.

2.4 Time-integration scheme

The extra nodes introduced when an element splits are not accessible to the Abaqus/Explicit
solver and therefore must be managed and updated inside the user sub-routine. Fol-
lowing the assembly of the internal force vector, the extra nodes are updated via a
modified central difference rule. At a given time increment k, the half-step veloci-
ties are obtained via,

uk+1/2 = uk−1/2 +
∆tk−1/2 +∆tk−1/2

2
(M−1finf), (9)

where M is the diagonal mass matrix, ∆t is the time step size and fint is the internal
force vector. The nodal displacements for the increment k +1 are then given by,

uk+1 = uk +∆tk+1/2 u̇k+1/2. (10)

The splitting of elements and the introduction of cohesive segments may generate
local stress imbalances that can result in high-frequency ‘noise’ in the dynamic so-
lution. Depending on the amplitude of these oscillations and the size of the newly
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created sub-domains numerical instabilities can arise. Therefore an optional vis-
cous damping term c is defined so that the velocity update for extra nodes becomes,

u̇k+1/2 = u̇k−1/2 +
∆tk−1/2 +∆tk+1/2

2
[
M−1 (fint − c u̇k+1/2

)]
. (11)

It should be noted that viscous damping will reduce the stable time increment and
may generate spurious forces under rigid body motion, so this parameter should be
used with caution. In the present work, and when necessary, appropriate values for
c were determined ‘empirically’ by performing series of simulations, starting with
c= 0 and increasing this value until the numerical instability was overcome.

All the results presented in this paper have been analysed using a range of values
for the mass scaling and viscous damping parameters to verify the sensitivity of
the results to these values. It has been observed that the peak loads and patterns
of matrix cracks and delaminations are relatively insensitive to these parameters as
long as the dynamic effects are negligible, as measured e.g. by the ratio between
the amplitudes of the introduced vibrations with respect to the monotonic (‘quasi-
static’) deformations, and the ratio between the kinetic and internal energies. This
has confirmed previous observations using pre-defined crack paths, e.g. in Jiang et
al. (2007) and Hallett et al. (2009).

2.5 Orientation and continuity of crack paths

When modelling fracture in isotropic materials, the direction of crack propagation
is unknown and will depend on the stress state near the crack tip. However for
matrix cracks in unidirectional composite plies the crack will always propagate
parallel to the fibre direction, since the strength of the material along this plane
is much lower than across the fibres. Therefore in the proposed model the in-
plane direction of crack propagation is determined directly from the local fibre
orientation. Moreover, along the thickness direction the crack will follow the 3-
direction of the element coordinate system, so it will always be orthogonal to the
ply surface as shown in Figure 3. As pointed out by van der Meer et al. (2012)
the assumption of orthogonal through-thickness cracks is valid for in-plane tensile
loading. However under compression the fracture planes will usually be ‘slanted’ at
a certain angles which will depend upon the local stress state at the time of initiation
[Puck and Schurmann (2002), Dávila et al. (2005)]. Since the analysis of in-plane
compression is beyond the scope of the present work, such capability has not been
required here.

Because the extra nodes are not ‘visible’ to the Abaqus/Explicit solver, no data re-
lated to them is written to the standard output database. Therefore algorithms had
to be introduced in the user-defined subroutine to perform the writing of custom
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Figure 3: Crack propagation in a 60˚ off-axis tensile test, (a) original mesh and (b)
after the nucleation and propagation of a solution-dependent crack

data files at regular time intervals. These files contained various types of data in-
cluding the coordinates of original and extra nodes, stress and strain components,
state variables etc. Generic visualisation software could then be used to access,
visualise and manipulate these data.

Because a CZM approach is used, no singularities will exist at the ‘numerical’ crack
tip (i.e. the tip of the cohesive zone); however the mesh must be fine enough to
provide a good resolution of the cohesive tractions [Harper and Hallett (2008)]. So
in contrast to linear-elastic analyses, no special treatment is required for the crack
tip element. Therefore the model could be further simplified via two assumptions,
namely (i) the crack propagates in a stepwise fashion, fully traversing elements
at once, and (ii) the displacement jump vanishes at the element edge where the
numerical crack tip lies. These assumptions are not uncommon in the analysis of
cohesive cracks [e.g. Remmers et al. (2003) and van der Meer and Sluys (2009)].

Figure 4 illustrates the crack propagation behaviour. If no cracks exist in the vicin-
ity of the element when the initiation criterion is met [equation (7)], the crack will
pass through the critical integration point as shown in Figure 4a. Once introduced,
the cohesive segment will cross the entire element, but the displacement jump will
be zero before the crack propagates. On the other hand, if a crack already exists
in the vicinity of the element, the situation depicted in Figure 4b takes place. In
this case the continuity of the path is enforced independently of the location of the
critical integration point. Neighbouring elements will then ‘share’ the extra nodes
activated along the common edge, while the newly created nodes will remain con-
strained until the crack propagates further.
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Figure 4: Introduction of a new cohesive segment within the element

2.6 Time-step considerations

Explicit schemes such as the central difference method utilised here are only con-
ditionally stable, requiring the time increment size to be below a critical maximum
to ensure numerical stability. This critical time increment is given by the Courant
criterion,

∆tcrit =
le
w

, (12)

where w is the speed of sound in the material and le is the smallest equivalent
element length in the direction of wave propagation. Because the ply thickness is
constant, the element lengths in the 3-direction will usually be constant (in ply-level
models). Moreover, if the mesh is of good quality then the in-plane aspect ratio of
the elements will be close to 1. Following these assumptions, equation (12) may be
approximated as,

∆t̄crit =
√

A
ρ

E11
, (13)

where ρ is the material density, E11 is the elastic modulus in the fibre direction,
and A is the in-plane area of the smallest integration sub-domain in the model.
Equation (13) shows that as the integration volume approaches zero the critical
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stable increment vanishes. Therefore in order to avoid extremely small time steps
(and consequently extremely expensive solutions) some level of control is required
over the sub-domain size. In the proposed model this control is achieved via the
definition of a single scalar safety factor α , so that the minimum sub-domain length
is set to be L α , where L is the characteristic length of the original (parent) element.
This concept is illustrated in Figure 5, again using a planar representation of 3D
elements. In this example, because the mesh is structured and the element size is
constant, the length L α can be seen as a critical radius surrounding every node. If
the predicted path of a propagating crack (dashed line) intersects an element edge
at a distance smaller than L α , two options exist. If the distance is greater than
or equal L α/2, the intersection point is moved away from the node to enforce a
minimum sub-domain size, as shown by the solid line in Figure 5a (an example of
this can be seen in Figure 3b). However, if the distance is smaller than L α/2, the
crack is set to pass exactly through that node, Figure 5b. It should be noted that
many other patterns of crack propagation deriving from these assumptions are also
taken into account, including cracks running along element boundaries, elements
being split exactly into two pentahedrals, etc.

L

Radius L·

Radius L·

L

Propagating crack

Ideal path
Modified path

Propagating crack

Radius L·

Radius L·

 
(a)    (b) 

 Figure 5: Changes to the crack path for time-step considerations; (a) enforcing a
minimum sub-domain size or (b) intersecting a node.

In the present work the value of α= 0.1 has been assumed throughout. Figure 6
shows an example of crack propagation in an unstructured mesh using this value.
It can be seen that the effective crack paths are not perfectly straight lines, however
the effects of such small deviations are thought to be negligible. Additionally,
deviations are minimised as the mesh is further refined.

For α= 0.1, the value of A for the smallest sub-domain in Figure 5a is 200 times
lower than that for the original element. Therefore in this case the stable time in-
crement ∆t̄crit would drop by a factor

√
200 upon crack propagation, which would
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Figure 6: Crack propagation in an unstructured mesh showing small deviations
from ideal straight lines

mean a larger than 14-fold increase in run time. For the simulation of quasi-static
loading, one alternative is to use a selective mass-scaling procedure. This is done
by scaling the material density ρ for every sub-domain individually so that their
stable increments ∆t̄crit remain the same as for the original element. The total mass
of the fractured element will then be the mass of the original element multiplied by
the number of sub-domains generated (one, two or four depending on the splitting
pattern). However, the percentage mass increase in the model will often be negli-
gible since elements are usually small, and this effect will also be minimised with
further mesh refinement.

2.7 Crack density control

Because the elements can be intersected by one discontinuity only, crack branching
and intersection are not allowed. If two parallel cracks attempt to traverse the
same element then one will arrest permanently at the element edge. Therefore
an artificial control over the maximum density of cracks must be introduced. This
type of control is often used when modelling crack initiation in solids using mesh-
independent methods [e.g. Iarve (2003), van der Meer and Sluys (2009)].

In the present work the crack density is indirectly controlled via the definition of
a critical radius from the ‘numerical’ crack tip (i.e. the beginning of the cohesive
zone) within which no further crack initiation is allowed to occur. The procedure
is illustrated in Figure 7. The initiation is suppressed for all elements whose cen-
troids lie within the radius Rmin from an active numerical crack tip (shaded elements
Figure 7), except for the element directly adjacent to it.

As this procedure is meant to avoid unwanted crack ‘intersections’, the definition
of an appropriate radius Rmin will depend on the size of the largest elements in the
mesh, Lmax. Therefore the theoretical lower bound for the critical radius should be
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Rmin

Zone of suppressed initiation

Crack  
Figure 7: Illustration of the crack density control algorithm. Initiation is suppressed
within a radius Rmin from the beginning of the cohesive zone, except for the element
directly adjacent to it

Rmin > Lmax (although as will be shown in later sections a safety margin should
be applied to this value). On the other hand the radius Rmin should be as small
as possible to minimise its interference on the analysis and allow true solution-
dependent crack initiation. For the notched tensile tests analysed here the range of
values under consideration was Lmax < Rmin < 2Lmax.

3 Analysis of open-hole tension tests

Prior to the analysis of more complex cases, the model presented here has been veri-
fied extensively using simpler meshes subjected to various load configurations. The
results have been compared with those obtained with the use of pre-defined crack
paths in Abaqus/Explicit using the continuum hexahedral elements type C3D8 and
the cohesive elements type COH3D8. Virtually identical results have been obtained
in terms of strains and stress distributions and global force-displacement behaviour
when the same mesh, boundary conditions and material properties were used (the
model proposed here outputs the location of the cracks in the undeformed config-
uration, which then facilitates the construction of the equivalent model using pre-
defined crack paths for comparison). However, in order to investigate the ability
to reproduce the interactions between delaminations and matrix cracks, open-hole
specimens have been analysed and we focus on these results in this paper.

Open-hole tension tests are practical and effective methods to evaluate the pro-
gressive damage behaviour of laminates [Green et al. (2007), Hallett et al. (2009)].
These tests have the major advantage of generating a controlled stress concentration
around the open hole which promotes the initiation and propagation of the various
damage modes in a reproducible manner. The small specimen geometry proposed
by Green et al. (2007) was considered here with a width of 15.875 mm, a hole
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diameter of 3.175 mm and a gauge length of 63.5 mm (of which only the central
31.75 mm are modelled in the finite element analysis). The material investigated in
this work is the Hexcel® IM7/8552 pre-preg system, and its basic mechanical prop-
erties have been provided by Jiang et al. (2007) and are summarised in Tables 1 and
2. The cohesive stiffnesses KI and KII in Table 2 were estimated from the isotropic
mechanical properties of the resin system, i.e. a Young’s modulus E= 4.67 GPa and
Poisson’s ratio ν= 0.33, assuming that the interfacial stiffness represents the elastic
deformation of a resin-rich layer of 0.01 mm in thickness [Kawashita and Hallett
(2012)]. Two different layups were considered as described next.

Table 1: Elastic properties for unidirectional IM7/8552 laminates

E11 E22 E33 ν12 ν13 ν23 G12 G13 G23
[GPa] [GPa] [GPa] [GPa] [GPa] [GPa]
161.0 11.38 11.38 0.32 0.32 0.436 5.17 5.17 3.962

Table 2: Cohesive properties for unidirectional IM7/8552 laminates

GIC GIIC σmax
I σmax

II KI KII

[N/mm] [N/mm] [MPa] [MPa] [N/mm3] [N/mm3]
0.2 1.0 60 90 4.67×105 1.75×105

3.1 ±45˚ layup, [+452/-452]S

Open-hole tension tests using a symmetric [+452/-452]S layup have been proposed
recently as a benchmark for validating and comparing XFEM codes [Oguntoye and
Hallett (2011)]. The specimen dimensions and the adopted finite element mesh are
shown in Figure 8. The cured ply thickness was 0.125 mm. Only a half-model
was required due to the through-thickness symmetry. Each ply block (containing
two plies) was meshed with one element through the thickness and modelled us-
ing the proposed user-defined elements. The interface between the ply blocks was
modelled using the cohesive elements COH3D8 provided by Abaqus/Explicit. A
rather coarse mesh was used in this study with element sizes varying gradually
from 0.125 mm around the open-hole to 0.5 mm at the extremities. This resulted
in 14,696 continuum elements, 7,348 cohesive elements and 30,032 nodes for the
half-model. In order to analyse quasi-static loading with acceptable run times, a
global mass-scaling procedure was used with a density scale factor of 105, resulting
in a stable time increment of approximately 2×10−6 s (which includes appropriate
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safety factors). In order to reduce the computational cost associated with the analy-
sis of these quasi-static tests with a serial explicit dynamic code, the thermal resid-
ual stresses have been neglected. This resulted in considerably shorter run times as
this avoided the initial ‘thermal’ step in the calculation. Loading was introduced
via the application of smoothly-varying displacement boundary conditions to both
ends of the model. The crack density control parameter was Rmin= 1 mm and a
viscous coefficient c= 10−4 kg s−1 was assumed. Simulations were run up to com-
plete specimen separation, which was achieved after approximately 160,000 time
increments and an extension of 0.51 mm. A typical double-precision job running
on a single CPU clocked at 3 GHz took approximately 11 h to complete. In its cur-
rent version, the code cannot run in ‘parallel’ execution mode using multiple CPUs.
Considerable reductions in run-time could be achieved with the parallelisation and
optimisation of the code, and this is the focus of ongoing work.

31.75 mm

15.875 mm

1 mm

hole diameter: 
3.175 mm

 
Figure 8: FE mesh for the open-hole tension specimen, layup [+452/-452]S

Figure 9 shows a typical deformed mesh after failure. The overall pattern is very
similar to that observed experimentally by Oguntoye and Hallett (2011), with ma-
trix cracks running from the sides of the open-hole towards the edges of the spec-
imen, combined with widespread delamination allowing complete specimen sepa-
ration. Results are presented in terms of the applied ‘far-field’ stress which is de-
fined as the total applied load divided by the gross cross-sectional area. Figure 10
shows the resulting stress-extension data for this test. Also shown for comparison
are the average experimental failure stress and the numerical results presented by
Oguntoye and Hallett (2011). The latter were obtained using the XFEM capability
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Figure 9: Pattern of matrix cracks after complete separation for the open-hole ten-
sion specimen, layup [+452/-452]S (top and bottom views of a half-model through
the thickness)

provided by Abaqus/Standard assuming the same set of material properties shown
in Tables 1 and 2 and using two levels of mesh refinement (it should be noted that
the XFEM tool in Abaqus/Standard is in fact a phantom node/CZM formulation)
[Dassault Systèmes (2010)].

It can be seen that the numerical failure stress obtained with the proposed model is
approximately 30% higher than the experimental average value; however it is very
close to the XFEM predictions, especially those with a coarse mesh. The main
reasons for the differences observed with respect to the experimental failure stress
are believed to be (i) the absence of flaws in the numerical model as opposed to real
specimens, which might contain imperfections especially after the drilling process;
(ii) the assumption of linear elastic in-plane shear behaviour; and (iii) the absence
of thermal residual stresses in the model.

The differences between the proposed model and the XFEM analyses are attributed
to different reasons. Firstly, the use of explicit time integration, mass-scaling and
a viscous damping parameter are likely to have contributed to an artificially higher
failure stress (although the XFEM formulation also makes use of a viscous regular-
isation scheme). Secondly, the XFEM capability only accounts for the propagation
of one crack at a time within the enrichment domain [Dassault Systèmes (2010)],
while a larger number of cracks is considered in the present work.

The interactions between matrix cracks and delaminations predicted with the pro-
posed model are illustrated in Figure 11, where maps of activated cohesive seg-
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Figure 10: Stress-extension data for the open-hole tension specimen, layup [+452/-
452]S (symbols mark the times shown in Figure 11)

ments are superimposed to the contours of delamination damage at different points
in time. It should be noted that the crack patterns in Figure 11 represent all ini-
tialised cohesive segments including those with nonzero cohesive tractions. It can
be seen that the delamination pattern is clearly influenced by the location of ma-
trix cracks. Delaminations initiated near the open hole and propagated towards the
edge of the specimen following the paths of propagating matrix cracks. The ma-
jor load drop in Figure 10 is associated with delamination propagation across the
whole specimen width. A sharp load drop would be expected at this point; however
the mass-scaling procedure combined with the use of a viscous damping parameter
resulted in a more gradual load drop.

3.2 Quasi-isotropic (QI) layup, [+452/902/-452/02]S

The second test case is the open-hole tension specimen with a ply-level scaled
quasi-isotropic (QI) layup, i.e. [452/902/-452/02]S [Green et al. (2007)]. The finite
element meshes and model assumptions in this case were very similar to those
used in the previous example. However the model was nearly twice as large with
4 ply blocks and 3 interfaces (for the half-model) with a total of 29,391 continuum
elements, 22,044 cohesive elements and 60,064 nodes. In this case a job with the
same number of time increments (160,000) took approximately 22 h to complete
(again neglecting thermal residual stresses).

In order to investigate the influence of the crack density parameter, two different
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Figure 11: Interaction between matrix cracks and delamination for the open-hole
tension specimen with layup [+452/-452]S
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values for Rmin were considered, namely 1.0 mm and 0.5 mm. ‘Failure’ of the
specimen was defined as the point in time where delaminations propagated across
the full width. Typical patterns of matrix cracks at failure are shown in Figure 12.
Again it should be noted that all activated cohesive segments are displayed and not
only fully failed segments. The patterns were similar for both cases, although a
larger number of cracks was observed for the smaller value of Rmin.

0°

-45°

90°

+45°

Rmin= 1.0 mm

Rmin= 0.5 mm

 
Figure 12: Typical patterns of matrix cracks for the open-hole tension specimen
with QI layup [452/902/-452/02]S (half-model through the thickness)

The resulting stress-extension curves are shown in Figure 13, where the average
experimental failure stress reported by Green et al. (2007) is also plotted for com-
parison. It can be seen that the use of Rmin= 0.5 mm resulted in oscillatory be-
haviour and numerical instability prior to final failure. This was caused by spurious
crack arrests due to the excessive proximity between neighbouring cracks. Al-
though 0.5 mm is the exact maximum element length in the adopted mesh, it was
not an appropriate choice for the radius Rmin because the algorithm enforces a min-
imum distance between active crack tips and not between cracks. This shows that
a safety margin should be applied when determining appropriate values of Rmin for
a given mesh size.

The analyses with Rmin= 1.0 mm on the other hand did not suffer from oscillations
or instability. Nevertheless, similarly to what was observed for the ±45˚ layup the
numerical failure stresses were considerably higher than the experimental value.
Possible reasons for the discrepancy are identified as the likely presence of defects
in real specimens, the the disregard of thermal residual stresses and the absence of
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Figure 13: Stress-extension curves for the open-hole tension specimen of quasi-
isotropic layup, [452/902/-452/02]S.

damage model that accounts for local fibre breakage. The absence of a sharp load
drop upon failure also suggests that the combination of mass-scaling and viscous
damping may have contributed to a higher predicted failure stress as discussed
earlier. However due of the presence of 0˚ plies (and the absence of a model for
fibre failure) the applied load was not expected to return to zero after complete
delamination.

The delamination and transverse cracking behaviour for both values of Rmin was
similar, with the case Rmin= 0.5 showing more damage for similar levels of ap-
plied stress. This is illustrated in Figure 14 where delamination damage and matrix
cracking are compared for the same applied load (which corresponds to 85% of the
failure load for Rmin= 1.0 mm).

Delaminations and matrix cracks initiated near the edge of the hole at relatively low
loads. Upon further loading, interface damage was observed also near the outer
edges of the specimen especially along the +45o/90o ply interface. Interactions be-
tween matrix cracks and delaminations are evident throughout the damage process.
Matrix cracks extending along the full width were first observed in the surface plies
(+45o). This promoted the ‘joining-up’ of the delaminations propagating from the
open-hole and the specimen edge along the +45o/90o ply interface, which was then
followed by the catastrophic failure of the specimen.

Good qualitative agreement was observed between these results and the experi-
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Figure 14: Delamination damage in the open-hole specimen (ply-level scaled quasi-
isotropic layup) at 85% of the numerical failure load

mental and numerical observations reported by Hallett et al. (2009). However their
predicted failure stress using pre-defined cohesive cracks was considerably lower
at 434 MPa. This could be in part due to the different hole geometries as well as
the assumed number and location of matrix cracks. However the coarser meshes
used in the present work and the introduction of viscous damping in the formulation
of matrix cracks are thought to be major factors contributing to the higher failure
stresses observed here.

The use of standard cohesive elements to model delamination is another possible
source of errors. This is because the cohesive element will remain connected to
the original nodes even if these are on different sides of a discontinuity. In other
words, the displacements will continue to be interpolated linearly within the co-
hesive element even after discontinuities have been introduced across the surface.
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However, because each cohesive element usually covers a small surface area, these
effects will be small and will also be minimised with further mesh refinement. One
solution to this problem would be to evaluate the cohesive law directly at nodes
instead of using interpolation via cohesive elements, as discussed in van der Meer
et al. (2012). Although such a ‘discrete’ cohesive element is not readily available
in Abaqus/Explicit, it could be implemented in the form of a user-defined nonlinear
‘spring’ element as described by Jiang et al. (2007). This is left as a recommenda-
tion for future work.

4 Conclusions

A method has been proposed for the introduction of mesh-independent transverse
cracks in finite element models analysed using explicit time-integration. The method
supports the initiation and propagation of large numbers of solution-dependent
cracks and uses a cohesive zone modelling approach to describe crack propaga-
tion. Because the formulation is designed for the analysis of matrix cracks in uni-
directional composite plies, several assumptions could be made which simplified
the formulation considerably. This enabled its implementation as a user-defined
element subroutine in the commercial software Abaqus/Explicit. The model was
verified via the analysis of open-hole tension tests with two different layups. Com-
parisons were made with experimental observations and numerical results available
in the literature. Qualitative agreement was observed in terms of the nucleation and
propagation of transverse cracks, predicted delamination patterns and the interac-
tions between damage mechanisms. However the predicted failure stresses were
considerably higher than those observed experimentally. Possible reasons include
(i) the likely presence of defects in real specimens, (ii) the use of coarse meshes
and (iii) the absence of thermal residual stresses in the analyses. The latter two are
consequences of the long run-times observed for each analysis when using a serial
version of the code. The parallelisation and optimisation of the code are the focus
of ongoing work which aims at addressing these issues.
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