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Abstract: A corotational formulation for reduced order homogenization is pre-
sented. While in principle the proposed method is valid for problems with arbitrary
large strains, it is computational advantageous over the classical direct computa-
tional homogenization method for large rotations but moderate unit cell distor-
tions. We validate the method for several large deformation problems including:
(i) hat-section composite beam with two-dimensional chopped tow composite ar-
chitecture, (ii) polyethylene microstructure consisting of ‘hard’ and ‘soft’ domains
(segments), and (iii) fiber framework called fiberform either embedded or not in an
amorphous matrix.
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1 Introduction

In this manuscript we focus on extending the reduced order homogenization [Os-
kay and Fish (2008); Oskay and Fish (2007); Yuan and Fish (2009)a; Yuan and
Fish (2009)b; Fish and Yuan (2009), Fish, Filonova and Yuan (2013)] to large de-
formation problems. The general framework of reduced order homogenization for
large deformation problems in periodic inelastic heterogeneous medium has been
given in [Fish and Shek (2000)]. In the following we describe a simplified variant
based on the corotational formulation. The corotational framework allows to: (i)
take advantage of the precomputed influence functions prior nonlinear analysis and
(ii) incorporate nonlinear geometrical information using conventional corotational
finite element code architecture.

Development of the corotational formulation has been actively pursued in early
1980s. Important papers are those of Argyris (1982), Belytschko and Hsieh (1973),
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Bergan and Horrigmoe (1976). In the following, we focus on the specificities of
the corotational approach applied to the two-scale reduced order homogenization.

In the corotational formulation the motion of a heterogeneous body is decomposed
into rigid body motion (rotation and translation) followed by deformational dis-
placements. In the spatially discretized domain, this decomposition can be ac-
complished by attaching a local corotational coordinate frame to either each finite
element or each unit cell and assuming that deformational displacements are small.
Here, the latter is pursued.

The manuscript is organized as follows. The formulation of the reduced order ho-
mogenization method is outlined in Section 2. Section 3 presents several validation
examples for large deformation problems including: (i) two-dimensional chopped
tow composites employed in automotive applications, (ii) polyethylene microstruc-
ture consisting of ‘hard’ and ‘soft’ domains (segments) employed for energy ab-
sorption in military and industrial applications, and (iii) fiber framework called
fiberform either embedded or free from an amorphous matrix used as heat shield
on space crafts to prevent structural damage during reentry into the atmosphere.

2 Formulation of the reduced order homogenization for large deformation
problems

Consider large deformation governing equations for the composite domain in the
current (deformed) configuration
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where the total strain ε
ζ

kl is additively decomposed into elastic strain and inelastic
strain or more generally referred to as eigenstrains µ

ζ

kl . The right superscript ζ indi-
cates dependence on the fine-scale heterogeneity. The right superscript ℜ denotes
various fields defined in the corotational coordinates xxxℜ which is attached to the
material microstructure and is related to the global coordinate system xxx by
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i j denotes rigid body rotation of the corotational frame; and x̂i is a centroid of the
corotational frame, subsequently to be used as the unit cell centroid; the constitu-
tive tensor Lℜζ
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ℜ/ζ ) is assumed to be periodic in the corotational frame; σ
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Cauchy stress; vℜζ

i = ẋℜζ

i denotes velocity in the corotational frame; the time t here
is used to track the load level. Superimposed dot denotes material time derivative.

The velocity field in the global Cartesian coordinates is expanded in the asymptotic
expansion as

vζ

k (xxx, t)≡ vk(xxx,yyy, t) = v(0)k (xxx, t)+ζ v(1)k (xxx,yyy, t)+O(ζ 2) (3)

where xxx and yyy are coordinates corresponding to macro- and microscopic domains,
respectively, as shown in Fig.1.

Figure 1: Periodic microstructure of the composite domain: Θy – unit cell domain;
Ωx – macroscopic domain.

Various terms in the asymptotic expansion of the velocity are expanded around the
unit cell centroid x̂xx in the current configuration where xxx− x̂xx = ζ yyy, (see Fig. 2)
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We now define the unit cell corotational coordinate system yℜ
j placed at the unit

cell centroid as
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It is convenient to express the velocity field in the corotational coordinate system
as
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We now proceed by approximating ℜ
ζ

ki as

ℜ
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c
ki(x̂xx, t)+O(ζ 2) (7)

where ℜc
ki(xxx, t) denotes the coarse-scale rotation. By neglecting O(ζ 2) in Eq.(7)

implies that all points in the unit cell have the same rotation (see Remark 1 and Fig.
2).

Figure 2: Unit cell distortion and rotation: (a) – initial configuration; (b) – current
configuration.

Inserting Eq.(7) and Eq.(5) into Eq.(6) yields
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where vℜ(1)
i (x̂xx,y, t) = ℜc
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(1)
k (x̂xx,yyy, t) is the fine-scale correction in the corota-

tional frame. Velocity gradient in the corotational frame follows from Eq.(8)
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The rate of deformation is obtained by taking symmetric part of velocity gradient
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Let nuℜ
i be converged displacement in the corotational frame at load increment

n. We wish to find the displacement increment ∆uℜ
i in the corotational frame by

integrating Eq.(10) using midpoint integration rule to obtain second order accuracy∫ tn+1
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The first term in Eq.(12) denotes the fine-scale perturbation of the displacement
increment which is assumed to be small; the second term in Eq.(12) denotes the
coarse-scale strain increment rotated into the corotational frame. Note that the
coarse-scale strain increment can be large although fine-scale perturbations ∆uℜ(1)

(i,yℜ
j )

are small. The unit cell coordinate of the centroid at the mid-step n+1/2x̂xx is defined
as
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where the left superscript denotes Newton iteration count at the coarse-scale. The
coarse-scale displacement increment ∆u(0)k and the fine-scale perturbation incre-
ment in the corotational frame ∆uℜ(1)

i are defined as
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Integrating Eq.(12) over the unit cell domain and exploiting solution periodicity in
the corotational frame yields the coarse-scale strain increment
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It can be seen that the second term in Eq.(12) represents the average fine-scale
strain increment.
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We assume that the Cauchy stress is a function of the previously converged stress,
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Further expanding Eq.(16) in Taylor’s series around the unit cell centroid in the
current configuration yields
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Substituting Eq.(17) into equilibrium equation (1)a yields the two-scale equilibrium
equations
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Averaging Eq.(18)b over the deformed unit cell domain Θy gives the coarse-scale
equilibrium equation
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It is convenient to express the unit cell equilibrium equation (18)a in the corota-
tional frame. Rewriting Eq.(18)a gives
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Multiplying above by ℜc
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The Cauchy stress in the corotational frame σ
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where Sℜ denotes the interface between microconstituents; [[·]] is a jump operator.

The incremental unit cell problem in the corotational frame Eq.(21) is solved by
constructing the residual-free field similarly to [Oskay and Fish (2007); Oskay and
Fish (2008); Yuan and Fish (2009)a,b; Fish and Yuan (2009), Fish, Filonova and
Yuan (2013)] for small deformation problems
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ℜ f
kl (x̂xx, ỹyy)dΘ̃
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with only exception that all the fields are expressed in the corotational frame. µ
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and δ
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denote the leading order (fine-scale) eigenstrain and eigenseparation, re-

spectively, in the corotational frame. The eigenstrain µ
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kl represents inelastic

strain, thermal strain, moisture-induced strain, phase transformation, etc., when
and if such material behaviour is present. The eigenseparation describes separation
of material phases if this is present.

Model reduction is obtained by discretizing eigenstrains ∆µ
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kl and eigensepara-
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as in, for example, [Oskay and Fish (2007); Yuan and Fish (2009)a,b]
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Subsequently the influence function Hkl
i , h̃kl

i ,
^

h
^n

i are computed by substituting dis-
cretization into the equilibrium equation (21) a and requiring arbitrariness µ

(α)
i j (x̂xx)

and δ
(ξ )
^n

(x̂xx).The three influence function problems solved priori to macroscopic
analysis [see Oskay and Fish (2007); Yuan and Fish (2009)a,b].

Finally, the reduced order equations for eigenfields, µ
(α)
i j (x̂xx) and δ

(ξ )
^n

(x̂xx), is ob-
tained by satisfying phase constitutive equations and traction continuity (for details
see [Oskay and Fish (2007); Oskay and Fish (2008); Yuan and Fish (2009)a,b; Fish
and Yuan (2009)].

Remark 1: In the case of large unit cell distortion the influence functions Hkl
i , h̃kl

i ,
^

h
^n

i have to be recomputed from time to time. One possible measure of tracking
unit cell deformation is to track its dilatational (volume change) or distortional
(shape change) measures. The magnitude of the dilatational deformation can be
measured by the third invariant of the coarse-scale deformation gradient (or coarse-
scale Jacobian). The magnitude of the distortional deformation can be tracked by
von Mises coarse-scale Green-Lagrange strain.

It is, however, instructive to point out that if the unit cell geometry is changing con-
siderably from one load increment to another, the reduced order homogenization
outlined here would offer little advantage over nonlinear direct homogenization ap-
proach. Moreover, an approximation in Eq.(7) may no longer be accurate. Instead,
a phase rotation, ℜ

(α)
ki (x̂xx, t), that tracks an average rotation of each phase has to be

defined.

Given equations (21) and (22) the process of constructing and solving the residual-
free equations in the corotational frame is identical to that considered for small
deformation problems [Oskay and Fish (2007); Oskay and Fish (2008); Yuan and
Fish (2009)a,b; Fish and Yuan (2009); Fish, Filonova and Yuan (2013)]. Once the
fine-scale stress in the corotational frame σ

ℜ f
i j has been computed, the coarse-scale

stress σℜc
i j in the corotational frame is computed by averaging σ

ℜ f
i j . The resulting

coarse-scale stress in the global Cartesian coordinate is computed by rotating the
coarse-scale stress from the corotational frame
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Remark 2: Construction of the tangent stiffness matrix requires linearization of the
rotational matrix ℜc

jk computed at the mid-step and at the end of the increment
at each Newton iteration. Since ℜc

jk is assumed not to depend on the fine-scale
problem its construction and linearization are governed by the deformation of the
coarse-scale problem only. The interested reader is referred to Rankin (1988) for
more details.
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Remark 3: For composite plate or shells elements, it is necessary to enforce plane
stress condition on the unit cell. This can be accomplished in one of the three ways.
One possibility is to conduct a three-scale asymptotic homogenization approach
along the lines proposed by Caillerie (1984) and Kohn and Vogelius (1984). The
three-scale asymptotic homogenization method has been recently applied by Oskay
and Pal (2010) to reduced order homogenization. By this approach, the microstruc-
ture is assumed to be periodic in the plane of the plate or shell, whose thickness is
assumed to be infinitesimally small, i.e., of the same order of magnitude to the unit
cell in-plane dimensions. The second possibility is to assume that the unit coarse-
scale strain component εc

33 is unknown and to impose the overall coarse-scale stress
component σ c

33 to vanish (subscript 3 denotes the direction normal to the plate or
shell surface). Furthermore, elastic properties and influence functions have to be
modified to enforce vanishing normal stress component. Finally, the third and the
simplest variant entails letting the nodes on the unit cell boundary normal to the
surface of the plate to be free except for constraining the rigid body motion of the
unit cell. In this latter scenario, the unit cell is subjected five overall deformation
modes excluding εc

33.

3 Model validation

The reduced order homogenization method, where the coarse-scale fields are driven
by damage accumulation in the microstructure, is employed for spatial upscaling
and model reduction. Three different random inclusion microstructures are con-
sidered. The implementation involves microscale analysis wherein the unit cell
problem with periodic boundary conditions is solved and a macroscale analysis
wherein the macroscale quantities of interest, such as stresses, are computed from
the fine-scale.

The microscale analysis consists of four steps as enumerated below:

1. Unit cell definition: This step consists of generating unit cell geometry, fi-
nite element mesh, assigning local material coordinate system and defining
periodic boundary conditions;

2. Characterization of linear material properties: In this step, linear properties
of micro phases are characterized (identified) by solving a nonlinear least
squares problem which minimizes the error between the computed and ex-
perimental elastic properties of micro-phases. Note that in situ properties of
phase materials in the composite can be vastly different from those obtained
in the experiments of individual micro phase materials. This is due to defects
developed during manufacturing process, shape changes and so on;
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3. Computation of the reduced order model influence functions: This step in-
volves solving the eigenstrain and eigenseparation influence functions and
computing coefficient tensors that are stored in a material database required
to solving the nonlinear unit cell problem in Step 4;

4. Characterization of nonlinear material properties: This step involves charac-
terization of nonlinear phase properties by solving a least square problem.

3.1 Randomly distributed chopped fiber composite in two-dimensional plane

We consider statistically representative chopped fiber composite unit cell depicted
in Figure 3a. Procedures of automated construction of the unit cell model are de-
scribed in [Bailakanavar, Liu, Fish, and Yuan (2012)]. Material properties (Young’s
modulus, Poisson ratio and strength) of the micro constituents are depicted in Tab.
1.

Table 1: Properties of the phases comprising the chopped fiber composite unit cell
[Bailakanavar, Liu, Fish, and Yuan (2012)]

Phase E(GPa) ν S (MPa)
resin 3.5 0.3 95
carbon fiber 230 0.25 4200

For model validation, we consider a three-point bending experiment conducted at
General Motors. Multiscale analysis is conducted with MDS [Multiscale Design
Systems] linked with LsDyna UMAT50 [LS-DYNA] as a macro-solver. The beam
has a hat section and is supported by two fixed rollers at either end and a moving
roller in the middle as show in Figure 3b,c. The beam is discretized with quadri-
lateral shell elements with single in-plane point integration and seven through-the-
thickness integration points. Crack initiation and propagation is implemented by
invoking the element deletion criterion in LsDyna. The criterion for element dele-
tion is based on the damage in the resin phase.

The force-displacement curve as obtained using multiscale simulation is compared
to the experimental data in Fig.4. It can be seen that the numerical simulation is in
good agreement with the experimental data.

3.2 Randomly distributed ‘soft’ and ‘hard’ domains in a high-density polyethy-
lene

Here we consider an impact of a projectile on a steel plate coated by a high-density
polyethylene (HDPE). The microstructure of the polymer comprises of randomly
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Figure 3: (a) Statistically representative chopped fiber composite microstructure
with only tows shown (35% tow volume fraction) (b) three-point bending test set
up (c) completely damaged hat section beam

Figure 4: Force-displacement curve. Comparison of simulation and experimental
results for three-point bending test.
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segmented copolymers composed of ‘hard’ domains and ‘soft’ domains forming
a two-phase microstructure as shown in Table 1. The micro phase separation of
‘hard’ and ‘soft’ domains is responsible for the versatile properties of the broad
class of polymers, but also raises the computational challenges in studying the
properties of these material [Petrovic and Ferguson (1991)].

Figure 5: (a) Osmium tetroxide tainted thermoplastic polyurethanes (57% of ‘soft’
segments and 43% of ‘hard’ segments) [Grujicic, He, Pandurangan, Svingala, Set-
tles, and Hargather (2012)]; (b) height image of the nanowhiskers showing the di-
ameter measurements of the cellulose nanowhiskers [Goetz, Foston, Mathew, Oks-
man, and Ragauskas (2010)]

A combination of displacement controlled quasi-static simulations is conducted to
calibrate the material properties of the phases comprising the HDPE microstructure.
Multiscale simulations are based on reduced order homogenization method [Multi-
scale Design Systems]. Both phases are described by a viscoplasticity model based
on overstress (VBO) [Cernocky and Krempl (1979); Yuan, Ruggles-Wrenn, and
Fish (2013)]. The nonlinear phase properties are identified with respect to exper-
imental data available in [Zhang and Moore (1997)a; Zhang and Moore (1997)b].
Figure 3 shows the stress-strain results for the isotropic configuration of the unit
cell.

Multiscale simulations of the response of a circular sandwich plate subjected to a
dynamic impact loading by a half an inch fragment simulating projectile (FSP) are
summarized below. The sandwich structure comprises of a DH-36 steel target plate
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Figure 6: Quasi-static stress-strain curves. Simulation results are calibrated for
isotropic HDPE material with‘hard’ and ‘soft’ domains described by VBO model.

placed at the outer front layer with a backside polymer layer (HDPE) glued to the
steel by epoxy. DH-36 steel is modeled using Johnson-Cook constitutive model
along with Johnson-Cook failure criteria. The backside coating polymer material
is modeled as a two-phase composite with ‘hard’ inclusions and ‘soft’ matrix. Both
phases are described by VBO model as discussed above. The geometric configu-
ration of the sandwich plate is illustrated in Figure 7. Due to symmetry, only a
quarter of the plate is modeled. The FSP is modeled as a discrete rigid body with
an initial velocity of 407m/s.

Figure 7: DH-36 steel and HDPE sandwich structure simulation setup.

To study the role of heterogeneity and anisotropy on energy absorption in steel/HDPE
plates, two types of random ellipsoidal inclusion unit cells with 20% volume frac-
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tion of ‘hard’ domains are considered. The first microstructure of the HDPE unit
cell consists of ‘hard’ domains (approximated by ellipsoidal inclusions) randomly
distributed in a ‘soft’ domain resulting in macroscopically isotropic behavior. The
second microstructure has ellipsoidal inclusions preferentially oriented at a 45-
degree angle with respect to the loading direction in attempt to dissipate the energy
via shear wave. The architecture of the two composite microstructures is shown in
Figure 8.

Figure 8: (a) Random and (b) preferentially packed ‘hard’ domains in the HDPE
microstructure. Volume fraction of ‘hard’ domains is 20%.

Figure 9: Velocity decay curve of the projectile impacted to the steel/polymer plate.
Comparison of simulation results for isotropic, anisotropic and homogeneous poly-
mer microstructures.
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The FSP velocity decay curves for the two microstructures are shown in Figure
9. It is evident that preferential orientation of the ellipsoidal inclusions enhances
the energy absorption of the composite plate. It is also evident that it is possible
to identify single-scale phenomenological material properties of HDPE that would
result in a similar behavior obtained from the two-scale model.

3.3 Randomly distributed fibers in Phenolic Resin

Phenolic Impregnated Carbon Ablators (PICA) finds its application in the aerospace
industry. It is used as a heat shield on spacecrafts to prevent structural dam-
age during reentry in to the atmosphere. The microstructure of fiber framework
called fiberform with a high thermal conductivity is embedded in an amorphous
matrix with low thermal conductivity [Agrawal and Chavez-Garcia (2011)], Fig.
10. The carbon fibers are oriented preferentially in one plane, making it a trans-
verse isotropic material with different material properties in through-the-thickness
and in-plane directions. In this study, we model the microstructure of PICA with
randomly distributed fibers in 3D space bounded by the amorphous resin mate-
rial. The fibers are preferentially oriented at a 90-degree angle with respect to the
out-of-plane direction as is shown in Figure 11.

Figure 10: Microstructure of PICA [Agrawal and Chavez-Garcia (2011)].

The multiscale simulations using reduced order homogenization of uniaxial tension
tests are conducted for un-notched and notched specimens [Agrawal and Chavez-
Garcia (2011)]. Fibers are modeled as linear elastic, and the amorphous resin is
described using a piecewise linear continuum damage mechanics model as shown
in Figure 12. The uniaxial tensile test involving an un-notched specimen is con-
ducted to identify the properties of the fiber phenolic resin by solving a nonlinear
inverse problem. The identified phase properties for fiber and matrix are listed in
Tab. 2 and Tab. 3, respectively, the comparison with the experiment is given in Fig.
14.
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Figure 11: PICA unit cell geometry

Figure 12: Piecewise linear damage model for resin

Table 2: Characterized properties of fiber

E (GPa) ν

23 0.25
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Table 3: Characterized properties of resin

E(GPa) ν σ0(MPa) σ1 (MPa) ε1 σ2 (MPa) ε2 ε3

0.267 0.3 0.089 0.410 0.0107 0.485 0.0145 0.015

The identified elastic properties of carbon fibers and the tensile strength of the resin
are about 10 times smaller than those reported in the literature.

Remark 4: In a composite material the reduced fiber stiffness in comparison to elas-
tic straight fibers is due to either fiber curvature (see [Farsadi et al (2012), Gonsales,
llorca (2005)] or due to manufacturing defects. This reduction in fiber stiffness is
taken into account by identifying (calibrating) fiber properties to yield experimen-
tal results of the composite in uniform field tests. A similar approach has been
employed in [Farsadi et al (2012)] where the waviness of nanotubes embedded in
a polymer caused a decrease in the longitudinal and transverse Young’s modulus
of composites compared to the straight nanotube reinforcement, and in [Gonsales,
llorca (2005)] where the modulus of the polyethylene felts has been reduced by two
orders of magnitude due to fiber folding in comparison to straight fibers.

The decrease of pure resin properties can be explained by existence of porosity in
the real composite.

The finite element model of the notched specimen and the value of damage param-
eter in the resin phase are shown in Figure 13. It can be seen that the crack prop-
agates along a straight-line through the thickness of the specimen. The resulting
stress-strain curves for the notched specimen are compared with the experimental
results in Figure 15. The simulation results are found to be in good agreement with
the experimental results.

Figure 13: Uniaxial tensile test setup for notched specimen
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Figure 14: Model identification - stress-strain results for PICA in un-notched spec-
imen.

Figure 15: Model validation - stress-strain curve for PICA in specimen with
2.54mm notch.

3.4 Fiberform

Fiberform is a very porous low-density carbon fiber insulation material designed
for high temperatures applications. It consists of a group of carbon fibers bonded
to each other (Fig. 16) by means of an organic binder that is carbonized at very high
temperature. The fiberform unit cell is generated based on the algorithm developed
in [Bailakanavar, Liu, Fish, and Yuan (2012)]. The fibers are modeled as linear
elastic and their properties are given in Table 2. The binders are described using
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the piecewise damage model depicted in Fig. 12. The identified binder model
parameters based on un-notched specimens [Agrawal and Chavez-Garcia (2011)]
are given in Table 4 and the comparison with the experiment is given in Fig. 17.

Figure 16: Fiberform unit cell with: (a) fiber volume fraction 5% and an aspect ratio
(between fiber length and cross-section diameter) 35:4.8; (b) fiber volume fraction
10% and an aspect ratio 10:1.2. The latter is used in simulations.

Figure 17: Model identification - stress-strain results for fiberform in un-notched
specimen
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Figure 18: Model validation - stress-strain curve for fiberform in specimen with
2.54mm notch.

Table 4: Elastic and damage material properties for binders

E(GPa) ν σ0(MPa) σ1 (MPa) ε1 σ2 (MPa) ε2 ε3

23 0.25 1 0.66 0.001 0.036 0.02 0.05

The simulation results of uniaxial tension for the notched specimens are compared
with the experiments [Agrawal and Chavez-Garcia (2011)] as shown in Fig. 18. An
appropriate agreement has been observed between the numerical simulation results
and the experimental data. The discrepancies in the peak response can be a result
of errors in the mathematical model, discretization and material defects. From
the practical point of view, the numerical results are considered to be sufficiently
accurate.

4 Conclusion

In this manuscript, we develop a corotational form of the reduced order homog-
enization approach. The corotational framework allows accounting for large de-
formations, associated with large rotations and moderate unit cell strains. The
computational efficiency of the reduced order homogenization (with appropriate
loss of accuracy) in comparison with the direct homogenization method is obtained
by precomputing linear homogenized material properties and eigenstrain influence
functions at a fine scale prior to conducting nonlinear coarse-scale analysis. The
proposed corotational form of the reduced order homogenization is validated on
four numerical examples, which show good agreement with experimental data.
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