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A Higher Order Synergistic Damage Model for Prediction
of Stiffness Changes due to Ply Cracking in Composite

Laminates

Chandra Veer Singh1,2

Abstract: A non-linear damage model is developed for the prediction of stiff-
ness degradation in composite laminates due to transverse matrix cracking. The
model follows the framework of a recently developed synergistic damage mechan-
ics (SDM) approach which combines the strengths of micro-damage mechanics and
continuum damage mechanics (CDM) through the so-called constraint parameters.
A common limitation of the current CDM and SDM models has been the tendency
to over-predict stiffness changes at high crack densities due to linearity inherent
in their stiffness-damage relationships. The present paper extends this SDM ap-
proach by including higher order damage terms in the characterization of ply crack-
ing damage inside the material. Following the SDM procedure, predictions are
aided by suitable micromechanical computations of crack opening displacements.
A nonlinear SDM model is developed and applied for multiple classes of composite
laminate layups. Stiffness predictions for damaged laminates using the developed
model are compared with the experimental data for cross-ply ([0m/90n]s), angle-ply
([±θm/90n]s), off-axis ([0/± θ4/01/2]s) and quasi-isotropic ([0/90/∓ 45]s) lami-
nates. A comparison with current linear damage models showcases the usefulness
of the proposed nonlinear SDM approach.

Keywords: Composite materials, modeling, transverse cracking, damage me-
chanics, multiple damage modes.

1 Introduction

Due to their high stiffness to weight ratios, modern composite materials are widely
used for structural applications in aerospace, automotive, electronics, energy, and
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sports industries. During service, they are subjected to a combination of mechani-
cal and thermal loadings. Consequently, the material develops damage in form of
inter-laminar and intra-laminar cracking, fiber breakage, and debonding. In many
cases, intralaminar cracking occurs first, wherein an array of matrix cracks form in
the transverse plies. Being unstable in nature, these cracks grow quickly through
the lamina width and thickness; at which point they are arrested at the ply inter-
faces. Upon the application of external loading, the crack surfaces open and slide,
thereby reducing the average strain and stress in the damaged layers. This leads
to a reduction in the effective thermoelastic properties of the laminate. Under-
standing the initiation and progression of such ply cracks; and their effect on the
overall stifness properties of the composite laminate has been an important area of
research in the past four decades. The developed damage models are either based
on micro mechanical solutions to the boundary value problem of laminates with ply
cracks, e.g. Hashin (1985); Gudmundson and Ostlund (1992); Mccartney (1992);
Lundmark and Varna (2005); or they utilize homogenized continuum damage me-
chanics (CDM) approaches, e.g. Talreja (1985); Allen, Harris and Groves (1987).
Only a few of these approaches are applicable to the case of multidirectional lam-
inates which contain developed cracks in multiple orientations, i.e. leading to a
multi-mode scenario. A recently published book by Talreja and Singh (2012) pro-
vides a comprehensive review of the issues and analysis methods involved in the
damage and failure of composite materials.

The CDM methodology has been successfully applied to predict stiffness changes
due to intralaminar damage in a variety of composite laminates. However, its ap-
plicability for laminates with general layup has been often limited due to require-
ments for experimental testing in order to determine a number of phenomenologi-
cal damage constants. Talreja (1996) made a significant advance by proposing that
CDM and micromechanics can be combined to enable application of CDM without
having to resort to experimental data everytime the laminate layup changes. This
approach, termed as synergistic damage mechanics (SDM) uses the concept of a
constraint parameter, which is calculated through the computational micromechan-
ics. SDM then incorporates this information into stiffness-damage relations ob-
tained in the CDM framework, along with the material constants determined from
experimental/numerical data for a reference laminate sequence (usually cross-ply).
Initially, the SDM approach was utilized for stiffness predictions in [±θ/90s]s lam-
inates [Varna, Joffe and Talreja (2001)] with ply cracking damage in 90◦ layers.
More recently, it has been extended to the case of multidirectional laminates with
multi-mode damage scenarios. It has been shown to work well for [0/±θ4/01/2]s
and [0m/±θn/90r]s laminates [Varna, Joffe, Akshantala and Talreja (1999); Singh
and Talreja (2008, 2009)]. The SDM approach is also a participant model in the
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ongoing World-Wide Failure Exercise (WWFE III) wherein its predictions [Singh
and Talreja (2013)] will be tested against independent experimental investigations.

Despite above advancements, a key limitation of both CDM and SDM models is
that their predictions show linear variation in the stiffness changes with an increase
in ply crack density. This may work well in the early stages of damage development
as the experimental results show significant (and almost linear) degradation in stiff-
ness properties. However, the test data over a large variety of composite materials
and laminate layups suggest that as the number of ply cracks in a given volume
increases, the rate of change in the stiffness properties reduces, leading to almost
negligible degradation rate at large crack density levels (> 1.0 crack per unit thick-
ness of the cracked ply). This non-linearity in stiffness changes occurs due to crack
shielding effect; when the average spacing between neighboring cracks becomes
very small, their stress fields start interacting. Furthermore, it is expected that there
will be a limiting minimum stiffness due to contributions from uncracked plies.
Hence, linear models of CDM and SDM tend to over-predict stiffness degradation
at high crack density.

An effort is made in the present work to extend SDM approaches to include higher
order damage terms and to enable prediction of stiffness changes at high crack den-
sities. The free energy expression necessary to derive stiffness relations is expanded
to include non-linear damage terms; and the corresponding stiffness-damage rela-
tions are derived for multiple laminate layups. Predictions using linear and the
proposed non-linear model are compared with the available experimental results
for angle ply, off-axis and quasi-isotropic laminates.

2 Nonlinear SDM Approach for Stiffness Degradation

Consider a laminate with a mix of longitudinal and off-axis plies loaded axially,
as shown in Fig. 1. On loading, one of the transverse plies will attain the critical
stress state necessary for initiation of matrix cracking. A further increase in ap-
plied loading causes multiple matrix cracking by the shear-lag process. If the load
is increased even more, ply cracks would appear in multiple off-axis plies. These
cracks dissipate energy by conducting surface displacements, thereby leading to a
decrease in the overall stiffness properties of the composite material. Ply cracks
can also lead to more critical damage mechanisms such as delamination, which in
turn can cause catastrophic failure of the composite structure. This problem of pro-
gressive failure from transverse cracks consists of two subproblems: (1) predicting
the evolution of crack density as a function of the applied load; and (2) the eval-
uation of stiffness changes brought out by ply cracks. For the damage evolution
sub-problem, an accurate model based on energetics of ply cracking has been de-
scribed in our recent papers [Singh and Talreja (2010, 2013)]. The present paper
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concerns the second sub-problem.

(a) (b)

Figure 1: (a) An off-axis laminate loaded in axial tension, and (b) an RVE illustrating off-axis
ply cracking.
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Figure 1: (a) An off-axis laminate loaded in axial tension, and (b) an RVE illustrat-
ing off-axis ply cracking.

Fig. 1(b) shows a representative volume element (RVE) illustrating one set of in-
tralaminar cracks in an off-axis ply of a composite laminate. Although for clarity
of illustration the cracking is shown only in one lamina, it is understood that in gen-
eral it exists in multiple plies of the laminate. This damage development consisting
of ply cracks in multiple orientations respresents a multi-mode damage scenario.
For characterizing the effects of this damage on the overall elastic response of the
multidirectional laminate, the notions of continuum damage mechanics (CDM) as
developed by Talreja (1985) are utilized. The CDM approach characterizes this
damage through the homogenization of evolving microstructure involving damage
entities over an RVE. The resulting damage field around a point inside the mate-
rial is then described by a second order damage tensor which defines damage state
in an equivalent homogenized continuum. The physical aspects of damage mode
tensor definition are described in Talreja (1990, 1994); Singh and Talreja (2013)
in detail. However, for the sake of completeness, important concepts are covered
here. Inside the RVE, an individual damage entity (a crack or void) can be viewed
as bounded by a surface S, on which any point can be associated with two vectors:
a and n, where a represents a selected influence of the damage entity; and n is the
unit outward normal to the surface. The effect of damage is then described by the
surface integral of dyadic product of the vector components ain j, i.e.

di j =
∫

S
ain jdS (1)

The total set of damage entities can be grouped into individual damage modes,
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each representing a subset of entities that have the same geometrical characteristics
(orientation, shape, etc.). For example, matrix cracks in one ply orientation may
constitute one damage mode, while fibre/matrix debonds may constitute another.
By homogenizing di j of a given damage mode α over the RVE, the damage mode
tensor is defined as

D(α)
i j =

N

∑
kα=1

(di j)kα
(2)

where N is the number of damage entities of a given mode in the RVE. For the
particular case of of intralaminar cracking in composite laminates (Fig. 1), the
volume of the RVE, V , the surface area of a crack, S, and the influence vector
magnitude, a, are specified as

V = L.W.t (3)

S =
W.tc
sinθ

(4)

a = κ.tc (5)

where tc is the thickness of the cracked plies, s is the average crack spacing, t
is the total laminate thickness, and W and L stand for the width and the length,
respectively, of the RVE. Here κ , called the constraint parameter, is an unspecified
constant of (assumed) proportionality between a and the crack size tc (also cracked-
ply thickness). Here, 0 ≤ θ ≤ π/2, so that S is always positive. Assuming a to be
constant over the crack surface S, the damage tensor elements for damage mode α

are given by:

D(α)
i j =

κt2
c

st sinθ
nin j (6)

where ni = (sinθ ,cosθ ,0) are components of the unit vector normal to the matrix
crack plane in the off-axis ply in the global coordinate system Xi, i=1,2,3. κ , known
as the constraint parameter, represents the constraint effects of surrounding plies on
the cracked plies.

The constitutive relations for the damaged laminate can be derived from the specific
Helmholtz free energy involving terms in strain and damage elements. In order to
include nonlinear effects of damage, we consider damage terms up to the second
order. The relation between the specific Helmholz free energy and the stress tensor
is given by:

σi j = ρ

∂ψ

(
εi j,D

(α)
i j

)

∂εi j
(7)
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Consider first the case of thin ply laminates and a single damage mode. Using the
Voigt notation, the stress and damage state is characterized by: ε11 = e1, ε22 = e2,
ε12 = e6; D11 = D1, D22 = D2, and D12 = D6. Please note that the superscript for
damage mode α is dropped to represent the case of single damage mode. The most
general polynomial form for Helmholtz free energy (ψ), restricted to second order
terms in the strain and damage tensor components, is given by

ρψ = P0 + P1(ep,Dq)+P2(Dq)+P3(D2
q)

+
{

c1e2
1 + c2e2

2 + c3e2
6 + c4e1e2

}
+{c5D1 + c6D2}e2

1 +{c7D1 + c8D2}e2
2

+ {c9D1 + c10D2}e2
6 +{c11D1 + c12D2}e1e2 + c13D6e1e6 + c14D6e2e6

+
{

c15D2
1 + c16D2

2
}

e2
1 +
{

c17D2
1 + c18D2

2
}

e2
2 +
{

c19D2
1 + c20D2

2
}

e2
6

+
{

c21D2
1 + c22D2

2
}

e1e2 + c23D2
6e1e6 + c24D2

6e2e6 (8)

where ρ is the mass density, ci are material constants, P0 is a constant, P1 is a
linear function of strain and damage tensor components, and P2,P3 are the linear
and quadratic function of damage tensor components, respectively. Setting the
free energy to zero for unstrained and undamaged material, we have, P0 = 0, and
assuming the unstrained material of any damaged state to be stress-free, we get P1 =
0. Similar expression for ψ can be written for the case of multiple damage modes.
Using Eq. (7) for in-plane response, we obtain the following elastic stiffness tensor
of the cracked laminate with multiple damage modes (see the appendix of Singh
and Talreja (2009) for details of derivation):

Cpq =C0
pq +∑

α

C(α)
pq (9)

where, p,q = 1,2,6, C0
pq are the elements of the stiffness coefficient matrix of the

pristine laminate and ∑
α

C(α)
pq = Cpq−C0

pq = ∆Cpq represents the stiffness change

due to matrix cracking averaged (homogenized) over the RVE. The components of
these stiffness tensors for a single mode of damage, including non-linear terms in
damage tensor, are derived as:

C0
pq =




2c1 c4 0
c4 2c2 0
0 0 2c3


=




E0
1

1−ν0
12ν0

21

ν0
12E0

2
1−ν0

12ν0
21

0

ν0
12E0

2
1−ν0

12ν0
21

E0
2

1−ν0
12ν0

21
0

0 0 G0
12




(10)

C(1)
pq =




2c5D1 +2c6D2 c11D1 + c12D2 c13D6
2c7D1 +2c8D2 c14D6

Symm 2c9D1 +2c10D2


 (11)
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C(2)
pq =




2c15D2
1 +2c16D2

2 c21D2
1 + c22D2

2 c23D2
6

2c17D2
1 +2c18D2

2 c24D2
6

Symm 2c19D2
1 +2c20D2

2


 (12)

where ck, k = 1,2, ...,24 denotes the phenomenological constants.

For axial loading, it can be assumed that D1 >> D2,D6. Note here that by doing
so, we are neglecting the shear deformation effects and considering only the com-
ponents which are normal to the crack surface. This works for cracked plies close
to θ = 90◦. Following the procedure described in Singh and Talreja (2008, 2009,
2013), and including the second order damage components, we obtain

Cpq =C0
pq +D[ai]+D2[bi] (13)

with

[ai] =




2a1 a4 0
2a2 0

Symm 2a3


 ; [bi] =




2b1 b4 0
2b2 0

Symm 2b3


 (14)

where ai and bi, i = 1,2,3,4 represent the damage constants. Note that we have
reduced the total number of phenomenological constants to be evaluated from 20
in Eqs. (10)-(12) to 8 in above expressions.

The damage constants are determined from the stiffness degradation results for a
reference laminate. In most cases, it is chosen as the cross-ply laminate so that
the necessary data can be acquired in multiple ways: (i) by using independent
experimental data for stiffness changes with respect to crack density, see e.g. Varna,
Joffe, Akshantala and Talreja (1999), or (ii) by using an accurate analytical model
such as a variational approach [Hashin (1985)], or (iii) by performing a numerical
study such as the finite element method (FEM), see e.g. Singh and Talreja (2009).
The damage constants are then computed as follows:

∆Cpq = D[ai]+D2[bi] (15)

At crack density s = s1 or ρ = ρ1 : ∆Cpq(ρ1) = D1[ai]+D2
1[bi] (16)

At crack density s = s2 or ρ = ρ2 : ∆Cpq(ρ2) = D2[ai]+D2
2[bi] (17)

Solving above equations, we obtain

[ai] =
1

D2−D1

[
D1

D2
∆Cpq(ρ1)−

D2

D1
∆Cpq(ρ2)

]
(18)

[bi] =
1

D2−D1

[
1

D1
∆Cpq(ρ2)−

1
D2

∆Cpq(ρ1)

]
(19)
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with, D1 = D(ρ1); D2 = D(ρ2). Once the expressions for stiffness matrix of the
damaged laminate are obtained, the corresponding engineering moduli can be de-
rived from the following relationships:

E1 =
C11C22−C2

12
C22

; E2 =
C11C22−C2

12
C11

; ν12 =
C12

C22
; G12 =C66 (20)

From an energy balance during loading of the cracked laminate, the effect of ply
cracks on the overall constitutive response of the damaged composite is provided
by the work performed in opening and sliding of crack surfaces. Based on fracture
mechanics, the magnitude of the constraint parameter κ (Eq. (6)) can therefore be
taken as the crack opening displacement (COD) averaged and normalized with re-
spect to the cracked ply thickness (= ∆uy/tc). This simple definition of κ is helpful
because it can then be determined both experimentally, e.g. Varna, Joffe, Akshan-
tala and Talreja (1999), and numerically (using FEM), e.g. Singh and Talreja (2008,
2009). To allow independent comparison of constitutive response of a given class
of laminates with cracks in different orientations, COD is calculated here at a small
crack density. However, if one were to predict damage evolution (sub-problem 1),
it is noted that the variation of COD with crack density needs to be appropriately
accounted for, as covered in Singh and Talreja (2010). κ is also assumed indepen-
dent of the geometry of the composite body. However, it is noted that in the case of
complex interaction between stress concentrators in the component geometry such
as a hole, and ply cracks; such an assumption may be rendered invalid. In such
cases, κ needs to be recaculated using more detailed stress analysis. Further details
of κ determination are covered in the results section. Obviously the constraint pa-
rameters and corresponding damage tensor elements will depend on the laminate
layup. Hence, we will describe them for different classes of laminate sequences
one by one.

2.1 [±θm/90n]s laminates

For small values of angle ply orientation (θ ), the cracks appear in 90◦ plies only.
Thus, only a single damage mode is active. The difference in damage influence for
a specific θ can be determined by comparing the amount of opening of cracked sur-
faces with the opening for the case of the reference cross-ply laminate ([0m/90n]s).
The influence of crack opening is calculated by the normalized average crack open-
ing displacement (COD), which can be computed numerically (using FEM) see
e.g. the papers by Joffe, Krasnikovs and Varna (2001); Singh and Talreja (2008)
or experimentally, see e.g. Varna, Akshantala and Talreja (1999); Varna, Joffe,
Akshantala and Talreja (1999). The constraint parameter for this case is defined as:

κ =
∆uy

tc
(21)
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where ∆uy is the average COD, defined as

∆uy =
1
tc

∫ tc/2

−tc/2
∆uy(z) dz (22)

and ∆uy represents the separation of crack planes in the direction normal to the
crack face. To estimate ∆uy numerically, ∆uy is determined from nodal y-direction
(normal to crack longitude) displacements averaged over the entire crack surface.
The relative constraint parameter, defined as the ratio of κ for [±θm/90n]s laminate
and κ for the reference crossply ([02/904]) laminate, is determined as

κrel(θ) =

(
∆uy
)
[±θm/90n]s(

∆uy
)
[02/904]s

(23)

2.2 [0/±θ4/01/2]s laminates

Assuming the similarity of damage development, CODs in two symmetric modes
(+θ and −θ -cracks) can be added together to get ∆(uy)±θ

. The validity of this
assumption is discussed in the results and discussion section. For the present lam-
inate configuration, the constraint parameter κθ normalized by κ90 is taken as the
average COD of the θ -cracks relative to the average COD of 90◦-cracks. Thus,

κrel(θ) =
κθ

κ90
=

(
∆uy
)
±θ4(

∆uy
)

908

(24)

It is noted that the COD value in the numerator is the sum of CODs of the +θ4 and
−θ4 cracks, while the COD in the denominator is of an 8-ply thick 90◦-crack. All
CODs are calculated at the same imposed displacement on the FE unit cells.

2.3 [0m/90r/∓θn]s laminates

When ply cracks are present in multiple orientations, there will be a constraint
parameter corresponding to each damage mode α , given by

κα =

(
∆uy
)

α

tcα

(25)

For the present laminate configuration, cracks will be present in 3 modes: +θ , −θ

and 90◦. The linear SDM model for this case was developed in Singh and Talreja
(2009). Following the procedure described in the appendix of the cited reference,
an effective damage parameter can be derived as

D =
2t2

0
t

[
1
sθ

n

κθ

κθ |θ=90

{
2(2n+ r)2

κ904n+2r − r2
κ90
}
+ r2 κ90

s90

]
(26)
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where t0 is the thickness of a single ply, t is the thickness of whole laminate, sθ
n and

s90 are the normal crack spacings in ±θ and 90◦-plies, respectively. The constraint
parameters are defined as

κθ =

(
∆uy
)
±θ2n

2nt0
; κ904n+2r =

(
∆uy
)

904n+2r

(4n+2r)t0
; κ90 =

(
∆uy
)

902r

2rt0
(27)

where a subscript denotes a particular damage mode (orientation of cracked plies)
and sub-subscript represents the number of cracked plies corresponding to that
damage mode.

COMPUTATIONAL MICROMECHANICS

Determine the average COD and constraint parameters

κθ =
(∆uy)±θ2n

2nt0
; κ90 =

(∆uy)
902r

2nt0
and κ904n+r =

(∆uy)
904n+r

(4n+r)t0

with
(
∆uy

)
±θ

=
(
∆uy

)
+θ

+
(
∆uy

)
−θ

Structural scale: Micro

EXPERIMENTATION

Evaluate damage constants ai, bi

using experimental results

for reference laminate

configuration [0m/902n+r]s

CONTINUUM DAMAGE MECHANICS

Use CDM to determine stiffness reduction in

present laminate configuration [0m/90r/ ∓ θn]s

Structural scale: Meso

STRUCTURAL ANALYSIS

Analyze overall structural response to external

loading using the reduced stiffness properties

Structural scale: Macro

Figure 2: Multi-scale synergistic damage mechanics (SDM) methodology for analyzing dam-
age behavior in a general symmetric laminate [0m/90r/ ∓ θn]s with matrix cracks in +θ, −θ,
and 90◦ layers
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Figure 2: Multi-scale synergistic damage mechanics (SDM) methodology for an-
alyzing damage behavior in a general symmetric laminate [0m/90r/∓ θn]s with
matrix cracks in +θ , −θ , and 90◦ layers

The flowchart in Fig. 2 depicts the overall multi-scale SDM procedure to con-
duct structural analysis of damaged composite structures for the particular case of
[0m/90r/∓ θn]s laminates with ply cracks in +θ , −θ , and 90◦ layers. As men-
tioned earlier, this approach combines micromechanics with CDM for a complete
evaluation of the structural response. Micromechanics involves FE analysis to de-
termine CODs in cracked plies within an RVE (or unit cell, if applicable), from
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which the constraint effect is evaluated. This constraint effect is then carried over
in the CDM formulation through the constraint parameters. In a separate step, the
damage constants ai and bi are determined from the stiffness data for a reference
laminate using Eqs. (18)-(19). With the values of the damage constants and con-
straint parameters known, the stiffness-damage relations described by Eq. (13) and
Eq. (20) are utilized to evaluate the variation of elastic moduli with respect to crack
density. In order to evaluate the constraint parameters involved in the SDM model
described above, we utilized computational micromechanics via three dimensional
finite element analysis (FEM). Fig. 3 and Fig. 4 show the FE models for the cases
of ply cracking in two orientations, and three orientations, respectively. Further
details of FE models for multiple off-axis cracks in multidirectional laminates has
been described in earlier reports: Singh and Talreja (2008, 2009); Li, Singh and
Talreja (2009); Singh and Talreja (2010). In particular, the definition of the RVE
for a laminate with ply cracks in multiple orientations and its implication on the
development of corresponding FE model has been covered in Li, Singh and Talreja
(2009). As expected from above discussion, the major parameter that is evaluated
using these FE analyses is the average COD for ply cracks in each damage mode.

(u1)X1=0 = 0 (u1)X1=2l = u0

(u3)X3=0 = 0
(symmetry about mid-plane)

0 layer
+θ4 layer

−θ4 layer

01/2 layer

X1

X2

X3

Figure 3: A representative unit cell for 3D FE analysis of [0/±θ4/01/2]s laminates. Ply cracks
are present in off-axis ±θ layers.

(u1)X1=0 = 0 (u1)X1=2l = u0

(u3)X3=0 = 0

(symmetry about mid-plane)

0◦ layer

−θ layer

+θ layer

90◦ layer

X1

X2

X3

Figure 4: A representative unit cell for 3D FE analysis of [0/90/ ∓ θ]s laminate. Ply cracks
are present in three orientations: 90◦, +θ and −θ.
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Figure 3: A representative unit cell for 3D FE analysis of [0/±θ4/01/2]s laminates.
Ply cracks are present in off-axis ±θ layers.

3 Results and discussion

In this section we describe the predictions of elastic moduli changes with crack
density using the higher order SDM model described above for a broad range of
multidirectional composite layup configurations. A comparison with previously
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Figure 3: A representative unit cell for 3D FE analysis of [0/±θ4/01/2]s laminates. Ply cracks
are present in off-axis ±θ layers.
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Figure 4: A representative unit cell for 3D FE analysis of [0/90/ ∓ θ]s laminate. Ply cracks
are present in three orientations: 90◦, +θ and −θ.
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Figure 4: A representative unit cell for 3D FE analysis of [0/90/∓ θ ]s laminate.
Ply cracks are present in three orientations: 90◦, +θ and −θ .

developed linear damage models as well as independent experimental data is also
provided. In the following subsections, we cover three different cases for ply
cracking involving: a single damage mode; two damage modes; and three dam-
age modes. The experimental data chosen here is specifically taken from a variety
of researchers so as to validate the model presented in the current study over a wider
range of laminate goemetry and manufacturing processes.

3.1 Stiffness changes in [±θm/90n]s laminates

In order to showcase the applicability and usefulness of the higher order damage
model over linear models, let us first consider the laminate configuration where
cracks are present in the transverse (90◦) plies only. The reference laminate chosen
for this layup is [02/904]s, a crossply laminate of similar class of laminates. The
damage constants ai and bi for the chosen reference laminate are determined from
this data using Eqs. (18)-(19). The changes in the overall stiffness properties of
the laminates brought about by ply cracking damage in 90◦ plies are then predicted
using the stiffness-damage relations, Eq. (13), and the relative constraint parameter,
Eq. (23).

The laminate material is glass epoxy with the following ply properties: ply thick-
ness, t0=0.144 mm, longitudinal Young’s modulus, E1 = 44.73 GPa, transverse
modulus, E2 = 12.76 GPa, in-plane shear modulus, G12 = 5.8 GPa and Poisson’s
ratio, ν12 = 0.297. The unidirectional ply is assumed to be transversely isotropic in
the cross-sectional plane with a Poisson’s ratio ν23 = 0.42. The relative constraint
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parameter in Eq. (23) for varying θ was calculated to be equal to κrel(θ = 15◦)
= 1.03, κrel(θ = 30◦) = 1.09, κrel(θ = 40◦) = 1.15. When compared to investiga-
tions performed in Varna, Joffe and Talreja (2001), the parameters obtained here are
slightly different; mainly because the cited study performed a 2D FE analysis for
their calculations. Furthermore, there might be differences in the model sizes in the
longitudinal direction, i.e. the crack spacing at which average CODs are computed.
Nonetheless, the differences in the overall stiffness changes using CODs calculated
in the the cited study and in the present work and using a linear SDM model are
relatively minor. Therefore, they should not affect our observations.
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Figure 5: Stiffness reductions for [02/904]s laminate compared with experimental results [9].
The moduli are normalized with respect to their magnitude for pristine laminates. These
results form the basis for computation of SDM constants. The linear damage model is also
from [9].
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Figure 6: Nonlinear SDM model predictions for stiffness reduction in [±15/904]s laminate
compared with experimental results and the linear damage model, both from [9].
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Figure 5: Stiffness reductions for [02/904]s laminate compared with experimental
results reported by Varna, Joffe and Talreja (2001). The moduli are normalized
with respect to their magnitude for pristine laminates. These results form the basis
for computation of SDM constants. The linear damage model is also from Varna,
Joffe and Talreja (2001).

Fig. 5 shows the variation of the longitudinal Young’s modulus and the Poisson’s
ratio with respect to crack density for the reference laminate. The moduli values
shown in the figure are normalized with the corresponding virgin state values. The
linear continuum damage model, developed by Varna, Joffe and Talreja (2001), is
also shown for the sake of comparison. These results form the basis for calculation
of damage constants ai, bi in the SDM model. While computing the damage con-
stants, experimental data at crack densities ρ1 = 0.5, and ρ2 = 0.65 were utilized.

Once the damage constants are known for this class of laminate layup, SDM stiffness-
damage relations, Eqs. (13) , (14) can be used to predict stiffness changes in lami-
nates with other θ values. For the case of θ = 15◦,30◦ and 40◦ degrees, the nonlin-
ear SDM predictions, along with linear damage model as well as the experimental
data, are shown in Fig. 6 - Fig. 8. It should be noted here that the cracks are still
assumed only in the 90◦ plies. In general, both linear and nonlinear damage model
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Figure 5: Stiffness reductions for [02/904]s laminate compared with experimental results [9].
The moduli are normalized with respect to their magnitude for pristine laminates. These
results form the basis for computation of SDM constants. The linear damage model is also
from [9].
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Figure 6: Nonlinear SDM model predictions for stiffness reduction in [±15/904]s laminate
compared with experimental results and the linear damage model, both from [9].
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Figure 6: Nonlinear SDM model predictions for stiffness reduction in [±15/904]s
laminate compared with experimental results and the linear damage model, both
from Varna, Joffe and Talreja (2001).
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Figure 7: Nonlinear SDM model predictions for stiffness reduction in [±30/904]s laminate
compared with experimental data and the linear damage model, both from [9].
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compared with test data and the linear damage model, both from [9].
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Figure 7: Nonlinear SDM model predictions for stiffness reduction in [±30/904]s
laminate compared with experimental data and the linear damage model, both from
Varna, Joffe and Talreja (2001).

predictions for axial modulus and Poisson’s ratio show reasonable agreement with
the test data. They are also good at predicting the overall trends in stiffness degra-
dation while going from the case of crossply laminates, θ = 0◦, to the case where
θ = 40◦. However, on closer inspection, it can be observed that the linear SDM
model usually under-predicts the stiffness changes in the beginning of damage evo-
lution, while it over-predicts the degradation in the damage effects at large crack
densities. This effect is particularly obvious for the case of θ = 30◦ and 40◦, see
Figs. 7, 8. The nonlinear SDM predictions, on the other hand, seem to follow
experimental trends more closely. In the case of linear damage models, there are
four damage constants (ai) which are determined using the test data for stiffness
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Figure 7: Nonlinear SDM model predictions for stiffness reduction in [±30/904]s laminate
compared with experimental data and the linear damage model, both from [9].
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Figure 8: Nonlinear SDM model predictions for stiffness reduction in [±40/904]s laminate
compared with test data and the linear damage model, both from [9].
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Figure 8: Nonlinear SDM model predictions for stiffness reduction in [±40/904]s
laminate compared with test data and the linear damage model, both from Varna,
Joffe and Talreja (2001).

changes at a single crack density, ρ . It is observed that the predictions from the
linear model are sensitive to the choice of crack density at which the experimental
data is used for determination of damage constants. This choice seems to be some-
what heuristic in nature, and affects the accuracy of model predictions. The higher
order model seems to be less sensitive to this limitation.
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Figure 9: Sensitivity of linear and non-linear damage models on the choice of crack densities
at which stiffness degradation data is used to obtain damage constants. As shown here are
the variation of longitudinal Young’s moduli for (a) [02/904]s laminate, and (b) [±15/904]s
laminate The moduli are normalized with respect to their magnitude for pristine laminates.
The experimental data is from [9].
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[10]. These results form the basis for computation of SDM damage constants. The linear
damage model shown here is developed in [11].
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Figure 9: Sensitivity of linear and non-linear damage models on the choice of crack
densities at which stiffness degradation data is used to obtain damage constants.
As shown here are the variation of longitudinal Young’s moduli for (a) [02/904]s
laminate, and (b) [±15/904]s laminate The moduli are normalized with respect to
their magnitude for pristine laminates. The experimental data is from Varna, Joffe
and Talreja (2001).

To better explain this behavior, the predictions for longitudinal Young’s moduli for



242 Copyright © 2013 Tech Science Press CMC, vol.34, no.3, pp.227-249, 2013

[02/904]s and [±15/904]s laminates are shown in Fig. 9 for multiple choices of
crack densities that were used in the determination of damage constants. For the
linear model, it can be clearly seen that if the stiffness degradation data from ex-
periments is chosen earlier in the damage development (ρ < 0.4), its predictions
are extremely inaccurate at high crack densities. The non-linear model, however,
shows less sensitivity while also maintaining conservative predictions of the elastic
moduli for the damaged laminate. It is also noted that if ρ2 is not chosen properly,
in some cases the nonlinear predictions start showing negative stiffness degrada-
tion, apparent from Fig. 9(b) above ρ = 0.5. Since ρ → ∞ represents the limiting
stiffness contribution from uncracked plies that can be easily computed using the
ply-discount method, setting ρ2 = ∞ will resolve this issue. This will also eliminate
the need to obtain experimental data for more than one crack density.

3.2 Stiffness changes in [0/±θ4/01/2]s laminates

Next we take up the case of multidirectional laminates with ply cracking damage in
two damage modes. The corresponding experimental data are available from Varna,
Joffe, Akshantala and Talreja (1999). Each ply is 0.125 mm thick, and the ply ma-
terial is glass-epoxy (HyE 9082Af, Fiberite) with in-plane properties E1=44.7 GPa,
E2=12.7 GPa, G12=5.8 GPa and ν12=0.297. In the class of laminates chosen here,
ply cracking is assumed to initiate in both±θ plies simultaneously, consistent with
experimental observations and earlier analyses. Furthermore, it is assumed that the
cracks grow at identical rates and cause identical changes in laminate’s stiffness
properties. Hence, the constraint effects in two damage modes, +θ and −θ , can
be combined to yield one effective constraint parameter. The applicability of this
assumption is detailed in our previous report [Singh and Talreja (2008)], wherein
the linear SDM model was developed. The laminate sequence with θ = 90◦, i.e.
[0/908/01/2]s is chosen as the reference laminate for evaluation of the damage con-
stants. The variation of normalized longitudinal Young’s modulus and the Poisson’s
ratio with respect to the crack density for the reference laminate are shown in Fig.
10. This figure forms the basis for calculations of damage constants for the present
class of laminates undergoing damage in ±θ -plies. While computing the damage
constants, experimental data at crack densities ρ1 = 0.5, and ρ2 = 1.0 were utilized.

Once the damage constants are determined for the present class of multidirectional
laminates, Eqs. (13)-(14) are used to predict effects of damage on overall stiffness
properties for laminates with different θ values. The relative constraint parameter
is evaluated for the corresponding laminate sequence using Eq. (24). For details
on how constraint effects from the supporting plies play a role in modifying the
average COD, the reader is referred to Singh and Talreja (2008). The investigation
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Figure 9: Sensitivity of linear and non-linear damage models on the choice of crack densities
at which stiffness degradation data is used to obtain damage constants. As shown here are
the variation of longitudinal Young’s moduli for (a) [02/904]s laminate, and (b) [±15/904]s
laminate The moduli are normalized with respect to their magnitude for pristine laminates.
The experimental data is from [9].
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Figure 10: Stiffness reductions for [0/908/01/2]s laminate compared with experimental results
[10]. These results form the basis for computation of SDM damage constants. The linear
damage model shown here is developed in [11].
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Figure 10: Stiffness reductions for [0/908/01/2]s laminate compared with experi-
mental results [Varna, Joffe, Akshantala and Talreja (1999)]. These results form the
basis for computation of SDM damage constants. The linear damage model shown
here is developed in Singh and Talreja (2008).

carried out in the above reference performed an in-depth parametric study of COD
variation due to changes in the laminate configuration, e.g. the thickness of the
cracked plies, the number (or thickness) of supporting plies, relative stiffness of
cracking and supporting plies, and the cracked ply orientation. As a summary, it
was understood that change in the number or total thickness of cracking ply was
the most influential factor because an increase in the number of cracked plies (for a
fixed number of supporting plies) implies a corresponding increase in the ply crack
size. Larger crack size results into larger average COD values and consequently a
steeper stiffness degradation. An increase in the thickness, or the number or higher
relative stiffness of constraining plies, on the other hand, caused degradation in
stiffness properties to a lesser degree. Utilizing these parametric studies, a master
equation was developed to combine the effects of these geometric and material
variables. For the case of non-interactive damage modes, the average COD was
determined to be equal to
(
∆uy
)
±θn

=U. f1 (θ) . f2 (r) . f3 (m) . f4 (n) (28)

where, U is the average COD for the reference laminate [0/908/01/2]s, and f1 to f4
are parametric functions fitted to the FE results for average COD. Please see Singh
and Talreja (2008) for further details.

Using this relation for average COD and the nonlinear SDM stiffness-damage re-
lations, stiffness changes are obtained for [0/±704/01/2]s laminate ( see Fig. 11).
The nonlinear SDM predictions for the axial moduli show good agreement with
the experimental data, whereas the linear model does not follow the experimental
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trends at high laminate. Also, it is important to compare the degree of nonlinearity
in stiffness changes on going from θ = 90◦ to θ = 70◦. As θ decreases, the test data
suggests an increasing nonlinearity in the stiffness degradation. The linear damage
model misses this pattern, while it is captured well by the higher order SDM model.
For the case of Poisson’s ratio, experimental data depicts severe degradation early
on during the damage evolution, and both models show reasonable correspondence.
However, here also, the higher order approach seems to fare better than the linear
model.
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Figure 11: Nonlinear SDM model predictions for stiffness degradation in [0/ ± 704/01/2]s
laminate in comparison with experimental data [10]. The linear damage model shown here
is described in [11].
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the basis for computation of damage constants for this class of laminate layup.
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Figure 11: Nonlinear SDM model predictions for stiffness degradation in [0/±
704/01/2]s laminate in comparison with experimental data [Varna, Joffe, Akshan-
tala and Talreja (1999)]. The linear damage model shown here is described in Singh
and Talreja (2008).

3.3 Stiffness changes in quasi-isotropic ([0/90/∓45]s) laminates

The experimental data for stiffness changes brought about by multi-mode ply crack-
ing in multidirectional laminates are quite limited. One important laminate layup
investigated so far is the quasi-isotropic laminate that involves a mix of 90◦, +45◦

and −45◦ layers in a manner to obtain isotropic stiffness properties in its pristine
condition. Tong, Guild, Ogin and Smith (1997) performed extensive measurements
on the initiation and progression of ply cracking damage in [0/90/∓45]s laminates;
and its effect on the overall stiffness behavior.

The reference laminate chosen for this case was again the crossply laminate ([0/903]s).
For evaluating the damage constants, FE data for stiffness property changes as a
function of crack density were utilized. The methodology for calculation of stiff-
ness changes due to this damage scenario using FE approach is described in Singh
and Talreja (2009). FE analysis was also performed to calculate the average COD
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values for cracks in all cracked ply orientations and corresponding constraint pa-
rameters. The individual ply thickness for this laminate is 0.5 mm with in-plane
properties: E1=46 GPa, E2=13 GPa, G12=5 GPa and ν12=0.3. The correspond-
ing constraint parameters are calculated as: κ904n+2r = 6.1e-3,κθ |θ=90 ≈ κ90 =
5.4e-3,κθ+ = 3.97e-3,κθ− = 3.35e-3,κθ = 1

2 (κθ+ +κθ−) = 3.66e-3.
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Figure 11: Nonlinear SDM model predictions for stiffness degradation in [0/ ± 704/01/2]s
laminate in comparison with experimental data [10]. The linear damage model shown here
is described in [11].
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the basis for computation of damage constants for this class of laminate layup.
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Figure 12: Stiffness reductions for [0/903]s laminate compared with 3D FE simu-
lation predictions for stiffness changes. The linear damage model is developed in
Singh and Talreja (2009). This figure forms the basis for computation of damage
constants for this class of laminate layup.
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Figure 13: Nonlinear SDM model predictions for stiffness changes in quasi-isotropic ([0/90/±
45]s) laminate compared with experimental data [20]. The linear damage model is from [12].
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Figure 13: Nonlinear SDM model predictions for stiffness changes in quasi-
isotropic ([0/90/±45]s) laminate compared with experimental data [Tong, Guild,
Ogin and Smith (1997)]. The linear damage model is from Singh and Talreja
(2009).

Fig. 12 shows the variation of normalized longitudinal Young’s modulus and the
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Poisson’s ratio with respect to the crack density for the reference laminate includ-
ing the FE simulation results, linear damage model from Singh and Talreja (2009)
and the current nonlinear model. As in earlier cases, this figure forms the basis for
calculation of constants ai and bi for the present class of multidirectional laminates.
Once the damage constants as well as constraint parameters for different θ values
are determined, stiffness changes are calculated using Eq. (13) for quasi-isotropic
laminates. Fig. 13 shows the stiffness predictions for the case of [0/90/∓ 45]s
layup with ply cracks in all three off-axis orientations. The figure contains experi-
mental data reported by Tong, Guild, Ogin and Smith (1997), predictions using the
linear damage model developed in Singh and Talreja (2009) and predictions from
the current nonlinear SDM model. From the plot of axial modulus, it is clear that
the linear model tends to under-predict degradation over the whole range of crack
densities. However, the nonlinear SDM model captures predictions for both axial
modulus and Poisson’s ratio to a good level of accuracy, especially considering a
wide fluctuation in the test data for Poisson’s ratio. Similar to the case of angle-
ply laminates, the predictions for current laminate layup from linear SDM model
are sensitive to the point where the experimental data is used for determination of
damage constants. However, the higher order model seems to be less sensitive to
this source of inaccuracy. In a truly multi-mode scenario, the cracks from different
damage modes can interact. This interaction can be easily integrated into the pro-
posed model by using COD’s for the interactive FE unit cell, as accomplished in
Singh and Talreja (2009) for linear SDM models. Overall, these results suggest the
usefulness of nonlinear SDM approach over linear models in predicting stiffness
reductions.

An accurate damage model is essential for an accurate prediction of the integrity
and durability of the composite structures. If the damage model developed here can
be integrated with the advanced techniques of structural health monitoring (SHM)
and non-destructive evaluation (NDE), a real-time health monitoring tool can be
developed. Such a tool will lead to significant positive impact on the safety and
longevity of the composite structures. The NDE techniques can help us determine
the crack density in the component, then the proposed theory can be used to predict
the resulting stiffness and an assessment can be made if the part is still serviceable.
These developments will eventually lead to more accurate and cost-effective design
of composite structures.

4 Conclusion

The synergistic damage mechanics approach combines the strengths of contin-
uum damage mechanics approach with computational micromechanics to predict
changes in the stiffness properties of composite laminates due to ply cracking.
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Recently, the SDM methodology was extended to multiple multi-mode damage
scenarios. In particular, stiffness changes in damaged composite laminates with
ply cracking in two and three orientations has been explored in Singh and Talreja
(2008, 2009). However, a key limitation of both CDM and SDM models has been
the linearized stiffness-damage relationships. Consequently, the current predictions
of these approaches show linear stiffness property reductions, in contradiction with
the available experimental data which suggest nonlinear stiffness changes, partic-
ularly at larger crack density levels. The test data over a wide range of laminate
systems shows a larger decrease in the beginning of damage development, and a
lesser decrease when damage has developed to an appreciable extent, leading to a
limiting minimum stiffness dictated by the contributions from uncracked plies. This
paper was targetted to alleviate this limitation by extending the SDM approach to
second order damage coefficients. The free energy expression necessary to derive
stiffness relations is expanded to include non-linear damage terms and correspond-
ing stiffness-damage relations are derived for angle ply, off-axis and quasi-isotropic
laminate configurations.

Based on the comparison of both linear and nonlinear SDM models with experi-
mental data, it can be concluded that the higher order SDM model works signif-
icantly better than the linear model for crack density higher than 0.8 cr/mm. It
also shows a good level of accuracy over the whole range of crack densities. Ad-
ditionally, the nonlinear damage model shows consistency in predictions over a
wide range of laminate layups, with widely different damage scenarios. For some
laminates, the linear model under-predicts the stiffness changes, especially in the
initial stages of damage development. The nonlinear model does not suffer from
this limitation and shows good agreement with the test data. In cases where there
is a significant interaction between adjacent cracks (at high crack density), CODs
should be evaluated using an interactive FE unit cell with appropriate crack spac-
ing. Finally, it was observed that the predictions from the linear model are sensitive
to the point where uses for the experimental data in determination of damage con-
stants. However, the higher order model seems to be less sensitive to this.

With earlier reports and the present study focused on the development of SDM
approaches, a good level of confidence has been achieved over their applicabil-
ity to a broad range of laminate configurations and the accuracy of their stiffness
predictions. Our next focus will be to implement these models into finite element
packages to enable commercial application. Nonetheless, some issues remain unre-
solved. For instance, the effects of multi-axial loading have not been addressed so
far. Furthermore, the development and application of such approaches under cyclic
loading remains elusive. Modeling effort so far has targetted design approaches
based on sub-critical damage only. However, often the damage scenario may in-
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volve both sub-critical and critical damage mechanisms simultaneously. Both sub-
critical and critical damage mechanisms contribute to the non-linear stress strain
response of the material. In such cases, the present model needs to be extended
to include these damage mechanisms in an appropriate fashion. FE implementa-
tion also needs careful attention as the material behavior would be mesh-dependent
subsequent to a significant loss in elastic properties due to damage. If we achieve
these goals, only then an accurate analysis of damage development and progressive
failure in industrially relevant composite structures is feasible.
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