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Abstract: A Reissner’s mixed variational theorem (RMVT)-based finite rectan-
gular prism method (FRPM) is developed for the three-dimensional (3D) analysis
of sandwich functionally graded material (FGM) plates subjected to mechanical
loads, in which the edge conditions of the plates are such that one pair of opposite
edges is simply supported and the other pair may be combinations of free, clamped
or simply supported edges. The sandwich FGM plate considered consists of two
thin and stiff homogeneous material face sheets combined with an embedded thick
and soft FGM core, the material properties of which are assumed to obey the power-
law distributions of the volume fractions of the constituents. In this formulation,
the plate is divided into a number of finite rectangular prisms, in which the trigono-
metric functions and Lagrange polynomials are used to interpolate the y-direction
and x− ζ plane variations of the primary field variables of each individual prism,
respectively. Because an h-refinement process is adopted to yield the convergent
solutions in this analysis, the prism-wise either linear or quadratic function distri-
bution through the x−ζ plane is assumed for the related field variables. A unified
formulation of these FRPMs with freely-chosen orders for assorted field variables
is presented. It is shown that these quadratic FRPM solutions of simply supported,
multilayered composite plates and sandwich FGM ones are in excellent agreement
with the exact 3D solutions available in the literature, and those of multilayered
composite plates with various boundary conditions closely agree with the solutions
obtained using the ANSYS commercial software.
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1 Introduction

Conventional sandwich plates, composed of two thin and stiff homogeneous face
sheets combined with an embedded thick and soft homogeneous core, have been
used in various engineering applications, such as in the aerospace and marine en-
gineering industries, in which strong stiff and lightweight components or struc-
tures are required. Because the material properties of conventional sandwich plates
abruptly change at the interfaces between adjacent layers, huge transverse stresses
and discontinuous in-plane stresses will occur at these places, which always result
in delamination, cracking and local buckling failures.

In recent decades, a new class of advanced materials, so-called functionally graded
materials (FGMs), has been developed and used in the cores of such plates, the
material properties of which vary gradually and continuously through the thickness
coordinate, eliminating the drawbacks of conventional sandwich plates. The devel-
opment of theoretical methodologies and numerical modeling approaches for the
analysis of these sandwich (or multilayered) FGM structures with various bound-
ary conditions have thus attracted considerable attention, and a number of compre-
hensive literature surveys of the computational models of multilayered composite
plates/shells and FGM ones have been carried out (Noor and Burton, 1990a, b;
Noor, Burton and Bert, 1996; Noor, Burton and Peters, 1991; Carrera 2000a, b,
2003a; Carrera and Ciuffreda, 2005a). Among the various computational mod-
els proposed in the literature, this article focuses on the exact and approximate
three-dimensional (3D) approaches as well as refined and advanced models for the
analysis of multilayered FGM (or composite) plates/shells.

Some exact 3D analyses of multilayered FGM (or composite) structures with fully
simple supports have been presented. For example, Pan (2003) developed the Stroh
formalism for the 3D anisotropic, linearly elastic, and functionally graded rectan-
gular composite laminates, in which the material properties of each individual layer
were assumed to vary exponentially through the thickness coordinate. This elegant
formalism was applied to the 3D static and free vibration analyses of function-
ally graded and layered magneto-electro-elastic plates by Pan and Han (2005) and
Chen, Chen and Pan (2006), respectively. Kashtalyan (2004), Kashtalyan and Men-
shykova (2009a) and Woodward and Kashtalyan (2010) presented the 3D elasticity
solutions of single-layered FGM plates and sandwich panels with a functionally
graded core, the material properties of which were assumed to vary exponentially
through the thickness coordinate of the core. A comparative study of sandwich
homogeneous and FGM plates showed that the use of a graded core instead of a
homogeneous one can eliminate discontinuities of the in-plane normal and shear
stresses across the interfaces between the face sheet and the core. This 3D ana-
lytical approach was further used by Kashtalyan and Menshykova (2009b) to eval-
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uate the effect of a functionally graded interlayer on the 3D elastic deformation
of coated plates subjected to transverse loading. The perturbation, multiple time
scales and modified Pagano methods were also used for the 3D static, free vibra-
tion, buckling, and nonlinear bending analyses of laminated FGM (or composite)
elastic, piezoelectric and magneto-electro-elastic plates and shells (Wu and Chiu,
2002; Wu and Chi, 2004, 2005; Wu and Liu, 2007; Wu, Syu and Lo, 2007; Wu
and Syu, 2007; Wu and Tsai, 2007; Wu and Huang, 2009; Wu and Lu, 2009; Wu
and Jiang, 2011). Finally, a comprehensive literature survey of the 3D analytical
approaches of laminated FGM (or composite) plates and shells was undertaken by
Wu, Chiu and Wang (2008). However, it is noted that all these above-mentioned
3D analyses were carried out for the plates and shells with fully simply supported
conditions, rather than other kinds of boundary conditions.

Some refined and advanced models have also been presented on the basis of the
principle of virtual displacements (PVD) and Reissner’s mixed variational theorem
(RMVT) (Reissner, 1984, 1986) for multilayered composite plates/shells and FGM
ones. In the PVD-based theories and numerical models, the displacement com-
ponents are regarded as the primary variables, and the in-plane stress components
can be calculated from these using Hooke’s law. While these theories might give
accurate predictions of the displacement and in-plane stress components of the de-
formed plates/shells, they might fail to yield the same accuracy for the transverse
shear and normal stresses. A post correction process for the calculation of trans-
verse shear and normal stresses is thus usually needed to improve the accuracy
for these stresses, which utilizes the indefinite integrations derived from the stress
equilibrium equations. In the RMVT-based theories and numerical models, both
the displacement and transverse stress components are regarded as primary vari-
ables, and the in-plane stress components can be calculated on the basis of these.
The accuracy of the transverse stress components obtained using the RMVT-based
approaches is thus much improved in comparison with those obtained using the
PVD-based ones. The related developments, ideas, and evaluations based on the
RMVT with regard to the modeling of multilayered composite plates/shells were
comprehensively described by Carrera (2001) and Carrera, Brischetto, Cinefra and
Soave (2010).

Based on the PVD and RMVT, Carrera (2003b) and Carrera and Ciuffreda (2005b)
developed a unified formulation to assess theories of multilayered composite elas-
tic structures for various bending problems. In Demasi (2008) this approach was
called the “Carrera Unified Formulation” (CUF) and a further generalization, called
“Generalized Unified Formulation” (GUF) was presented in the same work. Car-
rera and Brischetto (2008) and Cinefra, Belouettar, Soave and Carrera (2010) de-
veloped a variable kinematic model and introduced it into the CUF for the bending
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and free vibration analyses of FGM plates, respectively. Brischetto and Carrera
(2010) extensively applied the CUF with RMVT to analyze the mechanical bending
problems of FGM plates. Moreover, Demasi (2009a-e) extended GUF to investi-
gate RMVT-based theories, in which a variety of mixed first-order and higher-order
shear deformation, zig-zag, layerwise theories were included. Undertaking imple-
mentations and comparisons among assorted PVD- and RMVT-based theories of
the global and local responses of multilayered orthotropic plates under mechanical
loads, Carrera and Petrolo (2010) gave some guidelines and recommendations to
construct ones for metallic and composite plates, and Carrera (2000c) concluded
that the RMVT-based theories are superior to the PVD-based ones. Again, most of
the above-mentioned refined and mixed theories of plates/shells were implemented
for the fully simple supports, while little work undertaken with regard to other kinds
of boundary conditions.

Some approximate 3D approaches have been developed to investigate the effects
of boundary condition on the static behaviors and dynamic responses of lami-
nated FGM (or composite) plates/shells. Chen and Lüe (2005), Chen, Lv and Bian
(2004), Lü, Chen and Shao (2008), and Lü, Lim and Chen (2009) developed a
state space differential quadrature method for the static and free vibration analy-
ses of laminated composite plates/beams and FGM ones with one pair of simply
supported opposite edges and arbitrary boundary conditions at the other pair of
opposite edges. Based on a layerwise displacement model combined with the DQ
method, Liew, Ng and Zhang (2002) and Zhang, Ng and Liew (2003) studied the 3D
bending and free vibration problems of laminated composite plates with clamped
and simply supported edges. Liu, Zhang and Zhang (1994) presented the stresses
and deformations of rectangular composite plates with various boundary conditions
using a mixed high-order shear deformation theory in combination with the state
space method, in which a parametric study of the effects of edge conditions, as-
pect ratios, lamination schemes and loading conditions on the solutions was carried
out. On the basis of the 3D elasticity, Sheng and Ye (2002, 2003) developed a
state space finite element method (FEM) for the stress analysis of cross-ply lami-
nated composite plates and cylindrical shells, in which the traditional FEMs were
used to interpolate the in-plane (or in-surface) variations of state variables, and a
state space formulation was introduced to solve the through-thickness stress distri-
butions. This method has also been extensively used to study the free-edge effect
in cross-ply laminated composite plates and cylinders subjected to transverse and
in-plane loads by Ye and Sheng (2003) and Ye, Sheng and Qin (2004). Ajmi and
Benjeddou (2011) developed a discrete-layer finite element method for the elec-
tromechanically coupled analysis of piezoelectric adaptive composite structures.
In conjunction with the perturbation and DQ methods, Wu and Wu (2000) and
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Wu and Tsai (2004) presented the asymptotic DQ solutions for the free vibration
analysis of laminated conical shells and for the bending analysis of FGM annular
spherical shells, respectively.

Based on the PVD and RMVT, Carrera and Demasi (2002a, b) presented a unified
formulation of finite plate elements for the analysis of multilayered plates, in which
both the equivalent single-layered models (ESLMs) preserving the number of vari-
ables independent of the number of layers and the layer-wise models (LWMs), in
which the variables of each layer constituting the plates remain the same and are
independent of one another, were considered.

Based on the PVD, Cheung and Jiang (2001) developed a finite layer method
(FLM) for the 3D static analysis of piezoelectric composite laminates, in which
the simply-supported laminate was divided into a number of finite layers, and the
trigonometric functions and Lagrange polynomials were used to interpolate the in-
and out-of-plane variations of the field variables, respectively, for each individual
layer. It has been demonstrated that this semi-analytical FLM is more effective
in reducing computational effort and core requirements for simply supported lami-
nates. This FLM was also extended to the 3D static, vibration, stability and thermal
buckling analyses of piezoelectric composite plates by Akhras and Li (2007, 2008,
2010). Subsequently, based on the RMVT instead of the PVD, Wu and Li (2010a,
b) and Wu and Chang (2012) developed a unified formulation of the FLM and the
finite cylindrical layer method (FCLM) for the 3D static and free vibration anal-
yses of multilayered FGM (or composite) plates/cylinders, in which the material
properties of each individual FGM layer are assumed to obey either an exponent-
law exponentially varied with the thickness coordinate or a power-law distribution
of the volume fractions of the constituents, and the relative orders used for expan-
sion of the displacement and transverse stress components through the thickness
coordinate can be freely chosen.

A close review of the literature, as summarized above, presents the following find-
ings: (a) The RMVT-based theories are superior to the PVD-based ones with re-
gard to predicting the global and local responses of plates/shells. (b) Far fewer
published articles deal with the mechanical problems involving FGM plates using
RMVT-based theories in comparison with those using the PVD-based ones. (c) All
the FLMs are applicable to the 3D problems of multilayered plates/shells with fully
simple supports, rather than other kinds of edges such as free and clamped ones.
Consequently, the current study was undertaken to develop a unified formulation
of the RMVT-based finite rectangular prism method (FRPM) for the 3D analysis
of multilayered composite plates and sandwich FGM ones, the edge conditions of
which are considered as one pair of simply supported opposite edges and arbitrary
combinations of free, clamped or simply supported conditions at the other oppo-
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site edges. Because an h-refinement process is used for the following illustrative
examples, these RMVT-based FRPMs with the relevant orders are taken to be lin-
ear or quadratic, which are 4-node linear (L4), 8- and 9-node quadratic (Q8 and
Q9) FRPMs. The accuracy and convergence of these FRPMs are investigated by
comparing these FRPM solutions with the 3D elasticity solutions available in the
literature for the sandwich FGM plates with fully simple supports, and the accurate
solutions obtained using an ANSYS commercial software for multilayered com-
posite plates with various boundary conditions. In addition, a parametric study
of some effects on the displacement and stress components induced in sandwich
FGM plates is carried out, such as the volume fraction exponent, the mid-surface
radius-to-thickness ratio and different boundary conditions.

Table 1: Comparisons with regard to the meshes, configuration, interpolation func-
tions, and discretized domains among the present finite rectangular prism, layer-
wise plate, and finite layer elements.

Elements Finite rectangular prism elements Layerwise plate elements Finite layer elements

Meshes
(the 2×1×2 mesh) (the 1/4 plate model with (the 1×1×2 mesh)

a 2×1×2 mesh)

Configuration
(a Q8 prism element) (a Q8 shell element) (a quadratic layer element)

Interpolation x-direction: Lagrange x-direction: Lagrange x-direction: Fourier
polynomials polynomials series functions

functions y-direction: Fourier y-direction: Lagrange y-direction: Fourier
series functions polynomials series functions

ζ -direction: Lagrange ζ -direction: Power ζ -direction: Lagrange
polynomials series functions polynomials

Discretized x−ζ plane x− y plane ζ -direction
domains

It is noted that the present RMVT-based FRPMs are totally different from the
above-mentioned LWM formulation (Carrera and Demasi, 2002a, b) and FLMs
(Wu and Li, 2010a, b). In the present formulation, the trigonometric functions and
Lagrange polynomials were used to interpolate the y-direction and x−ζ plane vari-
ations of the primary field variables of each individual prism element, respectively,
while in the LWM formulation the power series functions and Lagrange polynomi-
als were used to interpolate the ζ -direction and x−y plane variations of the primary
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field variables of each individual plate element, and in the FLMs, the trigonometric
functions and Lagrange polynomials were used to interpolate the x− y plane and
the ζ -direction variations of the field variables of each individual layer element. In
other words, the present prism element mesh is generated in the x−ζ plane to form
the whole plate, while the plate element mesh in the LWM formulation and FLM
meshes are generated in the x− y plane and the ζ -direction, respectively, to form
this. Comparisons regarding the meshes, configuration, interpolation functions, and
discretized domains among the present FRPMs, LWMs, and FLMs are tabulated in
Table 1. Moreover, the comparisons among the solutions obtained using these three
formulations will be carried out later in this work. 
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Figure 1: (a) The configuration and coordinates of a sandwich FGM (or homoge-
neous) plate, and (b) the configuration of a three-layered rectangular prism.

2 The RMVT-Based Finite Prism Method

2.1 The kinematic and kinetic assumptions

We consider a sandwich FGM plate subjected to a sinusoidally (or uniformly) dis-
tributed load on the top surface, as shown in Fig. 1a, in which the edge conditions
of this plate are such that one pair of the opposite edges is simply supported and
the other may be combinations of free, clamped or simply supported edges. The
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Cartesian global and local coordinate systems (i.e., x, yand ζ coordinates, and x̄,
ȳ and ζ̄ coordinates) are located on the middle plane of the plate and a typical
prism, respectively, as shown in Figs. 1a and 1b, in which x = xe + x̄, y = ye + ȳ
and ζ = ζe + ζ̄ , and (xe, ye, ζe) denote the coordinates of the center of the typ-
ical prism. Lx and Ly denote the in-plane dimensions of the plate in the x and y
directions, respectively. The thicknesses of each individual layer and the plate are

hm (m = 1, 2, · · · , Nl) and h, respectively, and h =
Nl

∑
m=1

hm, in which Nl is the total

number of the layers constituting the plate.

The displacement components of a typical straight and rectangular prism of the
mth-layer are given by[
u(e)x (x, y, ζ )
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=
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where
(
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(
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)(m)

i ,
(
w(e)

)(m)

j with (i = 1, 2, · · · , nu) and ( j = 1, 2, · · · , nw)
are the nodal displacement components of a typical straight and rectangular prism
of the mth-layer of the plate; ni=4, 8 and 9, in which i = u and w, denote the
node numbers of the L4, Q8 and Q9 prisms, respectively, the domain of which
are (xe−a/2) ≤ x ≤ (xe +a/2), 0 ≤ y ≤ Ly and (ζe−b/2) ≤ ζ ≤ (ζe +b/2),
in which a and b are the dimensions of the rectangular section of the prism, and

their node numberings are shown in Fig. 2; while
(

ψ
(e)
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i
(i = 1, · · · , nu) and(

ψ
(e)
w

)(m)

j
( j = 1, 2, · · · , nw) are the corresponding shape functions, and these

are given in the Appendix.

The transverse shear and normal stress components are regarded as the primary
variables in the RMVT-based FRPM, and for a typical straight and rectangular
prism of the mth-layer these are assumed as follows:[
τ
(e)
xζ

(x, y, ζ )
](m)

=
nτ

∑
i=1

[
ψ

(e)
τ (x, ζ )

]
i

[
τ
(e)
13 (y)

](m)

i
, (4)

[
τ
(e)
yζ

(x, y, ζ )
](m)

=
nτ

∑
i=1

[
ψ

(e)
τ (x, ζ )

]
i

[
τ
(e)
23 (y)

](m)

i
, (5)



An RMVT-Based Finite Rectangular Prism Method 35
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j
with (i = 1, 2, · · · , nτ) and ( j = 1, 2, · · · , nσ )

are the nodal transverse stress components of a typical prism of the mth-layer of the
plate; while

(
ψ

(e)
τ

)
i

(i = 1, 2, · · · , nτ) and
(

ψ
(e)
σ

)
j

( j = 1, 2, · · · , nσ ) are the

corresponding shape functions, in which nτ and nσ denote the node numbers of the
L4, Q8 and Q9 prisms, which are 4, 8 and 9, respectively.

a              b c

Figure 2: The configuration, coordinates, and node numbering at the nodal plane
of the rectangular prisms (a) a L4 prism, (b) a Q8 prism, and (c) a Q9 prism.

Demasi (2009e) indicated that the relative orders used for the expansions of the
in-plane and out-of-plane displacements, as well as the transverse shear and nor-
mal stresses, are the crucial assumptions for the RMVT-based plate/shell theories,
because these assumptions can be the source of numerical instabilities. Implement-
ing a variety of mixed plate theories, Demasi (2009e) concluded that there is no
numerical instability if the order of out-of-plane displacement is the same as that
of transverse normal stress; otherwise, numerical instability will occur. These con-
clusions were reexamined and confirmed by Wu and Li (2010a) and Wu and Chang
(2012) using the RMVT-based FLMs and FCLMs, respectively. In this work, the
orders of various displacements and transverse stresses are thus taken to be identi-
cal to one another, in which nu = nw = nτ = nσ , and these values are selected as 4
8 and 9 for L4, Q8 and Q9 FRPMs, respectively.

The linear constitutive equations of the mth-layer, which are valid for the orthotropic
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materials, are given by
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where (σ (m)
x , σ

(m)
y , · · · , τ

(m)
xy ) are the stress components; (ε(m)

x , ε
(m)
y , · · · , γ

(m)
xy )

are the strain components; and c(m)
i j are the elastic coefficients, which are constants

through the thickness coordinate in the homogeneous elastic layers, and variable
through the thickness coordinate in the FG elastic layers (i.e., c(m)

i j (ζ )).

The strain-displacement relations for a typical prism of the mth-layer, based on the
assumed displacement components in Eqs. (1)_(3), are given by[
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where the commas denote partial differentiation with respect to the suffix variables;
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, in which j = u, w, τ and σ .

2.2 The Reissner mixed variational theorem

The Reissner mixed variational theorem is used to derive the equilibrium equations
of the plate, and its corresponding energy functional is written in the form of
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∫ h/2
−h/2

∫∫
Ω

[
σx εx +σy εy +σζ εζ + τxζ γxζ + τyζ γyζ + τxyγxy−B(σi j)

]
dxdydζ

−
∫∫

Ω+

[
q̄+k (x, y) u+k (x, y, h/2)

]
dxdy−

∫∫
Ω−
[
q̄−k (x, y) u−k (x, y,−h/2)

]
dxdy

−
∫ h/2
−h/2

∫
Γσ

(t̄k uk) dΓdζ −
∫ h/2
−h/2

∫
Γu
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where Ω denotes the plate domain on the x− y plane, and Ω+ and Ω− denote the
top and bottom surfaces of the plate (i.e., ζ = h/2 and ζ =−h/2), respectively, in
which the transverse loads q̄+k and q̄−k (k = x, y and ζ ) are applied, respectively;
Γσ and Γu denote the portions of the edge boundary, where the surface traction and
displacement components (i.e., t̄k, ūk (k = x, y and ζ )) are prescribed, respectively;
and B(σi j) is the complementary energy density function.
In the present formulation, we take the displacement and the transverse stress com-
ponents to be the primary variables subject to variation. Using the kinematic and
kinetic assumptions, given in Eqs. (1)_(3) and (4)_(6), the first-order variation of
the Reissner energy functional can be expressed as follows:
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(e)
ζ

[
ε
(e)
ζ
−
(

c(m)
33

)−1
σ
(e)
ζ
−
(

Q(m)
ζ

)T
εεε
(e)
p

]}(m)

dζ̄ dx̄dy

−
Ne
∑

e=1

∫ Ly
0
∫ x̄=a/2

x̄=−a/2

{
q̄+k (x, y)

(
ψ

(e)
k

(
x̄, ζ̄ = b/2

))(m=Nl )

j

[
u(e)k

(
ζ̄ = b/2

)](m=Nl )

j

}
dx̄dy

−
Ne
∑

e=1

∫ Ly
0
∫ x̄=a/2

x̄=−a/2

{
q̄−k (x, y)

(
ψ

(e)
k

(
x̄, ζ̄ =−b/2

))(m=1)

j

[
u(e)k

(
ζ̄ =−b/2

)](m=1)

j

}
dx̄dy

= 0

(15)

where Ne denotes the number of prisms in each individual layer; the superscript of
T denotes the transposition of the matrices or vectors; and

εεε
(e)
p =

[
ε
(e)
x ε

(e)
y γ

(e)
xy

]T
= B(e)

1 u(e), εεε
(e)
s =

[
γ
(e)
xζ

γ
(e)
yζ

]T
= B(e)

3 u(e)+B(e)
4 w(e),
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ε
(e)
ζ

= B(e)
6 w(e), σσσ

(e)
p =

[
σ
(e)
x σ

(e)
y τ

(e)
xy

]T
= Q(m)

p B(e)
1 u(e)+Q(m)

ζ
B(e)

2 σσσ
(e),

σσσ
(e)
s =

[
τ
(e)
xζ

τ
(e)
yζ

]T
= B(e)

5 τττ
(e), σ

(e)
ζ

= B(e)
2 σσσ

(e),

u(e) =

[
u(e)i

v(e)i

]
i=1,2,··· ,nu

, w(e) =
[
w(e)

i

]
i=1,2,··· ,nw

,

τττ
(e) =

 (τ
(e)
13

)
i(

τ
(e)
23

)
i


i=1,2,··· ,nτ

, σσσ
(e) =

[(
σ
(e)
3

)
i

]
i=1,2,··· ,nσ

,

S(m) =

 (1/c(m)
55

)
0

0
(

1/c(m)
44

)  , Q(m)
p =

 Q(m)
11 Q(m)

12 0
Q(m)

12 Q(m)
22 0

0 0 Q(m)
66

 ,

Q(m)
ζ

=

 Q(m)
13

Q(m)
23

0

 ,

B(e)
1 =


(

Dxψ
(e)
u

)
i

0

0
(

ψ
(e)
u

)
i
∂y(

ψ
(e)
u

)
i
∂y

(
Dxψ

(e)
u

)
i


i=1,2,··· ,nu

, B(e)
2 =

[(
ψ

(e)
σ

)
i

]
i=1,2,··· ,nσ

,

B(e)
3 =

 (Dζ ψ
(e)
u

)
i

0

0
(

Dζ ψ
(e)
u

)
i


i=1,2,··· ,nu

, B(e)
4 =

 (Dxψ
(e)
w

)
i(

ψ
(e)
w

)
i
∂y


i=1,2,··· ,nw

,

B(e)
5 =

 (ψ
(e)
τ

)
i

0

0
(

ψ
(e)
τ

)
i


i=1,2,··· ,nτ

, B(e)
6 =

[(
Dζ ψ

(e)
w

)
i

]
i=1,2,··· ,nw

,

Q(m)
i j = c(m)

i j − (c(m)
i3 c(m)

j3 /c(m)
33 ) (i, j = 1 and 2)

Q(m)
k3 = c(m)

k3 /c(m)
33 (k=1 and 2), Q(m)

66 = c(m)
66 .

2.3 Euler–Lagrange equations

The static behavior of a sandwich FGM plate with the boundary edges and under
mechanical loads, such that one pair of the opposite edges at y=0 and y = Ly is
simply supported, and the other two edges at x=0 and x = Lx are combinations of
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free, clamped and simply supported edges, is studied in the following illustrative
examples. The applied loading conditions on the lateral surfaces of the plate are
prescribed as[
τ
(Nl)
xζ

(x, y, h/2) τ
(Nl)
yζ

(x, y, h/2) σ
(Nl)
ζ

(x, y, h/2)
]
=
[
0 0 q̄+

ζ
(x, y)

]
on ζ = h/2

(16a)

[
τ
(1)
xζ

(x, y,−h/2) τ
(1)
yζ

(x, y,−h/2) σ
(1)
ζ

(x, y,−h/2)
]
= [0 0 0] on ζ =−h/2

(16b)

where q̄+
ζ

is expressed as the single Fourier series and given as q̄+
ζ
=

∞

∑
n̂=1

qn̂ sin(ñ y)

in which ñ = n̂π/Ly and n̂ is a positive integer.

As above-mentioned, the boundary edges at y = 0 and y = Ly, are simply supported
edges, and the corresponding boundary conditions are

u(e)x = u(e)
ζ

= σ
(e)
y = 0. (17)

The boundary edges at the other two edges, x = 0 and x = Lx, are combination of
free, clamped or simply supported edges, and the corresponding boundary condi-
tions of these are given as follows:

For free (F) supports,

σ
(e)
x = τ

(e)
xy = τ

(e)
xζ

= 0. (18a)

For clamped (C ) supports,

u(e)x = u(e)y = u(e)
ζ

= 0. (18b)

For simple (S) supports,

u(e)y = u(e)
ζ

= σ
(e)
x = 0. (18c)

By means of the separation of variables, the primary field variables of each indi-
vidual layer in Eqs. (1)_(6) are expanded as the single Fourier series so that the
boundary conditions of the simply supported edges at y=0 and y = Ly are exactly
satisfied, and they are rewritten as(

u(e)x

)(m)
=

∞

∑
n̂=1

nu

∑
i=1

(
ψ

(e)
u

)
i

(
u(e)n̂

)(m)

i
sin ñ y , (19)
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(
u(e)y

)(m)
=

∞

∑
n̂=1

nu

∑
i=1

(
ψ

(e)
u

)
i

(
v(e)n̂

)(m)

i
cos ñ y , (20)

(
u(e)

ζ

)(m)
=

∞

∑
n̂=1

nw

∑
j=1

(
ψ

(e)
w

)
j

(
w(e)

n̂

)(m)

j
sin ñ y , (21)

(
τ
(e)
xζ

)(m)
=

∞

∑
n̂=1

nτ

∑
k=1

(
ψ

(e)
τ

)
k

(
τ
(e)
13n̂

)(m)

k
sin ñ y , (22)

(
τ
(e)
yζ

)(m)
=

∞

∑
n̂=1

nτ

∑
k=1

(
ψ

(e)
τ

)
k

(
τ
(e)
23n̂

)(m)

k
cos ñ y , (23)

(
σ
(e)
ζ

)(m)
=

∞

∑
n̂=1

nσ

∑
l=1

(
ψ

(e)
σ

)
l

(
σ
(e)
3n̂

)(m)

l
sin ñ y , (24)

Introducing the kinetic and kinematic models of the FRPMs (Eqs. (19)_(24) and the
boundary coditions on the lateral surfaces (Eqs. (16a) and (16b) in Eq. (15), then
imposing the stationary principle of the Reissner energy functional (i.e., δ ΠR = 0),
we thus obtain the Euler_Lagrange equations of the plate as follows:

Nl

∑
m=1

Ne

∑
e=1


K(e)

I I 0 K(e)
I III K(e)

I IV

0 0 K(e)
II III K(e)

II IV

K(e)
III I K(e)

III II K(e)
III III 0

K(e)
IV I K(e)

IV II 0 K(e)
IV IV


(m) 

ũ(e)

w̃(e)

τ̃ττ
(e)

σ̃σσ
(e)


(m)

= δmNl

Ne

∑
e=1


0
Q(e)

0
0


(m)

,

(25)

where
(

K(e)
i j

)(m)
=

[(
K(e)

j i

)(m)
]T

(i, j = I, II, III, IV);(
K(e)

I I

)(m)
=
∫ b/2
−b/2

∫ a/2
−a/2

(
B̃(e)

1

)T
Q(m)

p B̃(e)
1 dx̄dζ̄ ,

(
K(e)

I III

)(m)
=
∫ b/2

−b/2

∫ a/2

−a/2

(
B(e)

3

)T
B(e)

5 dx̄dζ̄ ,

(
K(e)

I IV
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=
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−b/2

∫ a/2

−a/2

(
B̃(e)

1

)T
Q(m)

ζ
B(e)

2 dx̄dζ̄ ,

(
K(e)

II III

)(m)
=
∫ b/2

−b/2

∫ a/2

−a/2

(
B̃(e)

4

)T
B(e)

5 dx̄dζ̄ ,

(
K(e)

II IV

)(m)
=
∫ b/2

−b/2

∫ a/2

−a/2

(
B(e)

6

)T
B(e)

2 dx̄dζ̄ ,
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(
K(e)

III III

)(m)
=−

∫ b/2

−b/2

∫ a/2

−a/2

(
B(e)

5

)T
S(m) B(e)

5 dx̄dζ̄ ,

(
K(e)

IV IV

)(m)
=−

∫ b/2

−b/2

∫ a/2

−a/2

(
1/c(m)

33

) (
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2

)T
B(e)

2 dx̄dζ̄ ,
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1 =


(

Dxψ
(e)
u

)
i

0

0 −ñ
(

ψ
(e)
u

)
i
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(

ψ
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u

)
i

(
Dxψ
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u
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i=1,2,··· ,nu
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Dxψ
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(

ψ
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i=1,2,··· ,nw
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ũ(m) =


(

u(e)n̂

)(m)

i(
v(e)n̂

)(m)

i


i=1,2,··· ,nu

, w̃(m) =

[(
w(e)

n̂

)(m)

i

]
i=1,2,··· ,nw

,

τ̃
(m) =


(

τ
(e)
13n̂

)(m)

i(
τ
(e)
23n̂

)(m)

i


i=1,2, ··· ,nτ

, σ̃
(m) =

[(
σ
(e)
3n̂

)(m)

i

]
i=1,2,··· ,nσ

,

(
Q(e)

)(m=Nl)
=
∫ a/2
−a/2 (qn̂) B(e)

7 dx̄ , B(e)
7 =

[(
ψ

(e)
w
(
x̄, ζ̄ = b/2

))
i

]
i=1,2,··· ,nw

; and

the symbols of δmNl (m = 1, 2, · · · , Nl) are the Kronecker delta functions, in
which δmNl = 0 when m 6= Nl , and δNlNl = 1.

It is noted that the determinations of the local stiffness sub-matrices derived and
given in Eq. (25), involve a double-integration evaluation, in which the integrands
are the multiplication of the related shape functions, the derivatives of these shape
functions with respect to x and ζ , and thickness-dependent material properties. A
numerical integration technique, the Gaussian quadrature commonly used in the
FEMs, is used to evaluate these sub-matrices. To achieve this, a background inte-
gration mesh is constructed in the element domain, which is further divided into Nb
integration domains along the thickness direction and the (NgxNg)-term Gaussian
quadrature formula is applied to each background integration domain. The imple-
mentation of these FRPMs shows that using Nb=20 and Ng=7 may evaluate each
integration to five-decimal accuracy, and this is adopted for the later work of this
article.

Using Eq. (25) and assembling the local stiffness matrix and forcing vector of
each prism constituting the plate by following the standard process of the FEMs, in
which the displacement and transverse stress continuity conditions at the interfaces
between adjacent prisms are imposed and thus satisfied a priori for the unified for-
mulation of these RMVT-based FRPMs, it is possible to construct the correspond-
ing global stiffness matrix and forcing vector for the plate. The primary variables at
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each node of the prism can then be determined. Subsequently, the variables of in-
plane stresses at the nodes can be obtained using the determined primary variables,
and these are given by(

σ
(e)
x , σ

(e)
y

)(m)
=

∞

∑
n̂=1

(
σ
(e)
1n̂ , σ

(e)
2n̂

)(m)
sin ñ y , (26)

(
τ
(e)
xy

)(m)
=

∞

∑
n=1

(
τ
(e)
12n̂

)(m)
cos ñ y , (27)

where
[ (

σ
(e)
1n̂

)(m) (
σ
(e)
2n̂

)(m) (
τ
(e)
12n̂

)(m)
]T

= Q(m)
p B̃(e)

1 ũ(e)+Q(m)
ζ

B(e)
2 σ̃ (e).

Using this unified formulation of RMVT-based FRPMs, the 3D static behaviors
of sandwich FGM plates with various boundary conditions and under mechanical
loads are analyzed later in this paper, in which the performance of the RMVT-based
L4, Q8 and Q9 FRPMs is also examined.

3 Illustrative examples

3.1 Orthotropic laminated plates

A benchmark problem dealing with the static behaviors of orthotropic three-layered
plates (i.e.,

[
00/900/00

]
) with the fully simple supports and under a sinusoidally

distributed load (q̄+
ζ
= q0 sin(π x/Lx) sin(π y/Ly)) is presented by Pagano (1970)

and other researchers (Wu, Chen and Chiu, 2010; Wu and Tsai, 2012; Wu and
Jiang, 2011), and it is used to validate the accuracy and convergence of these
RMVT-based L4, Q8 and Q9 FRPMs. The set of normalized variables used in
Pagano (1970) is adopted in this example and is given as follows:

(σ̄x, σ̄y, τ̄xy)=
1

q0 S2 (σx, σy, τxy) ,
(
τ̄xζ , τ̄yζ

)
=

1
q0 S

(
τxζ , τyζ

)
, σ̄ζ =

σζ

q0 S
,

ūx =
ET ux

q0 hS3 , ūζ =
100ET uζ

q0 hS4 , S =
Lx

h
. (28)

The material properties of the orthotropic elastic material used in Pagano (1970)
are adopted as the reference material, which are given as

EL = 25x106 psi (174.6 GPa) , ET = 1.0x106 psi (6.89 GPa),

GLT = 0.5x106 psi (3.5 GPa), GT T = 0.2x106 psi (1.4 GPa), (29)

υLT = υT T = 0.25,
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Table 2: Convergence studies for the RMVT-based FRPM solutions of the displace-
ment and stress components at the crucial positions of [0◦/90◦/0◦] laminated plates
with fully simple supports and under the sinusoidally distributed load (Ly/Lx = 3).

S Theories 102ūx ūζ σ̄x τ̄xy τ̄xζ σ̄ζ

(Lx/h)
(

0, Ly
2 , h

2

) (
Lx
2 ,

Ly
2 ,0

) (
Lx
2 ,

Ly
2 , h

2

) (
0,0,− h

2

) (
0, Ly

2 ,0
) (

Lx
2 ,

Ly
2 ,0

)
4 L4 FRPM (6x6) -1.4216 2.8627 1.0925 0.0274 0.3137 0.1272

L4 FRPM (12x12) -1.4262 2.8320 1.1332 0.0279 0.3642 0.1253
L4 FRPM (18x18) -1.4254 2.8264 1.1396 0.0280 0.3466 0.1248
L4 FRPM (24x24) -1.4250 2.8240 1.1417 0.0280 0.3544 0.1247
Q8 FRPM (6x6) -1.4255 2.8314 1.1658 0.0285 0.3648 0.1248
Q8 FRPM (12x12) -1.4247 2.8239 1.1506 0.0282 0.3545 0.1246
Q8 FRPM (18x18) -1.4249 2.8226 1.1475 0.0281 0.3526 0.1246
Q9 FRPM (6x6) -1.4238 2.8315 1.1684 0.0285 0.3644 0.1249
Q9 FRPM (12x12) -1.4247 2.8242 1.1509 0.0282 0.3544 0.1246
Q9 FRPM (18x18) -1.4253 2.8230 1.1479 0.0281 0.3526 0.1246
LD11(Nl = 9) -1.3948 2.8005 1.1219 0.0278 0.3496 0.1245
LD22(Nl = 9) -1.4240 2.8208 1.1443 0.0281 0.3511 0.1245
LM11

11 (Nl = 9) -1.4235 2.8200 1.1437 0.0281 0.3634 0.1246
LM22

22 (Nl = 9) -1.4242 2.8211 1.1442 0.0281 0.3483 0.1245
Exact NA 2.82 1.14 0.0281 0.351 NA

10 L4 FRPM (6x6) -0.9195 0.9290 0.6958 0.0120 0.4066 0.0512
L4 FRPM (12x12) -0.9173 0.9213 0.7184 0.0122 0.4283 0.0503
L4 FRPM (18x18) -0.9169 0.9200 0.7226 0.0122 0.4186 0.0502
L4 FRPM (24x24) -0.9167 0.9195 0.7241 0.0123 0.4222 0.0501
Q8 FRPM (6x6) -0.9165 0.9226 0.7414 0.0124 0.4272 0.0501
Q8 FRPM (12x12) -0.9154 0.9191 0.7292 0.0123 0.4219 0.0500
Q8 FRPM (18x18) -0.9140 0.9177 0.7258 0.0123 0.4205 0.0500
Q9 FRPM (6x6) -0.9168 0.9230 0.7420 0.0124 0.4272 0.0501
Q9 FRPM (12x12) -0.9174 0.9204 0.7307 0.0123 0.4219 0.0500
Q9 FRPM (18x18) -0.9191 0.9234 0.7292 0.0123 0.4209 0.0500
LD11(Nl = 9) -0.9125 0.9164 0.7233 0.0122 0.4200 0.0500
LD22(Nl = 9) -0.9165 0.9189 0.7260 0.0123 0.4201 0.0500
LM11

11 (Nl = 9) -0.9159 0.9189 0.7256 0.0123 0.4201 0.0500
LM22

22 (Nl = 9) -0.9165 0.9189 0.7260 0.0123 0.4188 0.0500
Exact NA 0.919 0.726 0.0123 0.420 NA

where the subscripts of L and T denote the directions parallel and transverse to the
fiber directions, respectively.

Table 2 shows the convergence studies for the L4, Q8 and Q9 FRPM solutions of
displacement and stress components induced at the crucial positions of the

[
00/900/00

]
laminated plate with fully simple supports, in which Ly/Lx = 3, S = Lx/h=4 and
10, and the meshes used in x− ζ plane are (6x6), (12x12), (18x18) and (24x24)
for L4 FRPMs, as well as (6x6), (12x12) and (18x18) for Q8 and Q9 FRPMs. It
can be seen in Table 2 that the convergent solutions of Q8 and Q9 FRPMs are ob-
tained with the (18x18) mesh and those of L4 FRPM with the (24x24) mesh, and
these are in excellent agreement with the exact 3D solutions (Pagano, 1970) and
the quadratic PVD- and RMVT-based FLMs (Wu and Li, 2010a) available in the
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Figure 3: Convergence studies for the Q9 FRPM solutions of the through-thickness
distributions of various field variables in a simply-supported, [0◦/90◦/0◦] lami-
nated plate.
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literature. Figure 3 shows the convergence studies of the Q9 FRPM for the through-
thickness distributions of assorted field variables induced in the simply-supported,[
00/900/00

]
laminated plates under the sinusoidally distributed load mentioned

above, in which S=5 and Lx = Ly. Again, it is shown that the convergence speed
of this Q9 FRPM is rapid, and that the solutions obtained using the (12x12) and
(18x18) meshes closely agree with the exact 3D solutions obtained by Wu et al.
(2010) using the modified Pagano method (Pagano, 1970).

Table 3: Convergence studies for the RMVT-based FRPM solutions of the displace-
ment and stress components of [0◦/90◦/0◦] laminated plates with various boundary
conditions and under a uniformly distributed load (Lx = Ly,S = 10).

Variables Theories SS CC FF SC SF CF
ūζ (Lx/2,Ly/2,0) Q9 FRPM (12x12) 1.15554 0.64825 8.73043 0.85500 5.31631 2.44643

Q9 FRPM (18x18) 1.15580 0.64726 8.73381 0.85452 5.33582 2.44750
ANSYS (3x30x30) 1.15467 0.64263 8.69467 0.85090 5.28700 2.43430
ANSYS (6x60x60) 1.15517 0.64663 8.72767 0.85403 5.30200 2.44263
ANSYS (12x120x120) 1.15540 0.64717 8.72967 0.85447 5.30333 2.44357
ANSYS (24x120x120) 1.15597 0.64893 8.72100 0.85580 5.29867 2.44390

σ̄x(Lx/2,Ly/2,h/2) Q9 FRPM (12x12) 0.87411 0.40717 0.00461 0.59333 0.38241 -0.21062
Q9 FRPM (18x18) 0.87304 0.40498 0.00443 0.59317 0.37986 -0.21515
ANSYS (3x30x30) 0.85209 0.38415 0.00436 0.57330 0.37225 -0.22900
ANSYS (6x60x60) 0.86441 0.39679 0.00460 0.58638 0.37827 -0.21852
ANSYS (12x120x120) 0.86859 0.40151 0.00467 0.59096 0.38023 -0.21452
ANSYS (24x120x120) 0.86988 0.40300 0.00469 0.59239 0.38083 -0.21326

σ̄ζ (Lx/2,Ly/2,0) Q9 FRPM (12x12) 0.04974 0.04980 0.05002 0.04977 0.04988 0.04991
Q9 FRPM (18x18) 0.04990 0.04992 0.05001 0.04991 0.04995 0.04996
ANSYS (3x30x30) 0.05001 0.05000 0.05000 0.05001 0.05001 0.05000
ANSYS (6x60x60) 0.05001 0.05000 0.05000 0.05001 0.05001 0.05000
ANSYS (12x120x120) 0.05001 0.05000 0.05000 0.05001 0.05001 0.05000
ANSYS (24x120x120) 0.05001 0.05000 0.05000 0.05001 0.05001 0.05000

Table 3 shows the Q9 FRPM solutions of displacement and stress components in-
duced at the crucial positions of the

[
00/900/00

]
laminated plates with SS, CC,

FF, SC, SF, CF edge conditions and under a uniformly distributed load (q̄+
ζ
= q0),

in whichS=10 and Lx = Ly, and the meshes used in x− ζ plane are (12x12) and
(18x18). The uniform load q0 applied in this work is expanded as a single Fourier

series and is given by q0 =
Nn̂

∑
n̂=1, 3, 5

qn̂ sin(n̂π/Ly) and qn̂ = −4/(n̂π), in which

the total number of terms in the single Fourier series Nn̂ is adopted as Nn̂=199. It
can be seen in Table 3 that the convergent solutions of Q9 FRPMs are obtained
for the plates with various boundary conditions when the (18x18) mesh is used,
and these convergent solutions for the plates with other types of supports closely
agree with the accurate solutions obtained using the ANSYS software, in which a
20-node brick element with the (24x120x120) mesh in the (ζ , x, y) directions is
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used. Moreover, the deflections at the center of the plates with various boundary
conditions are FF>SF>CF>SS>SC>CC.

Table 4: Comparisons among the RMVT-based FRPM solutions and layerwise
plate element ones of the displacement and stress components at the crucial po-
sitions of [0◦/90◦/0◦] laminated square plates with fully simple supports and under
the sinusoidally distributed load.

S Theories σ̄x σ̄y τ̄xy τ̄xζ σ̄yζ σ̄ζ ūζ

(Lx/h)
(

Lx
2 ,

Ly
2 ,± h

2

) (
Lx
2 ,

Ly
2 ,± h

4

) (
0,0,± h

2

) (
0, Ly

2 ,0
) ( Lx

2 ,0,0
) (

Lx
2 ,

Ly
2 ,0

) (
Lx
2 ,

Ly
2 ,0

)
4 Q9 FRPM (4x4) 0.75084 0.64896 -0.04804 0.23612 0.30556 0.49937 1.95056

-0.71430 -0.65189 0.04717
Q9 FRPM (8x8) 0.72881 0.65900 -0.04707 0.22368 0.29527 0.49651 1.94056

-0.69270 -0.66188 0.04620
Q9 FRPM (16x16) 0.72270 0.66170 -0.04678 0.22044 0.29249 0.49583 1.93782

-0.68675 -0.66457 0.04592
Q9 LM 4 (4x4) 0.7456 0.6897 -0.0493 0.2294 0.3148 0.4964 1.9374

-0.7093 -0.6937 0.0484
Exact 0.720 0.663 -0.0467 0.219 0.292 NA 1.937

-0.6840 -0.6660 0.0458
10 Q9 FRPM (4x4) 0.58433 0.40178 -0.02815 0.31270 0.21100 0.50152 0.74384

-0.58500 -0.40335 0.02829
Q9 FRPM (8x8) 0.56563 0.40097 -0.02770 0.30407 0.20047 0.50009 0.73881

-0.56616 -0.40254 0.02784
Q9 FRPM (16x16) 0.56105 0.40121 -0.02758 0.30197 0.19725 0.49990 0.73796

-0.56156 -0.40278 0.02772
Q9 LM 4 (4x4) 0.5909 0.4225 -0.0286 0.3073 0.1607 0.5018 0.7376

-0.5915 -0.4244 0.0287
Exact 0.559 0.401 -0.0275 0.301 0.196 NA 0.737

-0.559 -0.403 0.0276
20 Q9 FRPM (4x4) 0.56829 0.31068 -0.02343 0.33906 0.17045 0.50135 0.51803

-0.56873 -0.31111 0.02348
Q9 FRPM (8x8) 0.54959 0.30873 -0.02315 0.33084 0.16175 0.50012 0.51423

-0.54999 -0.30915 0.02320
Q9 FRPM (16x16) 0.54475 0.30849 -0.02307 0.32902 0.15769 0.50003 0.51342

-0.54513 -0.30891 0.02311
Q9 LM 4 (4x4) 0.5732 0.3239 -0.0239 0.3592 0.1697 0.5342 0.5133

-0.5741 -0.3247 0.0240
Exact 0.543 0.308 -0.0230 0.328 0.156 NA 0.513

-0.5430 -0.3090 0.0230
100 Q9 FRPM (4x4) 0.56468 0.27387 -0.02165 0.34658 0.15149 0.50127 0.43901

-0.56470 -0.27386 0.02166
Q9 FRPM (8x8) 0.54577 0.27179 -0.02144 0.34139 0.14953 0.50007 0.43584

-0.54579 -0.27178 0.02145
Q9 FRPM (16x16) 0.54128 0.27154 -0.02141 0.34088 0.14851 0.49999 0.43549

-0.54130 -0.27153 0.02141
Q9 LM 4 (4x4) 0.5655 0.2841 -0.0224 0.3665 0.1505 0.5302 0.4348

-0.5655 -0.2841 0.0224
Exact 0.539 0.271 -0.0214 0.339 0.139 NA 0.435

-0.539 -0.271 0.0214

Table 4 shows the comparisons between the solutions obtained using the present
RMVT-based FRPMs and the RMVT-based layerwise formulation of plate ele-
ments (Carrera and Demasi, 2002a, b), in which the bending of simply-supported,[
00/900/900/00

]
laminated square plates under a sinusoidally distributed load (q̄+

ζ
=

q0 sin(π x/Lx) sin(π y/Ly)) is considered. Again, it is shown that the Q9 LM4 so-
lutions with a (4x4) mesh closely agree the present Q9 FRPM ones although the
mesh in LM4 is generated in the x− y plane, while this in the present FRPM is
generated in the x−ζ plane. In addition, the present Q9 FRPM solutions converge
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rapidly, and their solutions with a (16x16) mesh are in excellent agreement with the
exact 3D solutions (Pagano, 1970).

Table 5: The displacement and stress components at the crucial positions of single-
layered FGM plates with fully simple supports and under a sinusoidally distributed
load (Lx = Ly,S = 10,h = 0.1m).

κp Theories ûx ûζ σ̂y τ̂xy τ̂yζ σ̂ζ(
0, Ly

2 ,− h
4

) (
Lx
2 ,

Ly
2 ,0

) (
Lx
2 ,

Ly
2 , h

3

) (
0,0,− h

3

) (
Lx
2 ,0, h

6

) (
Lx
2 ,

Ly
2 ,0

)
1 Q9 FRPM (6x6) 0.6436 0.5901 1.5153 0.6172 0.2716 0.0398

Q9 FRPM (12x12) 0.6437 0.5883 1.5085 0.6130 0.2577 0.0397
Q9 FRPM (18x18) 0.6435 0.5878 1.5069 0.6119 0.2541 0.0397
LD22(Nl = 10) 0.6436 0.5875 1.5060 0.6112 0.2504 0.0398
LM22

22 (Nl = 10) 0.6436 0.5875 1.5061 0.6112 0.2503 0.0397
RMVT-based TSDT 0.6414 0.5890 1.4898 0.6111 0.2506 NA
Generalized SDT 0.6626 0.5889 1.4894 0.6110 0.2622 NA
VK model ( Nl = 100) 0.6436 0.5875 1.5062 0.6081 0.2510 NA

2 Q9 FRPM (6x6) 0.9011 0.7603 1.4214 0.5490 0.2692 0.0388
Q9 FRPM (12x12) 0.9014 0.7578 1.4148 0.5452 0.2560 0.0388
Q9 FRPM (18x18) 0.9021 0.7576 1.4139 0.5446 0.2526 0.0387
LD22 (Nl = 10) 0.9013 0.7570 1.4128 0.5436 0.2492 0.0390
LM22

22 (Nl = 10) 0.9013 0.7570 1.4130 0.5436 0.2490 0.0387
RMVT-based TSDT 0.8984 0.7573 1.3960 0.5442 0.2491 NA
Generalized SDT 0.9281 0.7573 1.3954 0.5441 0.2763 NA
VK model (Nl = 100) 0.9012 0.7570 1.4147 0.5421 0.2496 NA

4 Q9 FRPM (6x6) 1.0542 0.8862 1.2008 0.5728 0.2520 0.0406
Q9 FRPM (12x12) 1.0544 0.8832 1.1956 0.5687 0.2412 0.0404
Q9 FRPM (18x18) 1.0538 0.8822 1.1940 0.5675 0.2384 0.0404
LD22 (Nl = 10) 1.0541 0.8823 1.1941 0.5671 0.2359 0.0407
LM22

22 (Nl = 10) 1.0541 0.8823 1.1942 0.5671 0.2358 0.0404
RMVT-based TSDT 1.0502 0.8815 1.1794 0.5669 0.2360 NA
Generalized SDT 1.0941 0.8819 1.1783 0.5667 0.2580 NA
VK model (Nl=100) 1.0541 0.8823 1.1985 0.5666 0.2362 NA

8 Q9 FRPM (6x6) 1.0831 0.9782 0.9673 0.5943 0.2391 0.0418
Q9 FRPM (12x12) 1.0832 0.9748 0.9634 0.5900 0.2299 0.0416
Q9 FRPM (18x18) 1.0825 0.9745 0.9632 0.5890 0.2279 0.0416
LD22(Nl = 10) 1.0830 0.9738 0.9622 0.5883 0.2250 0.0414
LM22

22 (Nl = 10) 1.0830 0.9738 0.9624 0.5883 0.2258 0.0416
RMVT-based TSDT 1.0763 0.9747 0.9477 0.5858 0.2263 NA
Generalized SDT 1.1340 0.9750 0.9466 0.5856 0.2121 NA
VK model (Nl = 100) 1.0830 0.9738 0.9687 0.5879 0.2262 NA

3.2 Single-layered FGM plates

The static behaviors of single-layer FGM plates with various boundary conditions
and under a sinusoidally distributed load (q̄+

ζ
= q0 sin(π x/Lx) sin(π y/Ly)) are in-

vestigated. The total thickness of the plate is considered to be 0.1m, and the side-
to-thickness ratio S (or Lx/h) to be 10 in Tables 5 and 6. The plates are made
of Aluminum (bottom) and Alumina (top), for which the Young’s modulus (E (ζ ))
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obeys a power-law distribution throughout the thickness coordinate, while the Pois-
son’s ratio (υ (ζ )) remains constant, as given by

E (ζ ) = Em +(Ec−Em)

(
2ζ +h

2h

)κp

−h/2≤ ζ ≤ h/2, (30)

υ (ζ ) = 0.3 −h/2≤ ζ ≤ h/2, (31)

where the subscripts of m and c denote the metal (Aluminum) and ceramic (Alu-
mina) materials constituting the bottom and top layers, respectively; Em = 70 GPa
and Ec = 380 Gpa; and κp is the volume fraction exponent.

This static problem was studied by Carrera, Brischetto and Robaldo (2008) using a
discrete layer theory combined with a variable kinematic (VK) model, and then re-
examined by Zenkour (2006) using a generalized shear deformation theory (SDT),
by Wu and Li (2010c) using an RMVT-based third-order shear deformation theory
(TSDT), and by Wu and Li (2010a) using the PVD- and RMVT-based FLMs. For
comparison purposes a set of dimensionless variables is adopted, as used in several
earlier works mentioned above, and this is given by

ûx =

(
100h3Ec

L4
x q0

)
ux , ûy =

(
100h3Ec

L4
x q0

)
uy, ûζ =

(
10h3Ec

L4
x q0

)
uζ ,

(σ̂x, σ̂y, τ̂xy) =

(
h

Lx q0

)
(σx, σy, τxy) ,

(
τ̂xζ , τ̂yζ

)
=

(
h

Lx q0

) (
τxζ , τyζ

)
,

σ̂ζ =

(
h

Lx q0

)
σζ . (32)

Table 5 shows the Q9 FRPM solutions of displacement and stress components in-
duced at the crucial positions of the plates with fully simple supports (i.e., SS
supports) and under a sinusoidally distributed load, in which (6x6), (12x12) and
(18x18) meshes are used, and the values of κp are taken to be 1, 2, 4 and 8. It can
be seen that the convergent solutions Q9 FRPM are yielded when (18x18) mesh is
used, and they are in excellent agreement with the convergent solutions obtained
by Carrera, Brischetto and Robaldo (2008) using a discrete layer theory with a VK
model, and those obtained by Wu and Li (2010a) using the PVD- and RMVT-based
quadratic FLMs.

Table 6 shows the Q8 and Q9 FRPM solutions of displacement and stress compo-
nents induced at the crucial positions of the plates with various boundary conditions
and under a sinusoidally distributed load, in which (12x12) and (18x18) meshes are
used, and κp=3. Again, it is shown that the deflections at the center of the FGM
plates with various boundary conditions are FF>SF>CF>SS>SC>CC. These so-
lutions may provide a reference for assessing the solutions obtained using other
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numerical modeling approaches, because there are quite a few exact 3D solutions
of FGM plates with various boundary conditions in the open literature, and that
most commercial software is not able to handle the mechanical problems involving
FGM structures.

Table 6: The RMVT-based Q8 and Q9 FRPM solutions of the displacement and
stress components of single-layered FGM plates with various boundary conditions
and under a sinusoidally distributed load (κp = 3,Lx = Ly,S = 10,h = 0.1m).

Variables Present SS CC FF SC SF CF
ûζ (Lx/2,Ly/2,0) Q8 FRPM (12x12) 0.8391 0.4612 2.1408 0.6164 1.3993 1.0311

Q8 FRPM (18x18) 0.8385 0.4610 2.1413 0.6162 1.3988 1.0309
Q9 FRPM (12x12) 0.8393 0.4613 2.1411 0.6166 1.3997 1.0314
Q9 FRPM (18x18) 0.8385 0.4610 2.1416 0.6162 1.3989 1.0310

σ̂x(Lx/2,Ly/2,h/2) Q8 FRPM (12x12) 3.9092 2.9406 2.7213 3.2926 3.3966 2.7220
Q8 FRPM (18x18) 3.8987 2.9261 2.7100 3.3451 3.3681 2.6789
Q9 FRPM (12x12) 3.9094 2.9411 2.7217 3.2917 3.3973 2.7231
Q9 FRPM (18x18) 3.9006 2.9266 2.7098 3.3472 3.3678 2.6768

σ̂ζ (Lx/2,Ly/2,0) Q8 FRPM (12x12) 0.0396 0.0403 0.0395 0.0400 0.0396 0.0401
Q8 FRPM (18x18) 0.0395 0.0398 0.0395 0.0397 0.0395 0.0397
Q9 FRPM (12x12) 0.0396 0.0404 0.0396 0.0401 0.0396 0.0402
Q9 FRPM (18x18) 0.0396 0.0399 0.0396 0.0398 0.0396 0.0398

3.3 Sandwich FGM plates

The static behaviors of sandwich FGM plates, which consist of two thin homo-
geneous face-sheets and a thick FGM core, with various boundary conditions and
under a sinusoidally distributed load (q̄+

ζ
= q0 sin(π x/Lx) sin(π y/Ly)), are exam-

ined in this section. The thickness ratio of each layer of the sandwich cylinder is

h1 : h2 : h3, in which h1 = h3 and
3
∑

m=1
hm = h, and the effective engineering constants

of each layer are as follows:

E(m) (ζ ) = E0 +(E f −E0) Γ
(m) (ζ ) (m = 1,2 and 3) (33a)

υ
(m) = constant (m = 1,2 and 3), (33b)

where E0 and E f denote the Young’s modulus of the material at the mid-surface
of the core-layer and that of the face-sheets, respectively, for which E0=70 GPa
(Aluminum) and E f =380 GPa (Alumina) are used in this example; υ(m) (m=1_3)
are taken to be 0.3; and Γ(m) (m=1_3) are the volume fractions of the constituents
of the cylinder, and are given by

Γ
(1) = 1 when (−h/2)≤ ζ ≤ (−h2/2) , (34a)
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Γ
(2) (ζ ) = [ |ζ |/(h2/2) ]κp when (−h2/2)≤ ζ ≤ (h2/2) , (34b)

Γ
(3) = 1 when (h2/2)≤ ζ ≤ (h/2) . (34c)

It is apparent that when κp=0, Γ(2) = 1, this FGM sandwich cylinder reduces to a
single-layered homogeneous isotropic plate with material properties E f =380 GPa
and υ f =0.3; while when κp =∞, Γ(2)= 0, this sandwich FGM plate reduces to a ho-
mogeneous sandwich plate with material properties E(1) = E(3)=380 GPa, E(2)=70
GPa, and υ(m)=0.3 (m=1_3). The through-thickness distributions of Young’s mod-
ulus with different values of κp are shown in Fig. 4, in which κp=0, 1, 3 and ∞.
In addition, a set of dimensionless variables used in example 3.2 (i.e., Eq. (32) is
adopted in the following cases, except that Ec in the dimensionless form of dis-
placement components is replaced by E f .
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Figure 4: The variations of the through-thickness distributions of the Young’s mod-
ulus of the sandwich FGM plate with κp = 0,1,3 and ∞.

Figure 5 shows the Q9 FRPM solutions for the through-thickness distributions
of displacement and stress components induced in the simply supported, sand-
wich FGM plates with different values of κp, in which Lx/h=5, Lx = Ly, h1 : h2 :
h3=0.1h:0.8h:0.1h, and κp=0, 3 and ∞. It can be seen in Fig. 5 that the through-
thickness distributions of the in-plane displacement/stress and the transverse shear
stress components for single-layered homogeneous (κp = 0), sandwich homoge-
neous (κp = ∞), and sandwich FGM (κp 6= 0 and ∞) plates differ from one an-
other, and that these distributions are global linear and global parabolic functions
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for single-layered homogeneous plates, layerwise linear and parabolic functions for
sandwich homogeneous plates, and layerwise higher-order polynomial functions
for sandwich FGM plates.
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Figure 5: The Q9 FRPM solutions for the through-thickness distributions of various
field variables of the simply supported, sandwich FGM plates with different values
of κp, in which κp = 0,3 and ∞.
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Figure 5 also shows that the in-surface stresses are continuously distributed through
the interfaces between the face-sheet and core layers for sandwich FGM cylinders
(κp 6= ∞), but change abruptly for the sandwich homogeneous cylinders (κp = ∞).
Moreover, the transverse shear stresses induced at the face-sheet/core interfaces
for sandwich FGM cylinders are reduced in comparison with those for sandwich
homogeneous cylinders, and the introduction of the functionally graded core also
decrease both the in- and out-of-surface displacements induced in the cylinders.

Table 7: The displacement and stress components at the centers of sandwich FGM
plates with various boundary conditions and under a sinusoidally distributed load
(Lx = Ly).

κp S Variables Theories SS CC FF SC SF CF
(Lx/h)

1 5 ûζ (Lx/2,Ly/2,0) Q9 FRPM (6x6) 0.4349 0.3115 0.9775 0.3657 0.6728 0.5587
Q9 FRPM (12x12) 0.4446 0.3159 1.0093 0.3726 0.6903 0.5702
Q9 FRPM (18x18) 0.4441 0.3154 1.0096 0.3721 0.6897 0.5695

σ̂x(Lx/2,Ly/2,0) Q9 FRPM (6x6) 0.0310 0.0295 0.0331 0.0303 0.0318 0.0309
Q9 FRPM (12x12) 0.0326 0.0317 0.0318 0.0323 0.0321 0.0319
Q9 FRPM (18x18) 0.0332 0.0323 0.0324 0.0328 0.0327 0.0325

σ̂ζ (Lx/2,Ly/2,0) Q9 FRPM (6x6) 0.0878 0.0883 0.0879 0.0880 0.0879 0.0881
Q9 FRPM (12x12) 0.0977 0.0980 0.0978 0.0979 0.0978 0.0979
Q9 FRPM (18x18) 0.0991 0.0992 0.0992 0.0992 0.0991 0.0992

1 10 ûζ (Lx/2,Ly/2,0) Q9 FRPM (6x6) 0.3384 0.1981 0.8404 0.2562 0.5560 0.4211
Q9 FRPM (12x12) 0.3467 0.2019 0.8677 0.2622 0.5714 0.4314
Q9 FRPM (18x18) 0.3465 0.2018 0.8683 0.2621 0.5713 0.4313

σ̂x(Lx/2,Ly/2,0) Q9 FRPM (6x6) 0.0202 0.0176 0.0255 0.0187 0.0224 0.0203
Q9 FRPM (12x12) 0.0168 0.0163 0.0164 0.0166 0.0166 0.0164
Q9 FRPM (18x18) 0.0171 0.0166 0.0167 0.0169 0.0169 0.0167

σ̂ζ (Lx/2,Ly/2,0) Q9 FRPM (6x6) 0.0436 0.0436 0.0436 0.0436 0.0436 0.0436
Q9 FRPM (12x12) 0.0486 0.0486 0.0486 0.0486 0.0486 0.0486
Q9 FRPM (18x18) 0.0493 0.0493 0.0493 0.0493 0.0493 0.0493

3 5 ûζ (Lx/2,Ly/2,0) Q9 FRPM (6x6) 0.5650 0.4260 1.2220 0.4881 0.8542 0.7283
Q9 FRPM (12x12) 0.5635 0.4224 1.2297 0.4857 0.8543 0.7247
Q9 FRPM (18x18) 0.5628 0.4216 1.2298 0.4850 0.8534 0.7235

σ̂x(Lx/2,Ly/2,0) Q9 FRPM (6x6) 0.0311 0.0303 0.0301 0.0308 0.0305 0.0303
Q9 FRPM (12x12) 0.0301 0.0289 0.0290 0.0296 0.0294 0.0291
Q9 FRPM (18x18) 0.0300 0.0288 0.0290 0.0296 0.0294 0.0291

σ̂ζ (Lx/2,Ly/2,0) Q9 FRPM (6x6) 0.1040 0.1051 0.1043 0.1045 0.1041 0.1047
Q9 FRPM (12x12) 0.1015 0.1018 0.1015 0.1016 0.1015 0.1017
Q9 FRPM (18x18) 0.1013 0.1015 0.1013 0.1014 0.1013 0.1014

3 10 ûζ (Lx/2,Ly/2,0) Q9 FRPM (6x6) 0.4091 0.2490 1.0002 0.3159 0.6658 0.5129
Q9 FRPM (12x12) 0.4077 0.2472 1.0040 0.3146 0.6651 0.5109
Q9 FRPM (18x18) 0.4076 0.2470 1.0051 0.3145 0.6654 0.5108

σ̂x(Lx/2,Ly/2,0) Q9 FRPM (6x6) 0.0166 0.0160 0.0161 0.0164 0.0163 0.0161
Q9 FRPM (12x12) 0.0161 0.0155 0.0156 0.0159 0.0158 0.0156
Q9 FRPM (18x18) 0.0161 0.0154 0.0156 0.0158 0.0158 0.0156

σ̂ζ (Lx/2,Ly/2,0) Q9 FRPM (6x6) 0.0515 0.0517 0.0515 0.0516 0.0515 0.0516
Q9 FRPM (12x12) 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503
Q9 FRPM (18x18) 0.0502 0.0503 0.0502 0.0502 0.0502 0.0502



An RMVT-Based Finite Rectangular Prism Method 53

Table 7 shows the Q9 FRPM solutions of displacement and stress components in-
duced at the centers of sandwich FGM plates with various boundary conditions and
under a sinusoidally distributed load, in which kp=1 and 3, S=5 and 10, Lx = Ly,
and (6x6), (12x12) and (18x18) meshes are used. Again, it can be seen in Table 6
that the convergent solutions are yielded when the Q9 FRPM with (18x18) mesh is
used, and the magnitude order of the center deflections of these plates with various
boundary conditions is FF>SF>CF>SS>SC>CC.

Figures 6 and 7 show the through-thickness distributions of assorted field variables
induced at the position (x, y)=(Lx/4, Ly/4) of the sandwich FGM plates, subjected
to a sinusoidally distributed load, for (SS, SC, CC) and (FF, SF, CF) boundary
conditions, respectively, in which Lx/h=10, Lx = Ly, h1 : h2 : h3=0.1h:0.8h:0.1h,
and κp= 3. For comparison purpose, the scales of each sub-figure are arranged to
be identical for each variable. It can be seen in Figs. 6 and 7 that the variation
patterns of a typical variable for different boundary conditions are similar to one
another, while the differences in their corresponding magnitudes are large, except
for the transverse normal stress component, which means the effects of boundary
conditions on the displacement and stress components of a sandwich FGM plate
are significant. Moreover, these FRPM solutions yield a continuous value for the
transverse stress components at the face-sheet/core interfaces of the plate and ex-
actly satisfy the traction conditions on the lateral surfaces, while that is difficult to
achieve for other existing PVD-based FEMs when the constitutive equations are
used in their computation.

4 Concluding remarks

This work developed a unified formulation of various RMVT-based FRPMs to in-
vestigate the static behaviors of multilayered composite plates and sandwich FGM
ones with one pair of simply supported opposite edges. In the implementations of
these FRPMs, the results show that the Q8 and Q9 FRPM solutions are in excellent
agreement with the exact 3D ones for the simply supported laminated composite
plates and the FGM ones available in the literature, and that the approach developed
in this work has a fast convergence speed. It is also shown that the deviations of
the through-thickness distributions of assorted field variables among single-layered
homogeneous (κp = 0), sandwich homogeneous (κp = ∞), and sandwich FGM
plates (κp 6= 0 and ∞) quite differ significantly from one another, and these obser-
vations may provide a reference for the kinetic and kinematic assumptions a priori
when the advanced 2D theoretical approaches and numerical models are devel-
oped for FGM plates. Moreover, it is concluded that the performance of sandwich
FGM plates is superior to that of sandwich homogeneous plates, in that the in-plane
stress components are continuous through the face sheet/core interfaces for sand-
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Figure 6: The Q9 FRPM solutions for the through-thickness distributions of various
field variables at the (x = Lx/4,y = Ly/4) section of a sandwich FGM plate with
SS, SC and CC supports.
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Figure 7: The Q9 FRPM solutions for the through-thickness distributions of various
field variables at the (x = Lx/4,y = Ly/4) section of a sandwich FGM plate with
FF, SF and CF supports.
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wich FGM plates, but abruptly change for the sandwich homogeneous ones, and
that the transverse stress components induced at the interfaces between adjacent
layers for sandwich FGM plates are significantly reduced as compared with those
for sandwich homogeneous plates.
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Appendix

The shape functions of the L4, Q8 and Q9 prisms are given as follows:

For a L4 prism, they are[
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where the subscript k may be u, w, τ or σ ; ξ and η are the so-called natural coor-
dinates; and ξ = x̄/(a/2) and η = ζ̄/(b/2).

For a Q8 prism, they are[
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For a Q9 prism, they are[
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