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An Optimal Multi-Vector Iterative Algorithm in a Krylov
Subspace for Solving the Ill-Posed Linear Inverse

Problems
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Abstract: An optimal m-vector descent iterative algorithm in a Krylov subspace
is developed, of which the m weighting parameters are optimized from a properly
defined objective function to accelerate the convergence rate in solving an ill-posed
linear problem. The optimal multi-vector iterative algorithm (OMVIA) is conver-
gent fast and accurate, which is verified by numerical tests of several linear inverse
problems, including the backward heat conduction problem, the heat source iden-
tification problem, the inverse Cauchy problem, and the external force recovery
problem. Because the OMVIA has a good filtering effect, the numerical results
recovered are quite smooth with small error, even under a large noise up to 10%.
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1 Introduction

The iterative algorithm for solving algebraic equations can be derived from the dis-
cretization of a certain ordinary differential equations (ODEs) system [Bhaya and
Kaszkurewicz (2006); Chehab and Laminie (2005); Liu and Atluri (2008)]. Partic-
ularly, some descent methods can be interpreted as the discretizations of gradient
flows [Helmke and Moore (1994)]. For a large scale system the major choice is
using an iterative algorithm, where an early stopping criterion is used to prevent
the reconstruction of noisy component in the approximate solution. The author and
his coworkers have developed several methods to solve the ill-posed system of lin-
ear algebraic equations, like using the fictitious time integration method as a filter
[Liu and Atluri (2009a)], a modified polynomial expansion method [Liu and Atluri
(2009b)], the Laplacian preconditioners and postconditioners [Liu, Yeih and Atluri
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(2009)], a vector regularization method [Liu, Hong and Atluri (2010)], a relaxed
steepest descent method [Liu (2011a, 2012a)], an optimal iterative algorithm with
an optimal descent vector [Liu and Atluri (2011a)], the best vector iterative method
[Liu (2012b)], the globally optimal vector iterative method [Liu (2012c)], the opti-
mally scaled vector regularization method [Liu (2012d)], an optimally generalized
Tikhonov regularization method [Liu (2012e)], an adaptive Tikhonov regulariza-
tion method [Liu (2013a)], as well as an optimal tri-vector iterative algorithm [Liu
(2013b)].

There are regularization method, the preconditioner or postconditioner method, the
iterative method, and the combination of these methods to solve the ill-posed linear
problem. In this paper we will develop an iterative algorithm with a descent vector
spanned in a Krylov subspace and with an inner iteration to determine the optimized
weighting parameters to solve the following ill-posed linear equations system:

Bx = b, (1)

where x ∈ Rn is an unknown vector, to be determined from a given coefficient ma-
trix B ∈Rn×n, which might be unsymmetric, and the input b ∈Rn, which might be
disturbed by random noise. The linear inverse problems are usually being converted
into the above form.

There are a lot of numerical methods that converge significantly faster than the
steepest descent method (SDM), and unlike the conjugate gradient method (CGM),
they insist their search directions to be the gradient vector at each iteration [Barzi-
lai and Borwein (1988)]. The SDM performs poorly, yielding the iteration counts
that grow linearly with Cond(B) [Akaike (1959)], whose unwelcome slowness has
to do with the choice of the gradient descent direction R. Liu (2013b) has ex-
plored a variant of the SDM by feding the concept of an optimal descent tri-vector
to solve the ill-posed linear equations system, which is an optimal combination of
the steepest descent vector R, the residual vector r and a supplemental vector BR,
where not only the direction R but also the steplength are modified from a theo-
retical foundation of optimization being realized on an invariant manifold. This
novel method was performed better than the generalized minimal residual method
(GMRES) [Saad and Schultz (1986)], the CGM, and other gradient descent variant
methods. The concept of optimal vector driving algorithm was first developed by
Liu and Atluri (2011b, 2012) for solving nonlinear equations, and then by Liu and
Atluri (2011a), and Liu (2012b, 2012c) for solving linear equations. As a continu-
ation of these efforts, we further explore the concept of optimal iterative algorithm
with an m-vector in a Krylov subspace as a descent direction to solve Eq. (1). In
the solution of linear equations system the Krylov subspace method is one of the
most important classes of numerical methods [Dongarra and Sullivan (2000)]. The
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iterative algorithms that are applied to solve large-scale linear algebraic systems are
mostly the preconditioned Krylov subspace methods [Simoncini and Szyld (2007)].

The remaining parts of this paper are arranged as follows. In Section 2 we start
from an invariant-manifold of a future cone in the Minkowski space and a Krylov
subspace method to derive a nonlinear system of ODEs for the numerical solution
of Eq. (1). Then, a genuine dynamics on the invariant-manifold is constructed in
Section 3, resulting in an m-vector optimal descent algorithm in terms of m weight-
ing parameters which to be optimized explicitly from a simple objective function.
The numerical examples of linear inverse problems are given in Section 4 to display
some advantages of the present optimal multi-vector iterative algorithm (OMVIA).
Finally, the conclusions are drawn in Section 5.

2 The Krylov subspace method

For the linear equations system (1), which is expressed to be r = 0 in terms of the
residual vector:

r = Bx−b, (2)

we can introduce a scalar homotopy function:

h(x, t) =
Q(t)

2
‖r(x)‖2− 1

2
‖r0‖2 = 0, (3)

where Q(t)> 0 is a monotonically increasing function of t, x0 is an initial value of
x, and r0 = r(x0). In terms of

X =

[ r
‖r0‖

1√
Q(t)

]
, (4)

Eq. (3) represents a cone:

XTgX = 0 (5)

in the Minkowski space Mn+1, endowed with an indefinite Minkowski metric ten-
sor:

g =

[
In 0n×1

01×n −1

]
. (6)

Because the last component 1/
√

Q(t) of X is positive, the cone in Eq. (5) is a future
cone [Liu (2001)].
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When Q > 0 and Q(t) ∈ C1[0,∞), the manifold defined by Eq. (3) is continuous
and differentiable, and thus, as a consequence of the "consistency condition", we
have

1
2

Q̇(t)‖r(x)‖2 +Q(t)R · ẋ = 0, (7)

which is obtained by taking the differential of Eq. (3) with respect to t and consid-
ering x = x(t) and h(x(t), t) = 0 for all t. Corresponding to the residual vector r in
Eq. (2), the above

R := BTr (8)

is the steepest descent vector.

We suppose that the evolution of x is governed by a vector u:

ẋ = λu, (9)

where the descent vector

u =
m

∑
k=1

αkuk (10)

to be optimized, is a suitable combination of the m-vector uk, k = 1, . . . ,m, while
the coefficients αk are to be optimized in Section 3.3.

Now we describe how to set up the m-vector uk, k = 1, . . . ,m by the Krylov sub-
space method and the Arnoldi procedure. Suppose that we have an m-dimensional
Krylov subspace generated by the coefficient matrix B from the steepest descent
vector R:

Km := span{R,BR, . . . ,Bm−1R}. (11)

Then the Arnoldi procedure is used to set up the m-vector uk, k = 1, . . . ,m, which
uses the Gram-Schmidt orthogonalization technique, such that uk ∈Km, k= 1, . . . ,m,
and

ui ·u j = δi j, (12)

where δi j is the Kronecker delta symbol.

Inserting Eq. (9) into Eq. (7) we can derive

ẋ =−q(t)
‖r‖2

rTv
u, (13)
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where

v := Bu =
m

∑
k=1

αkvk =
m

∑
k=1

αkBuk, (14)

q(t) :=
Q̇(t)

2Q(t)
. (15)

Hence, in our algorithm if Q(t) can be guaranteed to be a monotonically increasing
function of t, we might have an absolutely convergent property in solving the linear
equations system (1):

‖r(x)‖2 =
C

Q(t)
, (16)

where

C = ‖r(x0)‖2 (17)

is determined by the initial value x0. In the cone defined by Eq. (5), we can observe
that the path of X traces on the cone and gradually moves down to the vertex point
along the cone.

We do not need to specify the function Q(t) a priori, of which
√

C/Q(t) merely
acts as a measure of the residual error of r in time. In Section 3.2 we can com-
pute Q at each iteration step. Hence, we impose in our algorithm that Q(t)> 0 is a
monotonically increasing function of t. When t increases to a large value, the above
equation (16) will enforce the residual error ‖r(t)‖ tending to zero, and meanwhile
the solution of Eq. (1) is obtained approximately.

3 Dynamics on the invariant-manifold

3.1 Keeping x on the invariant manifold

Now we discretize the foregoing continuous dynamics (13) into a discrete time
dynamics by applying the forward Euler scheme:

x(t +∆t) = x(t)−β
‖r‖2

rTv
u, (18)

where

β = q(t)∆t (19)
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is a discretized stepsize. Correspondingly, u is a search direction of the algorithm
endowed with a steplength β‖r‖2/(rTv).
In order to keep x on the manifold (16) we can consider the evolution of r along
the path x(t) by

ṙ = Bẋ =−q(t)
‖r‖2

rTv
v. (20)

Similarly, we use the forward Euler scheme to integrate Eq. (20), obtaining

r(t +∆t) = r(t)−β
‖r‖2

rTv
v, (21)

from which by taking the square-norms of both sides and using Eq. (16) we can
obtain

C
Q(t +∆t)

=
C

Q(t)
−2β

C
Q(t)

+β
2 C

Q(t)
‖r‖2

(rTv)2 ‖v‖
2. (22)

Thus the following scalar equation is derived:

a0β
2−2β +1− Q(t)

Q(t +∆t)
= 0, (23)

where

a0 :=
‖r‖2‖v‖2

(rTv)2 ≥ 1 (24)

by using the Cauchy-Schwarz inequality:

rTv≤ ‖r‖‖v‖.

As a result of Eq. (23), h(x, t) = 0, t ∈ {0,1,2, . . .} remains to be an invariant-
manifold in the space-time domain (x, t) for the discrete time dynamical system
h(x(t), t) = 0.

3.2 An iterative dynamics

Let

s =
Q(t)

Q(t +∆t)
=
‖r(x(t +∆t))‖2

‖r(x(t))‖2 , (25)
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which is an important quantity to assess the convergent property of our numerical
algorithm for solving the linear equations system (1).

From Eqs. (23) and (25) it follows that

a0β
2−2β +1− s = 0; (26)

hence, by setting

s = 1− 1− γ2

a0
, (27)

we can take a preferred solution of β to be

β =
1− γ

a0
. (28)

Consequently, from Eqs. (18), (24) and (28) we can derive the following algorithm:

x(t +∆t) = x(t)− (1− γ)
rTv
‖v‖2 u, (29)

where

0≤ γ < 1 (30)

is a parameter.

Under conditions (24) and (30), from Eqs. (25) and (27) we can prove that the new
algorithm satisfies

‖r(t +∆t)‖
‖r(t)‖

=
√

s < 1, (31)

which means that the residual error is absolutely decreased. In other words, the
convergence rate of present iterative algorithm is

Convergence Rate :=
‖r(t)‖
‖r(t +∆t)‖

=
1√
s
> 1. (32)

The property in Eq. (32) is very important, since it guarantees that the new algo-
rithm is absolutely convergent to the true solution. A smaller s will lead to a faster
convergence.

When s is determined by Eq. (27), from Eq. (25), Q can be sequentially computed
by

Q(t +∆t) =
Q(t)

s
=

a0Q(t)
a0−1+ γ2 , (33)
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with Q(0) = 1. Furthermore, by Eq. (31) we have

Q(t +∆t)> Q(t),

which means that Q(t) −→ ∞, and by Eq. (16) leads to ‖r(t)‖2 −→ 0. Hence, we
can obtain the true solution.

3.3 Optimization of αk

In algorithm (29) we not yet specify how to choose the m weighting parameters αk
which appear in the vector v defined by Eq. (14). They can be determined such that
a0 defined by Eq. (24), hence s defined by Eq. (27), are minimized with respect to
αk, because a smaller s will lead to a larger convergence rate as shown in Eq. (32).

Therefore, we come to a minimization problem:

min
α1,...,αm

{
a0 =

‖r‖2‖v‖2

(r ·v)2

}
, (34)

which however would lead to a set of m highly nonlinear algebraic equations to
solve αk. This is a quite difficult task to obtain the solution of αk.

Instead of Eq. (34), we can consider a simpler minimization problem by

min
α1,...,αm

{P = ‖v− r‖2}, (35)

where the objective function P can be written out explicitly:

P = ‖
m

∑
k=1

αkvk− r‖2. (36)

By taking ∂P/∂αk = 0, k = 1, . . . ,m we can derive the following equation to solve
αk, k = 1, . . . ,m:

v1 ·v1 v2 ·v1 · · · vm ·v1
v1 ·v2 v2 ·v2 · · · vm ·v2

...
...

...
...

v1 ·vm v2 ·vm · · · vm ·vm




α1
α2
...

αm

=


r ·v1
r ·v2

...
r ·vm

 . (37)

This is a linear equations system with an m×m coefficient matrix, and with m
unknown αk, k = 1, . . . ,m. We can apply the CGM to solve the above system,
which is convergent very fast.
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Remark: The best choice of u would be u = B−1r, which by Eq. (14) leads to
v = r, and by Eq. (24) further leads to the smallest value of a0 = 1. However, if
one has such the best choice of u = B−1r at hand, Eq. (1) is already solved by
x = B−1b. Instead of letting v = r, in the present formulation we let v approach r
by a minimization in Eq. (35); hence, we can obtain the minimizations of a0 and
s by a simpler method. Although we require a few inner iterations to determine
the weighting coefficients αk, the total number of iterations in solving the ill-posed
linear problem can be significiantly reduced. This makes the OMVIA superior than
other iterative algorithms even they do not need an inner iteration.

3.4 An optimal multi-vector iterative algorithm

Since the time-like variable is discretized to be t ∈ {0,1,2, . . .}, we can let xk de-
note the numerical value of x at the k-th step. Thus, we arrive at a purely iterative
algorithm by Eq. (29), which is labelled as the optimal multi-vector iterative algo-
rithm (OMVIA):

(i) Select m and 0≤ γ < 1, and give an initial x0.

(ii) For k = 0,1,2, . . ., we repeat the following computations:

rk = Bxk−b,
Rk = BTrk,

Arnoldi procedure to set up u j, v j = Bu j, j = 1, . . . ,m,

CGM to solve Eq. (37), obtaining α j, j = 1, . . . ,m,

uk =
m

∑
j=1

α ju j,

vk = Buk,

xk+1 = xk− (1− γ)
rk ·vk

‖vk‖2 uk. (38)

If xk+1 converges according to a given stopping criterion ‖rk+1‖ < ε , then stop;
otherwise, go to step (ii). The number of k is for the count of outer iterations; how-
ever, in the solution of αk by the CGM, there is also a number for the count of inner
iterations. Below we will take a count of both the numbers of outer iterations and
inner iterations together as a total number of iterations.
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4 Numerical examples of linear inverse problems

In order to evaluate the performance of the optimal multi-vector iterative algorithm
(OMVIA), we test four well-known ill-posed linear inverse problems of the back-
ward heat conduction problem, the heat source identification problem, the inverse
Cauchy problem, and the external force recovery problem.

4.1 Backward heat conduction problem

When the backward heat conduction problem (BHCP) is considered in a spatial
interval of 0 < x < ` by subjecting to the boundary conditions at two ends of a slab:

ut(x, t) = κuxx(x, t), 0 < t < T, 0 < x < `, (39)

u(0, t) = u0(t), u(`, t) = u`(t), (40)

we solve u under a final time condition:

u(x,T ) = uT (x). (41)

The fundamental solution to Eq. (39) is given as follows:

K(x, t) =
H(t)

2
√

κπt
exp
(
−x2

4κt

)
, (42)

where H(t) is the Heaviside function.

The method of fundamental solutions (MFS) has a serious drawback that the re-
sulting linear equations system is always highly ill-conditioned, when the number
of source points is increased, or when the distances of source points are increased.

In the MFS the solution of u at the field point z = (x, t) can be expressed as a linear
combination of the fundamental solutions U(z,s j):

u(z) =
n

∑
j=1

c jU(z,s j), s j = (η j,τ j) ∈Ω
c, (43)

where n is the number of source points, c j are unknown coefficients, and s j are
source points being located in the complement Ωc of Ω = [0, `]× [0,T ]. For the
heat conduction equation we have the basis functions

U(z,s j) = K(x−η j, t− τ j). (44)

It is known that the location of source points in the MFS has a great influence on
the accuracy and stability. In a practical application of MFS to solve the BHCP,
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the source points are uniformly located on two vertical straight lines parallel to
the t-axis, not over the final time, which was adopted by Hon and Li (2009) and
Liu (2011b), showing a large improvement than the line location of source points
below the initial time. After imposing the boundary conditions and the final time
condition to Eq. (43) we can obtain a linear equations system:

Bx = b, (45)

where

Bi j =U(zi,s j), x = (c1, · · · ,cn)
T,

b = (u`(ti), i = 1, . . . ,m1;uT (x j), j = 1, . . . ,m2;u0(tk), k = m1, . . . ,1)T, (46)

and n = 2m1 +m2.

Example 1: Since the BHCP is highly ill-posed, the ill-condition of the coefficient
matrix B in Eq. (45) is serious. To overcome the ill-posedness of Eq. (45) we can
use the OMVIA to solve this problem. Here we compare the numerical solution
with an exact solution:

u(x, t) = cos(πx)exp(−π
2t).

For the case with T = 1 the value of final time data is in the order of 10−4, which is
small by comparing with the value of the initial temperature f (x)= u0(x)= cos(πx)
to be retrieved, which is O(1). We solve this problem by the OMVIA with m = 3
and γ = 0.05. Through totally 7524 iterations (including the inner iterations) the
residual norm is smaller than 0.01 as shown in Fig. 1(a), where the value of a0
is also shown. Under a relative random noise with an intensity σ = 10% being
imposed on the final time data, we compare the initial time data computed by the
OMVIA with the exact one u(x,0) = cos(πx) in Fig. 1(b). The numerical error as
shown in Fig. 1(c) is smaller than 0.001247. It indicates that the present iterative
algorithm is very robust against noise, and we can provide a very accurate numeri-
cal result by using the OMVIA. For the purpose of comparison, in Fig. 1(c) we also
plot the numerical error computed by the optimally generalized Tikhonov regular-
ization method (OGTRM) [Liu (2012e)], of which we can see that the OMVIA is
more accurate than the OGTRM about one order.
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Figure 1: For example 1: (a) showing residual error and a0, (b) comparing the
numerical and exact solutions, and (c) showing the numerical error of recovered
initial condition.

4.2 Heat source identification problem

In this section we apply the OMVIA to identify an unknown space-dependent heat
source function H(x) for a one-dimensional heat conduction equation:

ut(x, t) = uxx(x, t)+H(x), 0 < x < `, 0 < t < t f , (47)

u(0, t) = u0(t), u(`, t) = u`(t), (48)

u(x,0) = f (x). (49)
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In order to identify H(x) we impose a Neumann type boundary condition:

ux(0, t) = q(t). (50)

We propose a numerical differential method by letting v = ut . Taking the differ-
entials of Eqs. (47) and (48) and (50) with respect to t, and letting v = ut we can
derive

vt(x, t) = vxx(x, t), 0 < x < `, 0 < t < t f , (51)

v(0, t) = u̇0(t), (52)

v(`, t) = u̇`(t), (53)

vx(0, t) = q̇(t). (54)

This is an inverse heat conduction problem (IHCP) for v(x, t) without using the
initial condition.

Therefore as being a numerical method, we can first solve the above IHCP for
v(x, t) by using the MFS in Section 4.1 to obtain a linear equations system and then
the method introduced in Section 3.4 to solve the resultant linear equations system.
Thus, we can construct u(x, t) by

u(x, t) =
∫ t

0
v(x,ξ )dξ + f (x), (55)

which automatically satisfies the initial condition in Eq. (49).

From Eq. (55) it follows that

uxx(x, t) =
∫ t

0
vxx(x,ξ )dξ + f ′′(x), (56)

which together with ut = v being inserted into Eq. (47), leads to

v(x, t) =
∫ t

0
vxx(x,ξ )dξ + f ′′(x)+H(x). (57)

Inserting Eq. (51) for vxx = vt into the above equation and integrating it we can
derive the following equation to recover H(x):

H(x) = v(x,0)− f ′′(x). (58)

This approach exhibits three-fold ill-posednesses: one is the use of the IHCP to
solve v(x, t) which is used to provide the data of v(x,0) used in Eq. (58), one is all
the boundary conditions being obtained from the first-order differentials of mea-
sured data as shown in Eqs. (52)-(54), and another is the second-order differential
of the data f (x) in Eq. (58).
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However, we can prove the following unique theorem for the recovery of H(x).

Theorem 1: The reconstruction of H(x) in Eqs. (47)-(50) is unique.

Proof: Suppose that u0 = u` = f = q = 0 in Eqs. (48)-(50), we need to verify
H = 0 in Eq. (47). By the transformation v = ut , v(x, t) satisfies Eq. (51) with
zero overspecified boundary conditions. By the uniqueness of continuation of heat
conduction equation we know that v = 0 in 0 < x < `, 0 < t < t f ; hence, we have
ut = 0 and u(x, t) = c being a constant, and by u(x,0) = 0 we have c = 0. This ends
the proof. �

Here, as that in Section 4.1 we can apply the MFS to solve Eqs. (51)-(54), of which
by the collocation to satisfy the overspecified boundary conditions we can derive a
linear equations system.

Example 2: To compare our numerical result with that obtained by Farcas and
Lesnic (2006), and Yang, Deng, Yu and Luo (2009) for the recovery of a spatially-
dependent heat source, we consider

u(x, t) = sin(πx)(2− e−π2t),

H(x) = 2π
2 sin(πx). (59)

In Eq. (58) we disregard the ill-posedness of f ′′(x), and suppose that the data f ′′(x)
are given exactly. We solve this problem by the OMVIA with m = 16 and γ =
0.05. The maximum number of outer iterations is set to be 40, or the convergence
criterion is taken to be ε = 0.1. A random noise with an intensity σ = 0.05 is
added on the data q̇(t). Through totally 1346 iterations we can find a solution,
of which the residual error is shown in Fig. 2(a), where the value of a0 is also
shown. We compare the heat source computed by the OMVIA with the exact one
in Fig. 2(b). The numerical error is smaller than 0.06 as shown in Fig. 2(c). The
iterative algorithm OMVIA has provided a rather accurate numerical result, even a
5% noise is added on the measured data q̇(t). The present result is better than that
obtained by Farcas and Lesnic (2006), and Yang, Deng, Yu and Luo (2009).

Example 3: Then we consider

u(x, t) = x2 +2xt + sin(2πx),

H(x) = 2x−2+4π
2 sin(2πx). (60)

Similarly, in Eq. (58) we disregard the ill-posedness of f ′′(x), and suppose that the
data f ′′(x) are given exactly. We solve this problem by the OMVIA with m = 10
and γ = 0.05. The maximum number of outer iterations is set to be 500, or the con-
vergence criterion is taken to be ε = 0.1. A random noise with intensity σ = 0.05
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Figure 2: For example 2: (a) showing residual error and a0, (b) comparing the 

numerical and exact solutions, and (c) showing the numerical error of recovered heat 

source. 

 

 

 

Figure 2: For example 2: (a) showing residual error and a0, (b) comparing the
numerical and exact solutions, and (c) showing the numerical error of recovered
heat source.

is added on the data q̇(t). Through totally 7036 iterations we have obtained the nu-
merical solution with the residual error being shown in Fig. 3(a), where the value
of a0 is also shown. We compare the heat source computed by the OMVIA with
the exact one in Fig. 3(b). The numerical error is smaller than 0.052 as shown in
Fig. 3(c).
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Figure 3: For example 3: (a) showing residual error and a0, (b) comparing the 

numerical and exact solutions, and (c) showing the numerical error of recovered heat 

source. 

 

 

 

 

Figure 3: For example 3: (a) showing residual error and a0, (b) comparing the
numerical and exact solutions, and (c) showing the numerical error of recovered
heat source.

4.3 Inverse Cauchy problem

Let us consider the inverse Cauchy problem for the Laplace equation:

∆u = urr +
1
r

ur +
1
r2 uθθ = 0, (61)

u(ρ,θ) = h(θ), 0≤ θ ≤ π, (62)

un(ρ,θ) = g(θ), 0≤ θ ≤ π, (63)

where h(θ) and g(θ) are given function. The inverse Cauchy problem is specified
as follows:
To seek an unknown boundary function f (θ) on the part Γ2 := {(r,θ)|r = ρ(θ), π <
θ < 2π} of the boundary under Eqs. (61)-(63) with the overspecified data being
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given on Γ1 := {(r,θ)|r = ρ(θ), 0≤ θ ≤ π}.
It is well known that the method of fundamental solutions (MFS) can be used to
solve the Laplace equation when a fundamental solution is known [Kupradze and
Aleksidze (1964)]. In the MFS the solution of u at the field point x=(r cosθ ,r sinθ)
can be expressed as a linear combination of fundamental solutions U(x,s j):

u(x) =
n

∑
j=1

c jU(x,s j), s j ∈Ω
c. (64)

For the Laplace equation (61) we have the fundamental solutions:

U(x,s j) = lnr j, r j = ‖x− s j‖. (65)

Previously, Liu (2008) has proposed a new preconditioner to reduce the ill-condition
of the MFS. In the practical application of MFS, by imposing the boundary condi-
tions (62) and (63) at N points on Eq. (64) we can obtain a linear equations system:

Bc = b, (66)

where

xi = (x1
i ,x

2
i ) = (ρ(θi)cosθi,ρ(θi)sinθi),

s j = (s1
j ,s

2
j) = (R(θ j)cosθ j,R(θ j)sinθ j),

Bi j = ln‖xi− s j‖, if i is odd,

Bi j =
η(θi)

‖xi− s j‖2

(
ρ(θi)− s1

j cosθi− s2
j sinθi−

ρ ′(θi)

ρ(θi)
[s1

j sinθi− s2
j cosθi]

)
, if i is even,

c = (c1, . . . ,cn)
T, b = (h(θ1),g(θ1), . . . ,h(θN),g(θN))

T, (67)

in which n = 2N, and

η(θ) =
ρ(θ)√

ρ2(θ)+ [ρ ′(θ)]2
. (68)

The above R(θ) = ρ(θ) +D with an offset D can be used to locate the source
points along a contour with a radius R(θ). When the linear equations system (66)
is available, we can apply the OMVIA to solve it.

Example 4: For the purpose of comparison we consider the following exact solu-
tion:

u(x,y) = cosxcoshy+ sinxsinhy, (69)
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defined in a domain with a complex amoeba-like irregular shape as a boundary:

ρ(θ) = exp(sinθ)sin2(2θ)+ exp(cosθ)cos2(2θ). (70)

After imposing the boundary conditions (62) and (63) at N points on Eq. (64) we
can obtain a linear equations system. Here we fix n= 40 and take D= 2 to distribute
the source points. The noise being imposed on the measured data h and g is σ =
0.01.

We solve this problem by the OMVIA with m = 3 and γ = 0.01. Through totally
1174 iterations the residual norm is smaller than 0.1 as shown in Fig. 4(a), where
the value of a0 is also shown. We compare the recovered data computed by the
OMVIA with the exact one in Fig. 4(b). The numerical error as shown in Fig. 4(b)
is smaller than 0.11. It can be seen that the OMVIA can accurately recover the un-
known boundary condition. The result is better than that calculated by Liu (2013b)
by using the OTVIA, which leads to the maximum error being 0.22.

4.4 Example 5: external force recovery problem

Let us consider the following inverse problem to recover the external force F(t) for
an ODE:

ÿ(t)+ ẏ(t)+ y(t) = F(t). (71)

In a time interval of t ∈ [0, t f ] the discretized data yi = y(ti) are supposed to be
measurable, which are subjected to a random noise with an intensity σ . Usually,
it is very difficult to recover the external force F(ti) from Eq. (71) by the direct
differentials of the noisy data of the displacements, because the differential is a
highly ill-posed linear operator.

To approach this inverse problem by the polynomial interpolation, we begin with

pN(x) = c0 +
N

∑
k=1

ckxk. (72)

Now, the coefficient ck is split into two coefficients ak and bk to absorb more inter-
polation points; in the meanwhile, cos(kθk) and sin(kθk) are introduced to reduce
the condition number of the coefficient matrix [Liu (2011c)]. We suppose that

ck =
ak cos(kθk)

Rk
2k

+
bk sin(kθk)

Rk
2k+1

, (73)

and

θk =
2kπ

N
, k = 1, . . . ,N. (74)
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Figure 4: For example 4: (a) showing residual error and a0, (b) comparing the 

numerical and exact solutions, and (c) showing the numerical error of recovered 

boundary condition. 

 

 

 

Figure 4: For example 4: (a) showing residual error and a0, (b) comparing the
numerical and exact solutions, and (c) showing the numerical error of recovered
boundary condition.

The considered problem domain is [a,b], and the interpolating points are:

a = x0 < x1 < x2 < .. . < x2N−1 < x2N = b. (75)

Substituting Eq. (73) into Eq. (72), we can obtain

pN(x) = a0 +
N

∑
k=1

[
ak

(
x

R2k

)k

cos(kθk)+bk

(
x

R2k+1

)k

sin(kθk)

]
, (76)

where we let c0 = a0. Here, ak and bk are unknown coefficients. In order to obtain
them, we impose the following n interpolated conditions:

p(xi) = yi, i = 0, . . . ,n−1, (77)
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where n = 2N +1. Thus, we obtain a linear equations system to determine ak and
bk:

1 x0 cosθ1
R2

x0 sinθ1
R3

. . .
(

x0
R2N

)N
cosNθN

(
x0

R2N+1

)N
sinNθN

1 x1 cosθ1
R2

x1 sinθ1
R3

. . .
(

x1
R2N

)N
cosNθN

(
x1

R2N+1

)N
sinNθN

...
...

...
...

...
...

1 x2N−1 cosθ1
R2

x2N−1 sinθ1
R3

. . .
(

x2N−1
R2N

)N
cosNθN

(
x2N−1
R2N+1

)N
sinNθN

1 x2N cosθ1
R2

x2N sinθ1
R3

. . .
(

x2N
R2N

)N
cosNθN

(
x2N

R2N+1

)N
sinNθN





a0
a1
b1
...

aN

bN



=



y0
y1
y2
...

y2N−1
y2N


. (78)

We note that the norm of the first column of the above coefficient matrix is
√

2N +1.
According to the concept of equilibrated matrix [Liu (2012f)], we can derive the
optimal scales for the current interpolation with a half-order technique as

R2k = β0

(
1

2N +1

2N

∑
j=0

x2k
j (coskθk)

2

)1/(2k)

, k = 1,2, . . . ,N, (79)

R2k+1 = β0

(
1

2N +1

2N

∑
j=0

x2k
j (sinkθk)

2

)1/(2k)

, k = 1,2, . . . ,N, (80)

where β0 is a scaling factor. The improved method uses N order polynomial to
interpolate n = 2N +1 data nodes, while regular method with a full-order can only
interpolate N +1 data points.

Now we fix N = 10 and t f = 5 and consider the exact solution to be F(t) = cos t,
which is obtained by inserting the exact y(t) = sin t into Eq. (71). The parameter
used is β0 = 1.24, and the noise being imposed on the measured data is σ = 0.01.

The maximum number of outer iterations is set to be 600, or the convergence cri-
terion is taken to be ε = 0.001. We solve this problem by the OMVIA with m = 5
and γ = 0.1. Through totally 2930 iterations we obtain an approximate solution,
of which the residual error is shown in Fig. 5(a), where the value of a0 is also
shown. We compare the recovered data computed by the OMVIA with the exact
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one in Fig. 5(b). The numerical error as shown in Fig. 5(b) is smaller than 0.221.
The maximum error obtained by the relaxed steepest descent method (RSDM) [Liu
(2011a)] is a larger value 0.452.
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Figure 5: For example 5: (a) showing residual error and a0, (b) comparing the 
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Figure 5: For example 5: (a) showing residual error and a0, (b) comparing the
numerical and exact solutions, and (c) showing the numerical error of recovered
external force.

5 Conclusions

In the present paper, we have derived a purely iterative algorithm including a relax-
ation parameter γ chosen by the user, and with an m-vector optimal search direction
in an m-dimensional Krylov subspace to solve a highly ill-posed linear system. This
algorithm is an Optimal Multi-Vector Iterative Algorithm (OMVIA), which has a
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good computational efficiency and accuracy in solving the ill-posed linear equa-
tions system. In particular, the OMVIA has a better filtering effect against noise,
such that as shown in all the numerical examples the numerical results recovered
are quite smooth. Numerical tests on the linear inverse problems have confirmed
the robustness of the OMVIA against noisy disturbance even with an intensity be-
ing large up to 10%.
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