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Design Optimization of Composite Cylindrical Shells
under Uncertainty
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Abstract: Four different approaches for the design of axially compressed cylin-
drical shells are presented, namely (1) the knockdown factor (KDF) concept, (2)
the single perturbation load approach, (3) a probabilistic design procedure and (4)
the convex anti-optimization approach. The different design approaches take the
imperfection sensitivity and the scatter of input parameters into account differently.
In this paper, the design of a composite cylinder is optimized considering the ply
angles as design variables. The KDF concept provides a very conservative design
load and in addition an imperfection sensitive design, whereas the other approaches
lead to a significantly less conservative design load and to a less imperfection sensi-
tive design configuration. The ways in which imperfection sensitivity is treated by
the different approaches and how these influence the optimal design configuration
is discussed.
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1 Introduction

In contrast to beams and plates, the load carrying capability of axially compressed
cylindrical shells is influenced by deviations from the perfect structure like geo-
metric imperfections and imperfect boundary conditions. This induces difficulties
when designing shells, since imperfections are unknown a priori. Design guide-
lines like NASA SP-8007 [NASA (1968)] propose knockdown factors (KDF) to
account for uncertainties. These KDFs are based on a multitude of experimental
tests that were carried out in the 1960s. For modern shells, these KDFs turned
out to be overly conservative [Arbocz and Starnes (2002)]. Furthermore, NASA
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SP-8007 is intended for metal shells and does not consider the additional design
variability that occurs in composite shells, due to the laminate setup. Hence, sev-
eral approaches have been followed in the past to find a physically based design
procedure that is applicable to anisotropic shells, that both includes the effect of im-
perfections and simultaneously is less conservative than NASA SP-8007. A broad
overview and summary of the effort that has been spent on phenomenon of buckling
of cylindrical shells is given in [Elishakoff (2012)].

Beside the knockdown factor concept, three different, alternate design approaches
are presented within this work: a probabilistic design procedure according to El-
ishakoff (1983)[see also Elishakof (1998); Elishakoff (2000); Elishakoff et al
(2001, 1987); Arbocz and Stam (2004); Arbocz and Hol (1991)], that was recently
extended by Kriegesmann et al (2011), [see also Kriegesmann et al (2010b)], the
convex anti-optimization concept, which was introduced by Elishakof and Ohsaki
(2010) and the deterministic single perturbation load approach by Hühne et al
(2008), [see also Hühne (2006)]. Within the latter concept, a physically moti-
vated lower bound is determined without knowing the actual imperfections. No
imperfection pattern measurement is needed to determine the design load of a shell.
The probabilistic method as well as the anti-optimization method account for input
parameters based on measurements. In the current work the scatter in geometry,
boundary conditions, material parameters and wall-thickness is taken into account.

It must be stressed that different design procedures do not only lead to different
design loads, but also to different optimal designs. Zimmermann (1992) optimized
the design of composite cylinders by maximizing the linear buckling load of the
perfect shell, by varying fiber orientations and the number of plies. Hühne et al
(2008); Hühne (2006) showed that maximizing the buckling load of an imperfect
shell leads to a different laminate setup than for the perfect shell.

In the current work the design loads given by different design approaches are max-
imized by optimizing the laminate setup of the composite shells considered. In
particular, the relation between the way in which imperfection sensitivity is treated
and the optimal design configuration will be addressed, and the influence of the
way in which the randomness of the input parameters is included on the optimal
design configuration will be investigated.

2 Scatter in Input Parameters

For a probabilistic design approach and for the anti-optimization method measure-
ment data are required for the type of shell that is designed. To this end, mea-
surements on ten nominally identical composite cylinders are conducted. These
have been manufactured and tested at DLR in Degenhardt et al (2010). The cylin-
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ders have nominal a radius of 250mm, a length of 500mm and a wall-thickness of
0.5mm. The laminate setup of the tested cylinders is [±24˚, ±41˚].

2.1 Traditional Imperfections

The geometric imperfections reducing the buckling load strongly are the most in-
vestigated imperfection, therefore, commonly denoted as “traditional” ones (see
e.g. Hilburger and Starnes (2002) and Kriegesmann et al (2010a)). They have
been measured using an optical measurement system (see Degenhardt et al (2010)).
In order to parameterize the two dimensional field (1) that describes the geometric
imperfections, which is periodic in circumferential direction, a Fourier series (1) is
used.

W̄ (x,y) = t
n1

∑
k=0

n2

∑
l=0

ξ̄kl cos
k π x

L
cos
(

l y
R
− ϕ̄kl

)
(1)

The Fourier coefficients ξ̄kl and ϕ̄kl characterize the scatter of geometry, L, R and t
are length, radius and wall-thickness of the shell, respectively, x and y the coordi-
nates in axial and circumferential direction. The indices k and l equal the number of
axial half waves and circumferential full waves. For the shells considered, the up-
per bounds of the summation indices k and l are chosen to be n1 = 10 and n2 = 20.
Hence, the total of 11 · 21 · 2 = 462 parameters describe the scatter of the shell
surface. In order to reduce the number of parameters, the reducing Mahalanobis
transformation (2) or modified principal component analysis is used, respectively.
For this, all Fourier coefficients are subsumed in the vector x.

x = Bz+ µ and z = B−1 (x−µ) (2)

The vector µ is the mean vector of x and the matrix B is a root of the covariance
matrix Σ of x, which is determined from the spectral decomposition of Σ. Via this
transformation, the random vector X is transformed to vector Z, which has uncorre-
lated entries with a mean value of zero and a standard deviation of one. The vector
Z always has a length smaller than the number of measurements µ and Σ are esti-
mated from. Hence, in the current example the 462 Fourier coefficients subsumed
in the random vector X are transformed to only nine uncorrelated parameters, sub-
sumed in the vector Z. For more information the reader can refer to Kriegesmann
et al (2011).

The geometric imperfections of one test cylinder are exemplarily shown in Figure
1.
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Figure 1: Geometric imperfections of one cylinder

2.2 Non-Traditional Imperfections

The term non-traditional imperfection refers to all kind of deviations from the per-
fect shell excluding geometric imperfections [Arbocz and Starnes (2002)]. In the
following, an imperfect load application, deviations of wall-thickness t and scat-
tering of material parameters are considered. Mean value values and standard de-
viations of all non-traditional imperfections considered are summarized in Table
1.

Table 1: Mean value values and standard deviations of non-traditional imperfec-
tions

E11 E22 G12 t θ

Mean value 157362MPa 10095Mpa 5321MPa 0.48mm 0.012˚
Standard deviation 3763MPa 415MPa 59MPa 0.0115mm 0.0027˚

The distribution of material properties are obtained from a series of coupon tests
[Degenhardt et al (2010)]. The Poisson’s ration was assumed to be constant ν12 =
0.277. Orf (2008) found that for the considered shells, the spatial variation of the
wall-thickness variation within one shell does not need to be taken into account.
Instead, only the average wall-thickness is regarded as a scattering parameter.



Design Optimization of Composite Cylindrical Shells under Uncertainty 181

An inclination of the load introduction plane was applied to the shells during tests,
which was caused by the test setup. Because of the significant influence of the
resulting bending moment on the buckling load, the inclination is determined indi-
rectly for each shell. For this, finite element simulations have been performed in
which the measured geometric imperfections as well as the measured wall thick-
nesses have been applied. The inclination angle θ was varied and thereby for each
shell the value of θ has been determined, which yields the same buckling load as
the experiment. These values serve as data set for the inclination angle θ . In this
case the inclination covers also further imperfections. For a detailed description
of this procedure see Kriegesmann et al (2011). It is worth mentioning that even
though an inclination angle of about 0.01˚ seems to be very small, the difference
between finite element simulations with and without considering inclination ranges
from 10% to 29% for the cylinders considered. As shown, the inclination angle
has a strong influence on the buckling load, therefore further research is needed to
determine its size more precisely.

3 Design Procedures for Cylindrical Shells

In this section, the different approaches for the design of axially compressed cylin-
drical shells are summarized.

3.1 Knockdown Factor

Weingarten et al (1965) formulated a lower bound of buckling load as a function
of the ratio of radius and wall-thickness R/t, based on compiled experimental data
available at that time. This lower bound given in (3) has been adopted by the
guideline NASA SP-8007 [NASA (1968)]:

γ = 1−0.901
(
1− e−φ

)
with φ =

1
16

√
R
t

(3)

Other guidelines propose KDF depending on the initial imperfections. For negligi-
bly small imperfections and L/R≤ 0.95

√
R/t, the ECCS 56 [ECCS (1988)] gives

a knockdown factor γ according to the following formulas:

γ =
0.83√

1+0.01R/t
for

R
t

< 212 (4)

γ =
0.70√

1+0.01R/t
for

R
t

> 212 (5)

If the largest dimple depth in the initial imperfection pattern exceeds a critical
value, the KDF is further decreased. The same holds for Eurocode 3 [General
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Rules (2002)] and the old German guideline DIN 18800 [Stahlbauten (1990)].
For these two guidelines, also the material strength is considered in the determi-
nation of a KDF. DIN 18800 furthermore considers the length of a cylinder. The
KDFs suggested by the guidelines mentioned are plotted in Figure 3 and Figure 2
as functions of R/t.
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Figure 2: Knockdown factors (assuming highest quality class for Eurocode 3 and
DIN 18800)
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Figure 3: Knockdown factors for an imperfection amplitude of t

For Figure 2 the maximum depth of initial dimples was assumed to be zero, while
for Figure 3 the maximum dimple depth was taken to equal the wall-thickness.
The material properties of common steel are used for Eurocode 3 and DIN 18800.
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Within Eurocode 3 shells are subdivided into three categories depending on their
deepest initial dimple and the KDF is determined with respect to the category. For
the example considered, the category changes for a ratio R/t ≈ 600, which explains
the jump in the KDF curve of Eurocode 3 in Figure 3.

The cylinders considered in this study have a ratio R/t of 500. Hence, the KDFs
given by the different guidelines have values of about 0.3 (except Eurocode 3 for
large imperfections). In the following, only NASA SP-8007 will be used for com-
parison. Treating the composite shell like metal shells leads to a KDF of γ = 0.322
according to equation (3). NASA SP-8007 also gives a lower bound for orthotropic
shell, where the exponent φ is determined by:

φ =
1

29.8

√
R
t∗

with t∗ = 4

√
D11 D22

A11 A22
(6)

Here, A11, A22, D11 and D22 are the entries of the ABD-matrix. DeVries (2009)
suggested to use the unified formulation (7) for composite shells.

φ =
1

29.8

√
R
t∗

=
1

16

√
R√
12 t∗

=
1
16

√
R
t+

with t+ =
√

12 t∗ =
√

12 4

√
D11 D22

A11 A22
(7)

This way, the KDF is determined with respect to the laminate setup. However, for
each laminate setup [±α , ±β ] with arbitrary ply angles α and β the equivalent
thickness t+ is always t+ = t and hence, the KDF is γ = 0.322 independent from
α and β .

3.2 Single Perturbation Load Approach

Hühne et al (2008), Hühne (2006) proposed a deterministic approach to find a
physically reasonable lower bound of buckling load, which is referred to as “sin-
gle buckle approach” (SBA) [see e.g. Huhne et al (2008) and Kriegsmann et al
(2010a)], “single perturbation load approach” [see Elishakoff et al (2011)] or “lat-
eral perturbation load approach” in the literature. For the single perturbation load
approach a lateral perturbation load is applied to the cylinder within the buckling
analysis (see Figure 4, left). As the perturbation load increases, the buckling load
decreases until a certain perturbation load P1 is reached. Perturbation loads higher
than this load do not decrease the buckling load significantly (section IV in Figure
5). The associated buckling load N1 is defined as design load (see Figure 4, right).

Assuming a large perturbation load (e.g. P = 10N) the design load N1 is approx-
imated with one analysis. It is recommended to perform at least four buckling
analyses in which the perturbation load is two times in section II and two times in
section IV, (see Figure 5), to approximate the buckling load over perturbation load
curve and to determine the intersection point that defines P1 and N1.
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Figure 4: Concept of the single perturbation load approach

 
Figure 5: Sketch of load-displacement curves obtained for different perturbation
load levels
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The induced single buckle is the worst case geometric imperfection pattern of an
axially loaded cylinder. The determined lower bound considers all geometric im-
perfections and other imperfections with minor influence than the geometric. How-
ever, a criterion has to be determined, for which additional imperfections an ad-
ditional knockdown factor has to be applied. As shown in Table 2 the single per-
turbation load approach is a physical based lower boundary for all tested shells
(from [Hühne (2006)]) except for shell Z12. By use of Monte Carlo simulations, it
has been shown that the single perturbation load approach has a reliability of more
than 99.9% for shells with geometric imperfections [Kriegesmann et al (2010a)].
This approach takes the fiber orientations from the composite shell into account
and means a strong improvement compared to NASA SP-8007. If the inclination
becomes a significant influence, an additional knock-down factor has to be taken
into account. The size of the used inclination angle will be further investigated.

Table 2: Results of single perturbation load approach, tested shells and probabilistic
analysis, from [Kriegesmann et al (2010a)]

Shell Z07 Z09 Z10 Z12
Experimentally determined buckling load 21.8 15.7 15.7 18.6
Lower bound given by NASA SP-8007 10.2 5.5 7.4 7.1
Design load according to single perturbation
load approach

17.4 14.7 13.8 20.2

99.9% quantile from Monte Carlo with only
geom. Imp.

23.1 16.3 17.5 21.0

99.9% quantile from Monte Carlo including
inclination

20.0 11.8 13.8 16.6

3.3 Semi-Analytic Probabilistic Analysis

For the semi-analytic probabilistic analysis used in this paper, the buckling load
function λ (x) is approximated by a Taylor expansion at the mean vector µ of input
parameters x. This approximation is used to estimate mean value µΛ and standard
deviation σΛ of the buckling load [see e.g. Elishakoff et al (1987), Kriegesmann
et al (2011)]. Taking into account only the linear terms of the Taylor expansion
and assuming independence for the input parameters, the estimated mean value and
variance are given by

µΛ ≈ λ (µ) (8)
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and

σ
2
Λ ≈

n

∑
i=1

[
∂λ (µ)

∂ zi

]2

σ
2
Zi

(9)

where λ (µ) is the buckling load, evaluated and/or differentiated at the mean vector
µ , zi being the uncorrelated input parameters [by using (2)], σ2

Zi
are the variances

of the input parameters. The probabilistically motivated design load λ d is given by

λd = µΛ−bσΛ (10)

The factor b depends on the chosen level of reliability and the type of distribution.
The results of this method compare well with the results of Monte Carlo simulation
and with the empiric distribution [Kriegesmann et al (2011)].

Compared to the single perturbation load approach, traditional and non-traditional
imperfections are taken into account. The disadvantage of this approach in contrast
to the deterministic approaches is that the probabilistic design approach requires
measurements of shells for which a lower bound has to be found.

3.4 Convex Anti-Optimization

The idea of convex anti-optimization is to find the combination of possible input
parameters that leads to the lowest buckling load [Elishakoff (2000), Elishakof and
Ohsaki (2010)]. The domain of input parameters is bounded by a hyper-ellipsoid,
which encloses all measured combinations of input parameters. The buckling load
function is approximated by a Taylor expansion at the center of the enclosing hyper
ellipsoid xc and the minimum buckling load λ min can be determined as follows:

λmin ≈ λ (xc)−

√
n

∑
i=1

g2
i

[
∂λ (xc)

∂ξi

]2

(11)

Here, gi are the semi-axes of the ellipsoid and ξ i are the coordinates parallel to
the semi-axes. Since the minimum buckling load delivers a lower bound, it can be
regarded as a design load. For the probabilistic approach as well as for the convex
anti-optimization, the derivatives of the buckling load function are required, with
attendant numerical evaluation.

3.5 Computational Cost

When determining the design load based on the knockdown factor concept, only
the buckling load of the perfect shell has to be determined. The product of it by the
KDF yields the design load.
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Using the single perturbation load approach, one also needs to conduct a single
buckling analysis in order to conservatively approximate N1. For this, it must be
ensured that the applied perturbation load is greater than or equal to the critical
perturbation load P1. Steinmüller et al (2008) gave an empirical estimator for
P1 for composite shells. Using this estimator, the design load is approximately
determined, but conservative.

When performing a probabilistic analysis or convex anti-optimization, the partial
derivatives of the buckling load must be estimated. A simple approximation of the
first derivative of the buckling load function is given by

∂λ (x)
∂xi

≈ λ (x1, . . . ,∆xi + xi, . . . ,xn)−λ (x)
∆xi

(12)

Hence, in order to determine the partial derivatives with respect to all n scattering
input parameters, n + 1 buckling analyses must be performed. A more accurate
estimation of the first derivative is given by

∂λ (x)
∂xi

≈ λ (x1, . . . ,∆xi + xi, . . . ,xn)−λ (x1, . . . ,∆xi− xi, . . . ,xn)
2∆xi

(13)

which requires 2 n + 1 buckling analyses. The same buckling analyses results can
be used to estimate the second derivatives of the buckling load function according
to

∂ 2λ (x)
∂x2

i
≈ λ (x1, . . . ,∆xi + xi, . . . ,xn)−2λ (x)+λ (x1, . . . ,∆xi− xi, . . . ,xn)

∆x2
i

(14)

With the second derivatives, the second order approaches of the probabilistic analy-
ses and the convex anti-optimization can be performed, which are given in Krieges-
mann et al (2011) and Elishakoff et al (2011).

An overview of the required number of buckling analyses for the different design
procedures is given in Table 3. Using the transformation (2) for the geometric im-
perfections and taking into account all non-traditional imperfections yields a num-
ber of random parameters of n = 15.

4 Design Optimization

Using the classical knockdown factor (KDF) philosophy, optimizing the design
load is equivalent to maximizing the buckling load of the perfect shell, since the
KDF only scales the buckling loads. When using approaches that takes into account
the change of the sensitivity within design optimization, the safety margin can be
reduced significantly, which provides additional optimization potentials.
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Table 3: Number of required buckling analyses for different design concepts

Design concept
Required number of buckling analyses
Minimum Recommended

Knockdown Factor 1 1
Single perturbation load approach 1 1
Convex anti-optimization n + 1 2 n + 1
Semi-analytic probabilistic analysis n + 1 2 n + 1

4.1 Optimization Strategy

The goal of the following design optimization is the maximization of the design
load.

For the design optimization the ply angles of the composite layers are regarded as
design variables, where two cases are considered in the following. In a first step,
for reasons of simplicity, visualization and comparison, the layup of four layers is
restricted to be [±α , ±β ] (see Figure 6). In order to get the response surface of
this optimization problem, the two design parameters are varied in steps of 11.25˚
in the interval [0˚,90˚] and for each combination the design load is determined.

 

Figure 5:  Maximization of buckling load 
by optimization of laminate setup [±α,±β]

 

Figure 6:  Maximization of buckling load by 
optimization of laminate setup [α1,α2,α3,α4] 
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Figure 6:  Maximization of buckling load by 
optimization of laminate setup [α1,α2,α3,α4] 

 

Figure 7: Maximization of buck-
ling load by optimization of laminate
setup [α1,α2,α3, α4]

Secondly, all four ply angles are regarded as design parameters (see Figure 7). For
this optimization task, gradient based optimization methods are conducted, which
requires determining the partial derivatives of the design load with respect to the
design variables. The design variables are subsumed in the design vector y with the
entries y1,. . . ,ym. The first derivative of a design load λ d with respect to a design
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variable yk can be approximated numerically by

∂λd (y)
∂yk

=
λd (y1, . . . ,∆yk + yk, . . . ,ym)−λd (y)

∆yk
(15)

This approximation requires determining the design load m + 1 times, where m is
the number of design variables. Hence, using the methods given in section 3.3 and
3.4, (m + 1)(n + 1) determinations of the buckling load are necessary per iteration
step. For the single perturbation load approach, the number of required buckling
analyses cannot be given in advance.

For a faster gradient based optimization, the gradients of the method given in sec-
tion 3.3 and 3.4 are derived in the following. For the single perturbation load ap-
proach, no gradient based optimization is executed.

4.2 Gradient of the Probabilistically Based Design Load

Assuming the buckling load function λ (x,y) is function of random variables, sub-
sumed in the vector x, and design variables, subsumed in the vector y. Then, also
the probabilistically motivated design load λ d is a function of y and it is given by

λd (y) = µΛ (y)−b
√

σ2
Λ
(y) (16)

where b depends on the assumed type of distribution and the chosen level of relia-
bility. The first derivative with respect to one design variable yk equals

∂λd (y)
∂yk

=
∂ µΛ (y)

∂yk
− b

2 σΛ

∂σ2
Λ
(y)

∂yk
(17)

As derived in Kriegesmann (2012), the derivatives of the second order approxima-
tions of the mean value and the variance are given by

∂ µΛ (y)
∂yk

=
∂λ (µ,y)

∂yk
(18)

and

∂σ2
Λ
(y)

∂yk
≈ 2

(
λµ −µΛ

) ∂λ

∂yk
+2

n

∑
i=1

∂λ

∂xi

∂ 2λ

∂xi ∂yk
µi,2

+
∂λ

∂yk

n

∑
i=1

∂ 2λ

∂x2
i

µi,2 +
n

∑
i=1

∂ 2λ

∂x2
i

∂ 2λ

∂xi ∂yk
µi,3 (19)

If the buckling load function is assumed to be linear, the derivative of the variance
vanishes and the gradient of the design load equals the gradient of the mean value.
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It can be assumed that the objective function is linearly dependent of x. Then, the
derivative of the variance is given by

∂σ2
Λ
(y)

∂yk
≈ 2

n

∑
i=1

∂λ

∂xi

∂ 2λ

∂xi ∂yk
µi,2 (20)

When using this approach, it is not necessary to estimate the second derivative of
the buckling load with respect to the random parameters. However, this simplifica-
tion saves little computation time.

4.3 Gradient of the Design Load given by Convex Anti-Optimization

The minimum buckling load given by first order convex anti-optimization can be
expressed as a function of design vector y, is given by

λmin (y) = λ (xc,y)−
√

ϕT (y) G ϕ (y) (21)

with the matrix G = diag
(
g2

1, . . . ,g
2
n
)

and the gradient of the buckling load function

ϕ =
(

∂λ

∂x1
, . . . ,

∂λ

∂xn

)T

(22)

The derivative of the minimum buckling load λ min with respect to a design variable
y j equals

∂λmin

∂y j
=

∂λ

∂y j
− 1√

ϕT G ϕ
ϕ

T G
∂ϕ

∂y j
(23)

with derivative of the gradient φ with respect to a design variable y j

∂ϕ

∂y j
=
(

∂ 2λ

∂x1 ∂y j
, . . . ,

∂ 2λ

∂xn ∂y j

)T

(24)

5 Results

In the following sections, the results of the design optimization are given. Firstly,
the design is optimized with respect to the design load given by the approaches that
do not require measurement data as input, namely the knockdown factor design
(see section 3.1) and the single perturbation load approach described in section 3.2.
Then, the optimization results are given for the approaches presented in section 3.3
and 3.4, which take into account measurement data.
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5.1 Approaches without Input of Measurement Data

Using the classical knockdown factor (KDF) philosophy, optimizing the design
load is equivalent to maximizing the buckling load of the perfect shell, since the
KDF only scales the buckling loads. The buckling loads of the perfect shell for
different combinations [±α , ±β ] are given in Figure 8.

 
Figure 8: Buckling load of the perfect shell for different laminate setups [±α,±β ]

The design load according to the single perturbation load approach for different
layups is shown is Figure 9. The response surfaces of the buckling load of the
perfect shells as well as of the design load N1 given by the single perturbation load
approach show multiple local optima. The lay-up of the maximum buckling load of
the perfect shell [±22.5˚, ±33.75˚] differs from the lay-up of the maximum design
load N1 [±22.5˚, ±78.75˚].

5.2 Approaches with Input of Measurement Data

Compared to the approaches above, the following two approaches take the strong
influence of the inclination angle into account. Therefore, determining the design
load given by convex anti-optimization leads to a significantly different response
surface (see Figure 10) and hence, to a different optimum design.

Within the probabilistic approach the design load depends on the chosen level of
reliability and the assumed type of distribution. Both are represented by the factor b
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Figure 9: Design load N1 given by single perturbation load approach for different
laminate setups [±α,±β ]

 
Figure 10: Design load λmin given by convex anti-optimization for different lami-
nate setups [±α,±β ]
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Figure 11: Mean value of buckling load for different laminate setups [±α,±β ]

 
Figure 12: Standard deviation of buckling load for different laminate setups
[±α,±β ]
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Figure 13: Design load λd provided by probabilistic analysis with b = 3 for different
laminate setups [±α,±β ]

 
Figure 14: Design load λd provided by probabilistic analysis with b = 4.5 for dif-
ferent laminate setups [±α,±β ]
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in equation (10). Hence, in a first step the mean value and the standard deviation of
buckling load are determined for each different ply angle combination (see Figure
11 and Figure 12). Then, different response surfaces for different values of b are
obtained according to equation (10), as plotted in Figure 13 and Figure 14.

Assuming normal distribution, b = 3 corresponds to a reliability of 99.87%. Within
the six sigma concept [Tennant (2001)], a factor of b = 4.5 is typically used,
for which the level of reliability equals 99.9997% assuming normal distribution.
Hence, both values considered can be regarded as realistic for design purposes.

For axially stiffening layups (α and β close to zero), the design load determined
from (10) is negative. Obviously, the assumption of normal distribution is not valid
in these cases, but it is also obvious that the optimal design configuration cannot be
found in this region. Hence, scrutinizing this area is unnecessary. It turns out that
for realistic values of b the pattern of the response surface does not change signif-
icantly and the ply angle combination that leads to the maximum design load does
not change. While it is a non-trivial societal and political decision, which level of
reliability is acceptable, the optimal design configuration given by the probabilistic
approach does not change.

Table 4: Optimal design with and without consideration of uncertainty

Maximum design load Optimal design
Perfect shell 43.9kN [±22.5˚, ±33.75˚]
NASA SP-8007 (γ = 0.322) 14.1kN [±22.5˚, ±33.75˚]
Single perturbation load approach 23.5kN [±22.5˚, ±78.75˚]
Convex anti-optimization 23.3kN [±78.75˚, ±56.25˚]
Probabilistic design with b = 3 ∗ 23.0kN [±78.75˚, ±67.5˚]
Probabilistic design with b = 4.5 ∗∗ 20.9kN [±78.75˚, ±67.5˚]
∗ equivalent to a reliability of 99.87%, assuming normal distribution
∗∗ equivalent to a reliability of 99.9997%, assuming normal distribution

The response surfaces of the convex anti-optimization approach and probabilisti-
cally motivated design load compare very well and lead to almost the same optimal
design (see Table 4). Though the philosophies of both approaches are completely
different, the good agreement appears to be not surprising. Indeed, inserting equa-
tion (8) and (9) into (10) leads to equation (25), which displays the similarities
to the lower bound given by convex anti-optimization (26). For both approaches,
the buckling load is evaluated and differentiated at some point in the center of the
measurement vector. In both approaches, the derivatives are multiplied by some
measure for the scatter of the input parameters, the standard deviation σZi times b
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for the probabilistic approach and the semi axes gi of the minimum volume enclos-
ing ellipsoid for the convex anti-optimization. The products are squared, summed
up and the square root of the sum is evaluated:

λd ≈ λ (µ)−

√
n

∑
i=1

[
bσZi

∂λ (µ)
∂ zi

]2

(25)

λmin ≈ λ (xc)−

√
n

∑
i=1

[
gi

∂λ (xc)
∂ξi

]2

(26)

The single perturbation load approach delivers a different optimal design. The
main reason for the differences between the single perturbation load approach and
the probabilistic approach appears to be the boundary imperfection discussed in
section 2.2. Kriegesmann et al (2010a) determined the stochastic distribution of
the buckling load of four different composite shell, once taking into account the
same kind of boundary imperfection as discussed in this paper, and once with-
out taking into account any inclination. The comparison of the obtained distri-
butions with the lower bounds given by the single perturbation load approach in-
dicates that the single perturbation load approach covers the effect of geometric
imperfections, but not of boundary imperfections completely. Since the boundary
imperfection has a significant influence on the buckling load of the shells consid-
ered, the range of the design load given by the single perturbation load approach is
smaller than the range of design loads given by probabilistic approach and the con-
vex anti-optimization. However, the response surfaces of single perturbation load
approach and convex anti-optimization show similarities, as there are local maxima
for [±22.5˚, ±78.75˚] and a local minimum around [±45˚, ±22.5˚].

The response surface of the perfect shell analysis differs significantly from the pro-
cedures that incorporate uncertainties and leads to a design that is sensitive to scat-
tering input parameters, according to the probabilistic analysis. Furthermore, the
maximum design load given by the KDF procedure is much more conservative than
the maximal design loads obtained from all other approaches considered.

For the probabilistic design load and the design load given by convex anti-optimization,
optimal design is determined using a gradient based algorithm. Starting from the
optimum found in the optimization by stepwise variation of the ply angles, the
optimal design configuration and the associated design load given in Table 5 are
obtained. The optimal designs as well as the design load hardly differ from the one
found by stepwise variation of the ply angles. This result is not surprising when
looking at the response surface of this problem (see Figure 10 and Figure 13).
However, it cannot be stated definitely, that there is no better design configuration
when treating all four ply angles independently as design variables. It is possible
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that for a different start of the gradient based optimization a higher design load can
be found. However, though several initial guesses has been tested, no higher design
load has been found in the context of this work.

Table 5: Results of the gradient based optimization of cylindrical shells under un-
certainty

Maximum design load Optimal design
Convex anti-optimization
with 2 design variables 23.74 kN [±79.4˚, ±56.8˚]
with 4 design variables 23.78 kN [84.1˚, -75.2˚, 57.5˚, -55.5˚]
Probabilistic design with b = 3
and 2 design variables 22.16 kN [±78.1˚, ±66.9˚]
and 4 design variables 23.00 kN [78.4˚, -78.1˚, 66.2˚, -67.6˚]

6 Conclusions

Different design approaches for axially compressed cylindrical shells have been
described and applied to composite shells. The design loads given by the different
design procedures have been maximized by optimizing the laminate setup. The
KDF concept provides a very conservative design load. Maximizing the design
load given by the knockdown factor concept is equivalent to maximizing the buck-
ling load of the perfect shell. Therefore, imperfection sensitivity is not considered
within this approach and the optimization yields an imperfection sensitive design.

In case no imperfection measurements are available for the shells considered, the
single perturbation load approach is a promising basis for optimization, since this
method does not require imperfection data. The reduction of the buckling load
by geometric imperfections is taken into account. Further imperfections like the
inclination angle with a significant influence has to be taken into account by an
additional knockdown factor. The size of the inclination angle has to be still fur-
ther investigated. Taking the inclination angle into account in the convex anti-
optimization and probabilistic approach the optimal design differs from the one
found with the single perturbation load approach. However, the response surfaces
show significant similarities. Furthermore, the design loads of the optimal designs
given by these three approaches compare very well. The convex anti-optimization
approach and the probabilistic approach, which both take into account measured
imperfection data, deliver similar response surfaces within the optimization and
lead to almost the same optimal design. The convex anti-optimization approach
implies the assumption that the measurement data are bounded by a hyper ellip-
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soid, which cannot be verified. Compared to the probabilistic approach, convex
anti-optimization does not require choosing a level of reliability and a type of dis-
tribution. However, within the present probabilistic design optimization, the as-
sumed type of distribution and the chosen level of reliability have no influence on
the optimal design configuration.
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