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Influence of Stress Singularities on Scaling of Fracture of
Metal-Composite Hybrid Structures
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Abstract: It has been recently shown that the nominal structural strength of
metal-composite structures depends on the structure size, and such dependence is
strongly influenced by the stress singularities. Nevertheless, previous studies only
focused on structures that exhibit very strong stress singularities, which are close
to the crack-like stress singularity. In the actual engineering designs, due to the
mismatch of material properties and complex structural geometries, many metal-
composite structures may contain stress singularities that are much weaker than
the crack-like stress singularity. This paper presents a numerical study on the size
dependence of scaling of fracture of metal-composite hybrid structures for a wide
range of stress singularities. The numerical examples include a series of metal-
composite hybrid beams with a V-notch under three-point bending with different
notch angles, which lead to various magnitudes of stress singularities. By assuming
that the bimaterial interface is weaker than both metal and composite, we use a
mixed-mode cohesive element model to simulate the fracture behavior of these
hybrid beams. It is shown that the resulting size effect curves strongly depend
on the magnitude of stress singularities. The simulation results agree well with a
recently developed energetic-statistical scaling model.

Keywords: Size effect, quasibrittle fracture, weakest link model, cohesive frac-
ture

1 Introduction

Metal-composite hybrid structures are designed to combine the advantages of both
materials, such as the high stiffness of the metals and the light weight and excellent
corrosion resistance of the composites. These bimaterial hybrid structures have
been used in many engineering designs. Recent applications include the metal-
composite joints for large ship hull and modern aircraft wings and fuselages [Bar-

1 University of Minnesota, MN, USA.



252 Copyright © 2013 Tech Science Press CMC, vol.34, no.3, pp.251-264, 2013

soum (2003)]. Understanding the fracture behavior of bimaterial structures is a
critical aspect of design. Due to the complex structural geometries and material
mismatch, bimaterial structures often exhibit stress concentrations at the bimate-
rial corner. Substantial efforts have been devoted to analyzing the singular stress
and strain fields at the bimaterial corner, e.g. [Bogy (1971); Rice (1988); Hutchin-
son and Suo (1992); Desmorat and Leckie (1998); Qian and Akisanya (1998); Liu
and Fleck (1999); Jr. (1993); Labossiere, Duun, and Cunningham (2002)]. These
analyses were largely derived from the linear elastic fracture mechanics (LEFM),
which is only applicable to perfectly brittle structures. For metal-composite hybrid
structures, both adhesives and composite materials usually have a gradual strain-
softening behavior, which leads to a transitional failure mechanism lying between
the perfectly brittle and plastic failure modes, often termed as quasibrittle failure.
Therefore, the metal-composite hybrid structures can be considered as quasibrittle
structures. It has been well demonstrated that the failure of quasibrittle structures is
subjected to a scale effect [Bažant and Planas (1998); Bažant (2004, 2005)], i.e. the
nominal structural strength varies with the structure size. Therefore, it is expected
that the metal-composite hybrid structures would also exhibit a size-dependent fail-
ure behavior. Exploring such a size effect is critical for extrapolating small-scale
laboratory tests to full-scale design.

The scale effect on the strength of metal-composite hybrid structures has recently
been studied analytically, numerically and experimentally [Yu, Bažant, Bayldon,
Le, Caner, Ng, Waas, and Daniel (2010); Le, Bažant, and Yu (2010); Yu, Z. P. Bažant,
and Le (2013)]. The structures that were considered in these studies exhibit strong
stress singularities (very close to the“−1/2" stress singularity), and therefore the
structural failure must be caused by the damage at the bimaterial corner. By apply-
ing the LEFM for large-size structures and asymptotic matching, it has been shown
that for two-dimensional problem the size effect on the nominal structural strength
can be expressed as:

σN = σs (1+D/D0)
κ (1)

where σN = nominal strength = cnPmax/bD, Pmax = load capacity of the structure,
D = characteristic size of the structure to be scaled, b = size of the structure in
the transverse direction, cn = constant chosen such that σN carries some physical
meaning, e.g. the maximum elastic stress without considering the stress singulari-
ties, D0 = transitional size, which depends on the structural geometry and the size
of the fracture process zone (FPZ), κ = order of dominant stress singularity, and
σs = nominal strength of the structure at the small-size limit. Eq. 1 implies that, as
the stress singularities vanish, the size effect on the nominal strength would disap-
pear. Nevertheless, it has been well known that for quasibrittle structures without
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stress singularities the nominal strength is also strongly size dependent [Bažant and
Li (1995); Bažant (2004, 2005)], which can be explained by either the distributed
cracking theory [Bažant and Li (1995)] or the finite weakest link theory [Bažant
and Pang (2007); Bažant, Le, and Bazant (2009); Le, Bažant, and Bazant (2011)].
Clearly Eq. 1 does not describe the scaling of nominal strength for the case where
the stress singularities are weak or vanishing. In a recent study [Le (2011)], a
general scaling equation was developed to bridge the cases of strong and zero sin-
gularities by combining the finite weakest link model and fracture mechanics of
bimaterial corner. Nevertheless, no numerical and experimental studies have been
carried out to investigate the effect of stress singularities on the scaling of strength
of metal-composite hybrid structures.

This study present a numerical study on the scale effect on the strength of metal-
composite hybrid beams with a V-notch under three-point bending, where the in-
terface is weaker than both base materials. By varying the notch angle, we are
able to investigate the influence of stress singularities on the scaling of strength
of these beams. This paper is planned as follows: Section 2 reviews a recently
developed general scale effect equation for the strength of bimaterial quasibrittle
structures [Le (2011)], Section 3 describes the details of the numerical simulation,
and Section 4 discusses the simulation results.

2 Review of theoretical formulation

Consider a general bimaterial structure with a weakly bonded interface, as shown
in Fig. 1. Here we limit our attention to structures of positive geometry, which is
defined such that the peak load is reached once the FPZ is fully developed.

The material mismatch and geometry of the bimaterial corner could cause a singular
stress field. For metal-composite hybrid structures, where the composite materials
are usually orthotropic, the stress singularities at the bimaterial corner can be solved
by the complex potential method [Stroh (1958); Lekhnitskii (1963); Desmorat and
Leckie (1998); Le, Bažant, and Yu (2010)]. Here we focus on structures with a
power-law singular stress field, i.e. σ ∝ rλ (r = radial distance from the notch tip,
λ = order of stress singularity), which applies to most bimaterial corners. Since
the order of stress singularities is weaker than −1/2, the energy release rate at the
notch tip is zero. Therefore, the direct use of fracture energy would not yield a
failure criterion. It has been shown that a general fracture criterion can be formu-
lated by using the equivalent LEFM framework [Le, Bažant, and Yu (2010); Le
(2011)]. As a brief review, let us consider a general case where the stress field at
the bimaterial corner is governed by two distinct real stress singularities, κ1,κ2.
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Figure 1: Geometry of bimaterial structures

The corresponding stress intensity factors are:

Hk = σD−κk hk (2)

where σ = nominal stress = P/bD, P = the applied load, and hk(k = 1,2) = di-
mensionless stress intensity factors determined by the geometry of the structure.

As the structure reaches its peak load, a FPZ, which contains numerous micro-
cracks, will form at the tip of the bimaterial notch. Within the framework of
the equivalent LEFM, we can approximate this FPZ by an equivalent interfacial
crack [Grenestedt and Hallstrom (1997); Liu and Fleck (1999); Le, Bažant, and Yu
(2010); Le (2011)]. At the large size limit, this equivalent crack is fully enclosed
by the singular stress zone at the notch tip and therefore the energy release rate G
at the tip of the equivalent crack can be calculated from the stress intensity factors
of the bimaterial notch, i.e. G = F(H1,H2), [Liu and Fleck (1999); Le, Bažant,
and Yu (2010); Le (2011)]. By considering that the peak load is reached once the
energy release rate reaches a critical value G f , we reach a general expression for
the nominal structural strength [Le (2011)]:

σN =

√
EG f /lc

[A1(D/lc)−2κ1 +A2(D/lc)−2κ2 +A3(D/lc)−κ1−κ2 ]1/2 (3)
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where E = Young’s modulus of steel, lc = length of the equivalent crack, which is
about half of the FPZ length, and Ak(k = 1−3) = geometrical constants, which can
be obtained by an elastic analysis [Le (2011)]. At the small-size limit, the entire
interfacial ligament behaves as a crack filled by a plastic glue, and therefore the
size effect vanishes. An approximate scaling equation has been proposed to bridge
the small- and large-size limits:

σN = σs

{
1+
[
(D/D1)

−2κ1 +(D/D2)
−2κ2 +(D/D3)

−κ1−κ2
]γ}−1/2γ

(4)

where γ = positive constant, Dk(k = 1−3) can directly be related to constants Ak
and the FPZ size lc by matching Eq. 3 with the large-size asymptote of Eq. 4. We
often refer Eq. 4 to as energetic (deterministic) scaling, since it is derived from an
energetic perspective and the random material properties do not contribute to this
size dependence.

For some material mismatch and corner geometries, it is possible that only one
real stress singularity dominates or a pair of complex conjugate stress singularities
prevails. In such cases, Eq. 4 reduces to:

σN = σs
[
1+(D/D1)

−2γκ
]−1/2γ

(5)

where κ = the dominant real stress singularity or the real part of the complex stress
singularities. Recent studies on scaling of fracture of metal-composite joints, which
consist of complex stress singularities, have shown that Eq. 5 agrees well with both
numerical and experimental investigations [Yu, Bažant, Bayldon, Le, Caner, Ng,
Waas, and Daniel (2010); Le, Bažant, and Yu (2010)]. It should be emphasized
here that Eqs. 4 and 5 are only applicable to structures where the magnitude of
stress singularities is sufficiently strong, since the entire analysis is based on the
fracture of the bimaterial corner.

If the stress singularities at the bimaterial corner are very weak, then there is no
guarantee that the fracture would initiate and propagate from the corner. To account
for this, we would need to consider the statistics of random strength of the bimate-
rial interface. Note that here we do not consider the potential failure of composites
and metals since a weak interface is assumed. Since we consider the structures of
positive geometry, the failure statistics of the structure can be calculated by using
the finite weakest link model [Bažant and Pang (2007); Bažant, Le, and Bazant
(2009); Le, Bažant, and Bazant (2011)], which implies that the structure reaches
its peak load once one representative volume element (RVE) along the interface
fails. In the meantime, we note that, at the bimaterial corner, a singular stress field
still exists though the singularity is weak. Therefore, if the crack initiates from the
corner, we need to consider the aforementioned scaling mechanism. To describe
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the probabilistic failure of the entire bimaterial interface, we must incorporate the
energetic scaling mechanism of the corner tip fracture into the finite weakest link
model. To this end, we propose to separate the bimaterial interface into two re-
gions: 1) the region within the singular stress zone, and 2) the region outside the
singular stress zone. The failure probability of the first region can be calculated as:

Pf ,VI (σN) = 1−
N1

∏
i=1
{1−P1[µ(D)σNs(xi)]} (6)

where

µ(D) =
{

1+
[
(D/D1)

−2κ1 +(D/D2)
−2κ2 +(D/D3)

−κ1−κ2
]γ}1/2γ

(7)

where the parameters in scaling term µ(D) follow the same definition as those in
Eq. 4, N1 = number of RVEs in the singular stress zone, s(xi) = dimensionless
stress field such that σNs(xi) = maximum principal stress at the center of ith RVE,
and P1(x) = cumulative distribution function (cdf) of strength of one RVE, which
can be derived from atomistic fracture mechanics and a multiscale statistical model
[Bažant, Le, and Bazant (2009); Le, Bažant, and Bazant (2011)].

For the remaining part of the interface, the failure probability can directly be cal-
culated from the elastic stress:

Pf ,VII (σN) = 1−
N2

∏
i=1
{1−P1[σNs(xi)]} (8)

Therefore, the failure probability of the entire structure can be calculated as:

Pf (σN) = 1− [1−Pf ,VI (σN)] [1−Pf ,VII (σN)] (9)

By considering geometrically similar specimens of different sizes, we can obtain a
size effect on the mean structural strength. Though a closed form solution is next
to impossible, an approximate scaling equation has been proposed [Le (2011)]:

σ̄N = σ0

{
C1[µ

m(D)Ψ1 +Ψ2]
−r/m

(
D+ ls

l0

)−r/m

exp[−(κ/κ1)
2]

+
µ−r(D)Db

exp[−(κ/κ2)2]D+ lp

}1/r
(10)

where σ0 = reference stress, m = Weibull modulus of strength distribution of the
interface, l0 = size of the RVE along the interface, κ = dominant stress singularity
for the case where there are two distinct real stress singularities, or the real part of
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the complex stress singularities, Ψ1 =
∫

VI
〈s(x)〉mdV (x), Ψ2 =

∫
VII
〈s(x)〉mdV (x) and

C1,r,κ1,κ2, ls, lp,Db = constants. Constants ls and lp are introduced to regularize
the functional behavior as D→ 0. Note that, as the stress singularities get stronger,
the failure of the entire structure is dominated by the failure of the RVE at the
bimaterial corner. Therefore, all the statistical scaling terms have to vanish. Here
two exponential functions are used to approximate such a transition.

It should be pointed out that for small and intermediate-size structures with weak
stress singularities the size effect derived from this finite weakest link model with
the use of elastic stresses is expected to agree well with the prediction by nonlinear
deterministic calculations. This is because the mean size effect behavior for small-
and intermediate-size structures is mainly caused by the stress redistribution, which
can be well predicted by the nonlinear deterministic calculation. Meanwhile, this
mechanism can also be captured by the finite weakest link model, where the mul-
tiscale transition model used for the formulation of the cdf of RVE strength could
statistically represent the damage localization and load redistribution mechanisms
at different scales (albeit only the elastic stresses are used), see detailed discussion
in [Le, Bažant, and Bazant (2011); Le, Elias, and Bažant (2012)]. For large-size
structures, the zone of stress redistribution is negligible compared to the structure
size and the size effect is mainly caused by randomness of material strength, which
cannot be captured by the deterministic calculation.

3 Numerical simulation

Eq. 10 clearly indicates that the scaling of strength of bimaterial structures depends
on the magnitude of stress singularities. To verify such dependence, we perform a
numerical study on a series of metal-composite hybrid beams with a V-notch under
three-point bending (Fig. 2). The steel material is considered to be isotropic with
a Young modulus E = 200 GPa and Poisson’s ratio ν = 0.3. The composite mate-
rial is considered to be unidirectional Carbon/Epoxy composite with the following
properties: E1 = 147 GPa, E2 = E3 = 10.3 GPa, G12 = G13 = 7.0 GPa, G23 = 3.7
GPa, ν12 = ν13 = 0.27, and ν23 = 0.54 (G denotes the shear modulus).

Here we consider four different notch angles, i.e. θ = 0◦,120◦,135◦ and 170◦.
For each notch angle, geometrically similar specimens of a wide size range, i.e.
1:2:4:8:16:32 for θ=0◦, 120◦, and 135◦, and 1:2:4:8:16:32:64:100 for θ=170◦ are
simulated. Based on the complex potential method [Stroh (1958); Lekhnitskii
(1963); Desmorat and Leckie (1998); Le, Bažant, and Bazant (2011)], the orders
of stress singularities are found to be: κ1,2 =−0.5±0.081i for θ = 0◦ (i =

√
−1),

κ1,2 = −0.396,−0.177 for θ = 120◦, κ1,2 = −0.363,−0.098 for θ = 135◦ and
κ1,2 = −0.136,−0.01 for θ = 170◦. It can be seen that for the case of θ = 0◦ the
beam has a pair of complex conjugate stress singularities, which is well-known for
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Figure 2: Metal-composite hybrid beam under three-point bending

a bimaterial crack. For other notch angles, the beam exhibits two real stress singu-
larities, where one is much stronger than the other one. Furthermore, we see that, as
the notch gets wider, the stress singularities become weaker. Clearly here we have
a sufficiently large range of stress singularities to study the dependence of scaling
law on the magnitude of the stress singularities.

By assuming that the bimaterial interface is much weaker than steel and composite,
we can consider that fracture will always initiate and propagate along the bimaterial
interface. This allows us to use mixed-mode cohesive elements to model the inter-
face whereas the steel and composite materials are treated linear elastic. For the
bimaterial interface, we consider that the adhesive layer is very thin and it does not
vary with the beam size. Consequently, in the present simulation, we use a finite-
thickness cohesive element (thickness t = 1 mm) with its formulation provided
ABAQUS [ABAQUS (2011)]. Before reaching its strength, the cohesive layer is
assumed to be linear elastic, where the traction-separation law can be written as:

T =

 Tn

Tl
Tm

=

 Knn Knm Knl
Kln Kll Klm
Kmn Kml Kmm

 δn

δm

δl

= Kδ (11)

where T = traction vector, K = stiffness tensor, δ = relative displacement vector,
Tn = normal force, and Tl and Tm are the two orthogonal components of shear force
Ts. The normal and shear tractions are considered to be uncoupled in the elastic
regime, and so Ki j = 0 (i 6= j). When the stress in the cohesive layer reaches
the strength criterion, the interfacial crack will initiate and propagate which, in
general, is subjected a combined normal and shear loading. Therefore, a mixed-
mode fracture criterion for the cohesive layer is needed.

The mixed-mode damage initiation criterion is assumed to follow a quadratic form:

〈Tn〉2

fn
2 +

T 2
l +T 2

m

fs
2 = 1 (12)
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Here fn, fs = tensile and shear strengths, respectively. The Maclaulay bracket,
defined as 〈x〉 = max(x,0), is used here to ensure that the normal pressure would
not contribute to the damage initiation. The damage evolution is formulated in an
effective traction-displacement space, where the effective displacement is defined
as δ̄ =

√
δ 2

n +δ 2
m +δ 2

n [Camanho and Davila (2002); ABAQUS (2011)]. For the
sake of simplicity, a linear softening behavior is adopted here to describe cohesive
debonding after damage initiation. The total energy Gc, represented by the area
under the softening curve of the effective stress-displacement space, follows an
energetic mixed-mode criterion [ABAQUS (2011)]:(

GI

GI f

)2

+

(
GII

GII f

)2

= 1 (13)

where GI f , GII f = fracture energy corresponding to Mode I and Mode II, respec-
tively; GI f , GII f are the mode-I and II energy dissipations; and Gc = GI +GII .
The following values are used for fn, fs,GI f ,GII f : fn = 24 MPa, fs = 12 MPa,
Gc

n = 0.73 KN/m, and Gc
s = 1.15 KN/m, which is similar to what was used in a

recent study [Yu, Z. P. Bažant, and Le (2013)]. The cohesive laws in pure normal
and shear modes are shown in Fig. 3.

Figure 3: Mode-I and II cohesive laws

The present numerical study is performed in a deterministic framework. As men-
tioned earlier, deterministic simulations can correctly capture the size effect ex-
cept for the large-size asymptote for structures with weak stress singularities. For
the purpose of comparison with the deterministic calculation, we can consider the
Weibull modulus in the aforementioned analytical formulation to be infinity so that
the influence of the Weibull statistics on the large-size asymptote vanishes.
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4 Results and discussion

Fig. 4 presents the simulated nominal stress-relative displacement curves for all
the specimens, where the nominal stress is defined as σ = P/bD (P = applied
loading, D = beam depth, and b = beam width, which is chosen to be 1) and
the relative displacement is calculated by normalizing the load-point displacement
with respect to the beam depth D. It can be seen that as the beam size increases
the post-peak part of the load-deflection curve becomes steeper, which indicates a
more brittle failure behavior. For D≥ 800 mm, the load-deflection curve exhibit a
sudden vertical drop, which implies a possible snap-back behavior. Since we use
displacement controlled loading in the simulation, the snap-back behavior cannot
be captured by the present simulation. Such a size-dependent failure behavior is a
typical feature of quasibrittle fracture, which leads to the size effect on the nominal
strength.

Figure 4: Simulated nominal stress-relative displacement curves

Denote the nominal strength of hybrid beams as σN = Pmax/bD. Fig. 5 shows the
simulated size effect curves for the hybrid beams with the four different notch an-
gles. It is clear that the size effect is strongly influenced by the magnitude of the
stress singularities. When the stress singularities are sufficiently strong, the size
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effect is very similar to the classical Type-2 size effect [Bažant (1984); Bažant and
Planas (1998); Bažant (2004, 2005)], which applies to quasibrittle structures with a
large pre-existing crack formed prior to the peak load. As the stress singularity be-
comes weaker, the size effect is close to the Type-1 size effect [Bažant and Novák
(2000); Bažant, Le, and Bazant (2009); Le, Bažant, and Bazant (2011)], which ap-
plies to quasibrittle structures with a smooth boundary. This qualitatively confirms
the analytical model, which shows the transition from the Type-2 kind of size effect
to the Type-1 kind as the stress singularities get weaker.

Figure 5: Simulated size effect curves and the optimum fits of Eq. 14

Now we use Eq. 10 to fit the simulated size effect curves. As mentioned earlier,
here we consider that the Weibull modulus, which influences the large-size asymp-
tote of the scaling behavior for structures with weak stress singularities, approaches
infinity. Therefore, Eq. 10 becomes:

σ̄N = σ0

{
C1µ

−r(D)Ψ
−r/m
1 exp[−(κ/κ1)

2]+
µ−r(D)Db

exp[−(κ/κ2)2]D+ lp

}1/r

(14)

For beams with a sharp notch (θ = 0◦), the notch-tip stress field is governed by
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a pair of complex conjugate stress singularities, where the real part of the stress
singularities is equal to −1/2. In this case, the energetic scaling term µ(D) simply
reads: µ(D) = [1+(D/D0)

γ ]−1/2γ , according to Eq. 4. For the other notch angles,
the singular stress field is governed by two distinct real stress singularities, and
the difference in the magnitudes of these two singularities is large. Therefore, we
may consider that the scaling of fracture of the material element at the notch tip is
governed by the strongest stress singularity, and the energetic scaling term µ(D)
becomes: µ(D) = [1+(D/D0)

−2γκ1 ]−1/2γ .

For the optimum fitting, we used different values of D0 and γ for different notch
angles. As mentioned earlier, D0 is determined by the structural geometry as well
as the FPZ size. Under general mixed-mode fracture, the FPZ size would depend on
the mode mixity. However, little information is available about such dependence.
Therefore, here we just consider D0 as a fitting parameter. Since Db, lp and r only
governs the scaling behavior of structures with weak stress singularities, which is a
relatively narrow range (e.g. −0.2≤ κ ≤ 0), we may assume that these parameters
are independent of the notch angles. Since the Weibull modulus is considered to be
infinity, Ψ1/m is equal to the maximum elastic principal stress in the singular stress
zone. Based on the weakest link model, this maximum elastic principal stress must
be evaluated at the center of the RVE at the notch tip. C1 and σ0 are left as two
fitting constants.

Fig. 5 shows that the simulated size effect curves can be well fitted by Eq. 14.
It is clear that, by ignoring the Weibull statistics (i.e. m→ ∞), the proposed size
effect equation predicts a power law at the large-size asymptote, and the power-
law exponent is equal to the dominant stress singularity for all cases. If we in-
troduce randomness in cohesive behavior of the interface for the simulation, the
Weibull statistics would prevail at the large-size limit and the power-law exponent
would be equal to κ−1/m. The good agreement between the simulation results and
Eq. 14 indicates that the general dependence of the size effect on the magnitude
of stress singularities can be explained by the energetic-statistical scaling model.
From Fig. 5, it is also observed that, for beams with strong stress singularities (i.e.
θ = 0◦,120◦,135◦), the power-law large-size asymptote (i.e. σN ∝ Dκ ) has not
been reached even for the largest beam (e.g. D = 3200 mm), which implies that the
LEFM is insufficient. This implies that for most metal-composite hybrid structures
the failure would be quasibrittle and we should use nonlinear fracture mechanics
for the failure analysis.

5 Concluding remarks

By using a simple mixed-mode cohesive crack model, we investigate the scaling
of fracture of a series of bimaterial hybrid beams with a V-notch under three-point
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bending. It is shown that the size effect on the structural strength strongly depends
on the magnitude of the stress singularities. This can be explained by the fact
that, as the stress singularities are strong, the fracture will always initiate from
the bimaterial corner and the corresponding size effect is energetic (deterministic)
whereas for structures with weak stress singularities the location of crack initiation
becomes uncertain and a combined energetic-statistical size effect would prevail.
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