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Abstract: In this paper, a loose coupling multiscale modeling technique for the
detailed numerical analysis of critical areas in composite structures is presented.
It is used to describe the global (macroscopic) behaviour of composite structures
taking into account the effects of local phenomena. This is done by indirectly con-
necting the global and local FE-models. Prescribed displacements are assigned to
the local boundaries in the transition from the global to local modeling level. The
local-to-global transition is realized by assigning averaged local stresses to the re-
spective global Gauss points and by updating the global tangent stiffness operator.
To illustrate the feasibility of the approach and to verify its implementation in the
commercial FE code ABAQUST M by user-defined subroutines and scripts, a test
case for a solid-to-solid coupling has been investigated. A comparison of the re-
sults of the multiscale approach with numerical reference solutions shows that the
implementation works appropriate.
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1 Introduction

Composite materials have gained a large influence in the aircraft industry over the
last decades due to their high specific stiffness and strength. Still, a lot of challenges
have to be met in the design stage. Computationally efficient failure analysis tools
have to be developed to achieve an economical and reliable design of composite
aircraft structures. By the suitable combination of large scale or macroscopic and
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small scale or microscopic FE models, multiscale FE analysis satisfies this demand.
The idea is to combine the advantages of two or more modeling levels. Sufficiently
accurate results are obtained at the global scale at reasonable computational cost
without omitting the influence of relevant physical phenomena at the smaller scale.
Such phenomena include process-induced defects like porosity, fibre waviness or
micro-cracks in the matrix material. In the context of multiscale modeling, the
term “loose coupling” refers to the indirect connection of structural FE-models
of different fidelity and refinement. The global model and all local submodels are
described by different systems of equations, which are solved separately. In a “tight
coupling” approach on the other hand, the local submodels are integrated into the
global model such that only one system of equations is solved.

Multiscale modeling techniques can be used to describe the macroscopic behaviour
of heterogeneous materials like composite materials or materials with defects which
are much smaller than the structural dimensions. The most common method for the
definition of complex microstructures today is given by the representative volume
element (RVE) approach in conjunction with a numerical homogenization scheme,
Nemat-Nasser, S. (1999), Lubarda, V. (2002) or Böhlke, T. (2001). When dealing
with multiscale modeling strategies, the dimensions on the micro scale must be
orders of magnitudes smaller compared to the structural dimensions, i.e., LMicro ≤
LMacro. Thus, the assumption of scale separation is fulfilled. The scale separation
as well as the homogenization scheme are point wise procedures, i.e., the effective
material behavior of one macroscopical material point is obtained by means of a
RVE of finite size, Kreikemeier, J. (2011).

In general the distinction between uncoupled as well as coupled homogenization
schemes can be made. The uncoupled approach is used in case of linear elastic ma-
terials and small deformations to obtain the effective response just once, Suquet, P.
(1987), whereas the coupled approach should be used in case of finite deformations
and inelastic material behavior, e.g., to describe plasticity or damage phenomena,
Schröder, J. (1996), Miehe, C.; Schotte, J.; Lambrecht, M. (2002), Kouznetsova, V.
(2002) or Gitman, I. (2006). In contrast to the uncoupled homogenization scheme,
for the coupled approach at any time both the microscopic as well as the macro-
scopic boundary value problem must be solved simultaneously, because the ef-
fective material response is highly dependent on the actual microscopic behavior.
Hence a smart solution strategy should be used to save computational resources.

If the assumption of scale separation does not hold anymore, the scale transition can
be defined by using hierarchical multiscale approaches. In interesting macroscopic
regions, a fine discretization of the whole underlying microstructure is made, see
for example, Fish, J. (1992), Hughes, T.; Feijóo, G.; Mazzei, L.; Quincy, J. (1998),
Kadowaki, H.; Liu, W. (2004) or Gitman, I. (2006).
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In Feyel, F. (2003) and Feyel, F. (1999), an FE2 approach is developed and imple-
mented into a general purpose finite element program. They introduce a two scale
approach to obtain the effective constitutive response of the macroscopic region.
This approach is named FE2 because a simultaneous finite element computation of
the mechanical response at two different length scales is carried out at each macro-
scopic integration point. The whole approach is handled as a classical internal
variable model where the internal variables are taken from the microscopic data
which are required by the microscopic RVE calculation.

In Kouznetsova, V. (2002), a multilevel FE method is developed to account for
the visco-plastic behavior of an aluminum material with a certain amount of voids.
The focus of this work lies on the higher order homogenization scheme by use of
gradients of the deformation measures within the constitutive relation.

In Miehe, C.; Schotte, J.; Lambrecht, M. (2002), a continuous as well as a discrete
variational formulation for the homogenization of inelastic materials at finite strains
are developed by using an energy storage function as well as a dissipation function
to account for the effective response of a general standard medium.

In Kim, B.; Lee, H. (2010), a micromechanical elasto-plastic damage model in
conjunction with a RVE formulation is presented to get the overall damage behavior
of fiber reinforced matrix composites. The approach is based on an exterior point
Eshelby tensor for circular inclusion problems, see Li, S.; Sauer, R.; Wang, G.
(2005), and the ensemble-averaged effective yield criterion.

As a result, when using multiscale material modeling strategies the computational
effort is very large, but by a detailed description of all of the micromechanical
features as well as the ongoing improvements of computational power and perfor-
mance the research within this field is justified.

In this paper, a multiscale modeling technique for an automated iterative loose cou-
pling approach is presented. It is used to describe the macroscopic behaviour of
composite structures. The global-to-local transition is realized via prescribed dis-
placements at the microscopic boundary nodes, whereas the local-to-global tran-
sition is realized by assigning averaged stresses obtained from the solution of the
local boundary value problem to the respective integration points at the global level
and updating the global tangent stiffness operator for the global Newton-Raphson
scheme. Specific hotspot-criteria are used to decide when and where a local model
needs to be generated.

The presented automated iterative multiscale approach is a step beyond state-of-
the-art, since at present the developments of loose coupling are still at the beginning
and limited to non-automatic and one-step procedures like classical FE substructur-
ing algorithms. Furthermore, this multiscale method, denoted as “Homogenization-
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based two-way multiscale approach” (HIMSA), enables local investigation not only
of single global material points as usually performed in homogenization proce-
dures, but also of larger critical areas of the global model. The exchange between
the models of different scale is performed by a two-way coupling, i.e. from global
to local and back to global. Thus, the effects of local phenomena on the global
behaviour of a structure are taken into account.

The methodology of the loose coupling approach is presented in Chapter 2. In
chapter 3, the feasibility of this approach in the commercial FE code ABAQUSTM is
demonstrated with a test case. To check for the correctness of the implementation,
the obtained results are compared to the results from a verification calculation. In
chapter 4, the main results of the work are summarized and an outlook on the next
steps is given.

2 Homogenization-based iterative two-way multiscale approach (HIMSA)

In the homogenization-based iterative two-way multiscale approach (HIMSA), the
scales of the local and the global model are different in the sense that the local
model is small with respect to the global model. However, in general the dimen-
sions of the local model are not an order of magnitude smaller than the dimensions
of the global model, and therefore in the presented approach, a volumewise transfer
of information is used between the different levels. This situation is different from
the pointwise transfer that is often used for material homogenization, where scales
are distinctly separate (see Aboudi, J. (1991) or Böhlke, T. (2001)). The steps for
HIMSA can be formulated as follows:

• Definition of the local model (via hotspot criterion/criteria)

• Global-to-local transition: Formulation of boundary conditions for the local
model from input variables of the global model (nodal displacements uM)

• Solution of the local boundary value problem

• Local-to-global transition: Solution of the boundary value problem of the
local model and calculation of global output variables (averaged stresses)

• Numerical determination of the global tangent stiffness operator

2.1 Definition of the local model

As a first step the global area has to be chosen, which shall be investigated closely
via a local model. This will be done by the use of the failure criterion proposed
by Hashin as a hot-spot criterion, Hashin, Z. (1980). By this criterion a distinction



A Loose Coupling Multiscale Approach 163

between fibre failure due to tension or compression and matrix failure due to tension
or compression is possible: σ11
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Here, σ i j denote the components of the Cauchy stress tensor and R are the material
strengths for tension (+), compression (-) and shearing.

Adjacent critical global elements are merged to one large local model. This proce-
dure is appropriate if several critical global elements are located in the same global
area. Thus, the local model represents not only one global material point but an
area of the global model. Nevertheless the local model is much more detailed, e.g.
in terms of the material model, and has a finer mesh compared to the global one.

2.2 Global-to-local transition

For the transition from global to local level, the displacements of the global nodes
at the boundary of the local model are used as boundary conditions for the local
model. The inner local nodes remain unrestrained. Local boundary nodes that
coincide with a global node get the exact value of the global nodal displacement.
The nodal displacements at the other local boundary nodes which lie in between the
global nodes are interpolated via the global shape functions N of the global finite
element type used. In ABAQUSTM , no information about the current displacement
field can be obtained directly. Thus, the displacements at the global nodes have to
be calculated from the strain field at the global Gauss points. In the studies in this
paper, small deformations are assumed. As a consequence, higher order terms in
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the strain tensor are neglected and the strain tensor equals the symmetric part of the
displacement gradient:

EL
M =

1
2
(
HM +HT

M
)

(5)

EL
M – Linearized Green-Lagrange strain tensor at the global level

HM – Displacement gradient at the global level

The displacement field at the global Gauss-Points is calculated via:

uGauss = EL
M ·x0 (6)

uGauss – Displacement at one global Gauss point

x0 – Coordinates of the global Gauss point

After the inversion of the global element shape functions, the displacement field at
the global nodes is calculated as:

unode = N - 1 ·uGauss (7)

unode – Vector of displacements at the global nodes

N – Matrix of global element shape functions

The interpolation of displacements at the local edge nodes in between global nodes
is calculated as:

ulocalnode = Nlocalnode ·unode (8)

ulocalnode – Vector of displacements at the local boundary nodes

Nlocalnode – Matrix of global element shape functions values at locations of local
nodes

2.3 Solution of the local boundary value problem

For the critical area at the local level, the material behaviour is defined to be non-
linear. A material model developed in Hartung, D. (2009) based on the model
developed by Ladevèze, P.; Le Dantec, E. (1992) has been developed further and
implemented into a Fortran coded subroutine in ABAQUSTM (UMAT). With this
approach, the intralaminar and interlaminar behaviour of the laminate can be mod-
eled without discretization of the interfaces between the plies. This leads to a reduc-
tion of the numerical effort. The model by Hartung, D. (2009) has been developed
and validated for a non crimp fabric (NCF) material with a [0/90] layup. In that
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model, the assumption holds that interlaminar shear loads cause shear damage in
fibre direction and lateral to the fibres. This is why only one interlaminar shear
damage variable d23 is used in the model. In case of a laminate with an arbitrary
layup, this assumption holds no longer and the interlaminar shear damage in fibre
direction and lateral to the fibres have to be treated separately.

2.3.1 Internal energy of the damaged material

The model bases on the energy definition of the damaged material. The strain
energy ED is defined as:
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The material exhibits orthotropy. Material damage is described via damage vari-
ables di j, that degrade the material stiffnesses with increasing load. The material
behaviour lateral to the fibre direction is modeled separately for the cases of tension
and compression. Compression loads do not cause material damage directly.

2.3.2 Energy release rates

Damage evolution is characterized by the energy that is necessary for a progression
of the damage. These state variables Yi j associated with the damage variables are
calculated from the energy ED. For damage caused by normal loads, the energy
release rates are calculated as:
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For shear damage, the energy release rates are calculated as:
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According to Phillips, E.A.; Herakovich, C.T.; Graham, L.L. (2001), it is reason-
able to couple the intralaminar damage lateral to the fibre direction with the in-
tralaminar shear damage. The intralaminar matrix damage is calculated by a com-
bined function:

Y h
22 (t) = sup

τ≤t
(Y12 (τ)+bY22 (τ)) with b =

E22

G22
(16)

The supremum function prevents the damaged material from healing. Analogously,
for the remaining energy release rates the maximum values in the load history are
taken into account:

Y11 (t) = sup
τ≤t

(Y11 (τ)) (17)
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(Y33 (τ)) (18)

Y13 (t) = sup
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Y23 (t) = sup
τ≤t

(Y23 (τ)) (20)

Figure 1 shows the scheme of the model. Intralaminar and interlaminar damage are
uncoupled. Fibre failure is treated separately while intralaminar damage lateral to
the fibre direction is calculated from a combined inner thermodynamical force.

2.3.3 Damage evolution

Material damage does not occur until a certain threshold value is reached. The
state Y 0

i j is the limit between a completely undamaged and damaged material and
is taken into account in the damage evolution functions. Once this threshold value is
reached, the material stiffness is degraded. The stiffness degradation continues with
increasing load until the maximum energy release rate Y r

i j is reached. This material
parameter characterizes the state, when the maximum damage in the material is
reached, which leads to complete failure. The material stiffness is then degraded
almost completely.

In case of loading in fibre direction, the maximum energy release rates are defined
by means of the tensile and compressive strength R(+)
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11:

Y rt
11 =

1
2

R(+)
11

2

E11
, Y rc

11 =
1
2

R(−)
11

2

E11
(21)



A Loose Coupling Multiscale Approach 167

 
Figure 1: Scheme of the damage model

No damage evolution is considered in this case, i.e. the material behaviour is as-
sumed to be purely linear elastic before failure.

The maximum energy release rates for intralaminar matrix failure and interlaminar
failure under normal and shear load are calculated from experimentally determined
material strength values RF

i j and damage dF
i j. This is done by means of static,

multi-level, cyclic load tests as described in Ladevèze, P.; Le Dantec, E. (1992):
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Generally, the damage of the material progresses when the load is increased. Due
to the brittle behaviour in fibre direction, only the undamaged or the fully damaged
state are distinguished. It is checked if the maximum energy release rate for tensile
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or compression load is exceeded. Between these two states, the material is undam-
aged. This leads to the formulation for the damage evolution in fibre direction:

ω11 = d11 =

{
0 if −Y rc

11 < Y11 < Y rt
11

1 else
(23)

The intralaminar damage evolution function is of hyperbolic character:
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The interlaminar damage evolution is defined as:
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2.3.4 Regularisation

To avoid localisation phenomena and mesh dependencies due to the material non-
linearities, a regularisation scheme has been proposed by Allix, O.; Feissel, P.;
Thévenet, P. (2003) to ensure the stability of the model. By introducing an internal
length scale a and a critical time tc, an artificial viscosity is added to the damage
evolution law. The additional equation has the form
•
d
i j

=
1
tc

[1− exp(−a(ωi j−di j))] (29)

This partial differential equation is solved numerically in each iteration of the
Newton-Raphson scheme. The internal length scale a is the characteristic element
length given by the FE-solver, the critical time tc is the time step width of the cur-
rent increment.
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2.4 Local-to-global transition

The transition from local to global level is realized by averaging the local stresses
over the respective volume of the sub-domain. Each Gauss point of one global
element is assigned one local sub-domain. Thus, for each global Gauss point a
separate averaged stress tensor is calculated. In case of small deformations, the
following simplifying assumption is justified:

Tm ≈ Pm ≈ Sm (30)

Tm – Cauchy stress tensor at the local level

Pm – First Piola-Kirchhoff stress tensor at the local level

Sm – Second Piola-Kirchhoff stress tensor at the local

Based on equation (30), the second Piola-Kirchhoff stress tensor at the global level
is calculated by averaging the stresses at the local level:

SM =
1

VSub

∫
VSub

SmdVSub (31)

SM =
1

VSub

Np

∑
i=1

(SmiVmi) (32)

SM – Second Piola-Kirchhoff stress tensor of one global Gauss point

Smi – Second Piola-Kirchhoff stress tensor of the local Gauss points i

Vsub – Reference volume of the local sub-domain

Vmi – Volume associated with local integration point i

Np – Number of Gauss points of the local sub-domain.

Analogously, the global Cauchy or first Piola-Kirchhoff stress tensor can be calcu-
lated.

2.5 Calculation of the global tangent stiffness

The global analysis exhibits material nonlinearity due to material damage and degra-
dation at the local scale. Thus, a numerically determined tangent stiffness operator
for the global Newton-Raphson scheme has to be calculated in each increment. In
case of small deformations, the assumption according to the following equation is
justified:

4CS
M =

dSM

dEM
≈ 4CP

M =
dPM

dFM
≈ 4CT

M =
dTM

deM
(33)
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TM – Cauchy stress tensor at the global level

PM – First Piola-Kirchhoff stress tensor at the global level

SM – Second Piola-Kirchhoff stress tensor at the global level

FM – Deformation gradient at the global level

eM – Euler-Almansi strain tensor at the global level
4CM– Global tangent stiffness operator

()S
, ()P

, ()T refer to SM, PM, TM

For the numerical calculation, the differential quotient of equation (33) has to be
formed. Six additional local boundary value problems are solved, in which a small
strain perturbation δE j is added to the j-th component of the global strain tensor
successively for j=1...6. Thus, the local boundary value problem must be solved
additional six times within each global iteration. In matrix notation, the coordinates
of the global tangent stiffness operator with respect to an orthonormal basis system
become:

CS
M,i j =

SδE j,i−Shomogenized,i

δE j
, i = 1...6, j = 1...6 (34)

CM
S

i j– Components of the global tangent stiffness operator

Shomogenized,i– i-th component of second Piola-Kirchhoff stress tensor at one local
integration point, obtained from averaging the local stress tensor

δE j– Small perturbation to the j-th component of the global Green-Lagrange strain
tensor

SδE j,i – i-th component of the perturbed stress tensor

3 Solid-to-solid coupling: a numerical example

In this chapter, a test case for solid-to-solid coupling is investigated. The test case
consists of a bar which is subjected to a tension load in its axial direction. Three
calculations are carried out: two reference calculations, one with a coarse and one
with a fine mesh (both without the coupling of different model levels) and one cal-
culation with the homogenization-based two-way multiscale approach. The goal is
to show the feasibility of the approach in the commercial FE code ABAQUSTM via
manual implementation of subroutines and scripts and to verify the implemented
homogenization-based two-way multiscale approach.

3.1 Reference calculations

The first reference model with the coarse mesh consists of five linear solid elements
with cubical shape and an edge length of 2 mm. The bar is clamped on one side
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and a displacement of 0.07 mm in axial direction is applied on the other side. The
analysis is geometrically linear. The material properties are orthotropic, see also
Table 1. Material nonlinearity is introduced by using the damage model presented
in chapter 2.3 in the center element, which is assumed to be the critical area. The
axial direction of the bar complies with the 2-direction of the material.

Table 1: Initial material properties [8]

E11 136.000 MPa G12 4.538 MPa ν12 0.24
E22 8.574 MPa G13 4.538 MPa ν13 0.24
E33 11.195 MPa G23 4.226 MPa ν23 0.038

The second reference model has a finer mesh compared to the first one. The ele-
ments are of cubical shape with an edge length of 0.5 mm. The remaining model
properties are the same as in the reference model with the coarse mesh. The critical
area has the same geometry. Figure 2 shows the two FE-models.

Figure 2: Reference models: Coarse and fine mesh

3.2 Calculation with HIMSA

The global model for the calculation with the homogenization-based two-way mul-
tiscale approach has the same geometry, initial material properties and boundary
conditions as the reference model with the coarse mesh. The analysis is geometri-
cally linear due to small deformations. The material nonlinearity of the critical area
of the bar is modelled by the global-local coupling procedure described in chapter
2. The local model has the geometry of the critical global element in the centre
of the bar. The mesh density is the same as for the reference model with the fine
mesh. The material nonlinearity at the local level is modelled with the same ma-
terial model as in the reference calculation. Figure 3 shows an overlay plot of the
global and the local model.
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Figure 3: Overlay plot of the global and local model

The global-to-local coupling procedure is carried out if the failure criterion at the
global level is fulfilled or has been fulfilled in a previous load increment. The
algorithm has the following form:

1. Initialize the global model

2. Begin next global increment

• Perform prediction for next load increment

• Compute initial residuum

3. Begin next global iteration

• Compute initial tangent stiffness

• Perform correction: Compute displacement field from strains at global
Gauss points

4. Calculate stresses from initial material stiffness and strains and check, if
global failure criterion is fulfilled or was fulfilled before.

• If yes: GO TO 5.
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• If not: GO TO 2.

5. Create local boundary value problem

6. Solve local boundary value problem

7. Homogenize stresses and assign them to respective global Gauss Points

8. Calculate the global tangent stiffness operator numerically by solving six
local boundary value problems with a small perturbation applied successively
to the six coordinates of the global strain tensor.

9. Compute updated global residuum.

• If residuum > eps: GO TO 3b.

• If residuum < eps: GO TO 2.

• If residuum < eps and final global increment is reached: Analysis com-
plete.

Twenty load increments were applied in all three calculations to obtain the solution.
The load-displacement curves of the three models are depicted in Figure 4. The
load increases linearly until abrupt failure. The results obtained from the calcula-
tions of the reference models are in good agreement with the results obtained from
the calculation with HIMSA. This verifies the implementation of the presented ap-
proach in the commercial FE-software ABAQUSTM . Deviations are less than 1%
and can be ascribed to numerical inaccuracies resulting from small rounding errors
during the calculations.

4 Conclusions

A new automated, iterative multiscale approach has been developed and imple-
mented into the commercial FE software ABAQUSTM . Critical areas identified
by a hot spot criterion are investigated in detail by local models. These models
are loosely coupled to the global model. By exchanging field quantities between
the global and local models in an iterative two-way coupling, the effects of local
phenomena on the global behaviour are taken into account. Three calculations of a
bar consisting of five linear solid elements subjected to a tension load were carried
out: two reference calculations with a coarse and a fine mesh for verification pur-
poses and one calculation with the presented multiscale method. A comparison of
the load-displacement curves of the reference calculations and the multiscale ap-
proach shows that the implementation works appropriate. Small differences in the
predicted failure load were noticed due to numerical inaccuracies.
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Figure 4: Overlay plot of the global and local model

For the future, the implementation of the approach will be enhanced and applied to
geometrically nonlinear problems as well. Moreover two-dimensional shell models
shall be coupled to three-dimensional solid models to compute large structures like
panels or barrels with this approach.
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