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Low and Intermediate Re Solution of Lid Driven Cavity
Problem by Local Radial Basis Function Collocation

Method

K. Mramor1, R. Vertnik2,3, B. Šarler1,3,4,5

Abstract: This paper explores the application of Local Radial Basis Function
Collocation Method (LRBFCM) [Šarler and Vertnik (2006)] for solution of New-
tonian incompressible 2D fluid flow for a lid driven cavity problem [Ghia, Ghia,
and Shin (1982)] in primitive variables. The involved velocity and pressure fields
are represented on overlapping five-noded sub-domains through collocation by us-
ing Radial Basis Functions (RBF). The required first and second derivatives of
the fields are calculated from the respective derivatives of the RBF’s. The mo-
mentum equation is solved through explicit time stepping. The method is alter-
natively structured with multiquadrics and inverse multiquadrics RBF’s. In addi-
tion, two different approaches are used for pressure velocity coupling (Fractional
Step Method (FSM) [Chorin (1968)] and Artificial Compressibility Method (ACM)
[Chorin (1967)] with Characteristic Based Split (CBS) [Zienkiewicz and Codina
(1995); Zienkiewicz, Morgan, Sai, Codina and Vasquez (1995)]). The method is
tested for several low and intermediate Reynolds numbers (100, 400, 1000 and
3200) and node arrangements (41x41, 81x81, 101x101, 129x129). The original
contribution of the paper represents extension of the LRBFCM to Reynolds num-
ber beyond 400 and assessment of the method for two different types of RBFs and
two different types of pressure-velocity couplings. The obtained numerical results,
in terms of mid-plane velocities, are in a good agreement with the data calculated
in several reference publications and by commercial code. Both RBF’s used give
approximately the same results. Both pressure-velocity coupling methods give ap-
proximately the same results, however the FSM turns out to be slightly more effi-
cient. The advantages of the method are simplicity, accuracy and straightforward
applicability in non-uniform node arrangements.
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1 Introduction

Two-dimensional lid driven cavity flow problem is a widely studied benchmark
case in the field of computational fluid dynamics (CFD) and has been tradition-
ally used to study the accuracy and efficiency of various numerical methods. This
benchmark test was first suggested by [Ghia, Ghia and Shin (1982)]. It describes
a laminar incompressible Newtonian flow in a square cavity with moving top side
and remaining walls fixed. The fluid inside the square cavity is set into motion by
a moving upper wall. If the wall moves from the left to the right a clockwise rotat-
ing primary vortex is formed. By increasing the Re number, a hierarchy of eddies
develops. The primary eddy is located at approximately the geometric center of the
cavity whereas the higher order, smaller eddies, develop at top left and bottom left
and right corners of the cavity and rotate in the opposite direction of the primary.
The solutions are presented for various Reynolds (Re) numbers [Bruneau and Saad
(2006); Erturk (2009)] and are for low Re almost identically confirmed by many
authors [Botella and Peyret (1998); Erturk, Corke and Gökçöl (2005)]. Higher Re
numbers (Re = 3200 and more), on the other hand, produce a much higher spread
of the result [Erturk and Gökçöl (2006)], especially on coarser node arrangements.
The test belongs to a spectrum of classical numerical benchmarks for assessment of
numerical methods used in simulation of materials processing operations involving
fluid flow. Complementary tests, which belong to the same category of important
tests, are the natural convection benchmark [De Vahl Davis (1983)], freezing with
natural convection benchmark [Gobin and Le Quéré (2000)], and very recent bi-
nary solidification benchmark [Bellet, Combeau, Fautrelle, Gobin, Rady, Arquis,
Budenkova, Dussoubs, Duterrail, Kumar, Gandin, Goyeau, Mosbah and Zaloznik
(2009)].

A wide variety of different numerical methods have already been applied for the
driven cavity problem. Among them are the Finite Difference Method (FDM)
[Bruneau and Jouron (1990), Bruneau and Saad (2006)], the Finite Element Method
(FEM) [Barragy and Carey (1997)], different variations of Boundary Element Method
(BEM) [Liao (1992); Liao and Zhu (1996); Grigoriev and Dargush (1999); Aydin
and Fenner (2001)], the Chebyshev Collocation Method (CCM) [Botella and Peyret
(1998)], the Multi Grid Method (MGM) [Ghia, Ghia, and Shin (1982)], the Lattice
Boltzman Method (LBM) [Hou, Zou, Chen, Doolen and Cogley (1995)], and many
others.
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In the last decade, meshless numerical methods [Atluri and Shen (2002); Atluri
(2004); Gu and Liu (2005); Fasshauer (2007); Liu (2010)] started to represent
an appealing alternative to the classical numerical methods. Meshless method is
a numerical technique that uses a set of arbitrary distributed nodes, both on the
boundary and within the computation domain, to represent the solution of physical
phenomena. The main feature of meshless methods is omission of the polygo-
nalisation between the nodes which can be remarkably demanding, particularly in
realistic 3D geometrical situations. One of the simplest meshless methods, able to
solve the fluid flow problems [Šarler, Perko and Chen (2004); Šarler (2005)] is the
Radial Basis Function Collocation Method (RBFCM) [Kansa (1990a,b)]. In this
paper, its Local version (LRBFCM) [Šarler and Vertnik (2006)] is focused. The
idea behind this method is to approximate the function locally over a set of neigh-
boring nodes using RBFs [Buhmann (2000)] and to use collocation for determining
the expansion coefficients.

Respectively, the focused lid driven cavity problem was already solved by several
meshless methods, such as the Meshless Local Petrov-Galerkin (MLPG) method
[Lin and Atluri (2001)] for Re =100 and Re =400, the Method of Fundamental
Solutions (MFS) [Young, Jane, Fan, Murugesan and Tsai (2006)] for Re=100 and
Re=400, the Meshfree Point Collocation method (MPC) [Kim, Kim, Jun and Lee
(2007)] for Re=100, 400 and 1000, and the LRBFCM [Divo and Kassab (2007)]
implemented for Re = 100 and 400. The LRBFCM method was first developed
by [Tolstykh and Shirobokov (2003)] for elasticity problems and [Šarler and Vert-
nik (2006)] for diffusion problems. Since then, it has been successfully applied to
various academic and industrial cases involving fluid flow. In [Kosec and Šarler
(2008a)], classical De Vahl Davis natural convection benchmark and natural con-
vection in Darcy porous media [Kosec and Šarler (2008b)] have been solved by
employing completely local pressure correction. The extensions of the method
to melting and freezing with natural convection have been described in [Kosec
and Šarler (2009), Kosec and Šarler (2010)]. The macrosegregation phenomena
have been for the first time solved by LRBFCM in [Kosec, Založnik, Šarler and
Combeau (2011)], where the authors for the first time demonstrate discretization
independent results for this extremely non-linear coupled problem. The low Pr
natural convection was considered in [Kosec and Šarler (2013)]. In [Vertnik and
Šarler (2009)], k-ε model of the turbulence has been solved by LRBFCM, repre-
senting a pioneering solution of engineering description of turbulence by any of the
meshless numerical methods. In [Vertnik and Šarler (2011)] turbulent forced and
natural convection problems have been solved. R-adaptive and H-adaptive version
of the method have been developed in [Kovačević and Šarler (2005)] and [Kosec
and Šarler (2011)].
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Recently, there is a strong development in the direction of combining meshless
concepts, based on radial basis functions and finite volume concepts [An-Vo, Mai-
Duy and Tran-Cong (2011a, b); An-Vo, Mai-Duy, Tran and Tran-Cong (2013)] as
well as RBFs and finite difference concepts [Wright and Fornberg (2006); Bayona,
Moscoso, Carretero and Kindelan (2010)]. Related efforts have been made also
in the context of weak formulation by combining MLPG and the finite volume
concepts [Avila, Han and Atluri (2011)].

In this paper, LRBFCM is tested on a lid driven cavity benchmark case, for low and
intermediate Re, at four different node arrangements, varying from 1681 to 16641
nodes (41x41, 81x81, 101x101, 129x129), at four different Re (100, 400, 1000 and
3200), two different pressure velocity coupling approaches and two different RBF
types. The results obtained are compared with the results from [Ghia, Ghia and
Shin (1982); Bruneau and Jouron (1990); Botella and Peyret (1998); Sahin and
Owens (2003a,b); Erturk, Corke and Gökçöl (2005)], and with the results of com-
mercial code FLUENT [Fluent (2003)]. The motivation for the present paper is ex-
tension of the work of [Divo and Kassab (2007)] to intermediate Re numbers, and
assessment of performance of different radial basis functions, and different pres-
sure - velocity couplings for subsequent use in more involved materials processing
simulations, such as continuous casting [Šarler, Vertnik and Mramor (2012)].

2 Governing equations and solution procedure

The Newtonian incompressible flow in fixed domain Ω with boundary Γ is de-
scribed by the following Navier-Stokes equations

ρ
∂v
∂ t

+ρ∇ · (vv) =−∇p+µ∇
2v, (1)

∇ ·v = 0, (2)

where v stands for velocity vector, t is time, p pressure, ρ density and µ viscosity.
The solution of mass (Eq. 2) and momentum (Eq. 1) equations (p,v) is sought for
velocity and pressure at time t0+∆t, where ∆t represents a positive time increment,
by assuming the known consistent velocity and pressure fields at initial time t0
(p0,v0), and specified Dirichlet boundary conditions applied on the boundary Γ for
time t > t0.

2.1 Solution procedure

The time discretization is performed with explicit Euler method. Further elements
of the solution procedure are explained in continuum setting, where no reference
has to be made with respect to space discretization. The elements of the local
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meshless method, used for space discretization are explained in Section 2.3. The
solution procedure is structured as follows. First, the intermediate velocity v* at
t0 +∆t is calculated from the momentum equation, without the pressure gradient

v∗ = v0 +
∆t
ρ
[−ρ∇ · (vv)+µ∇

2v]0. (3)

Subsequently, two different approaches for pressure velocity coupling are used in
the present work: Fractional Step Method (FSM) [Chorin (1968)] and Artificial
Compressibility Method (ACM) [Chorin (1967)] with Characteristic Based Split
(CBS) [Zienkiewicz and Codina (1995); Zienkiewicz, Morgan, Sai, Codina and
Vasquez (1995)]. In both methods, the velocity components are corrected by the
pressure gradient

v = v∗− ∆t
ρ

∇p. (4)

The related pressure is calculated either with FSM or ACM with CBS, both of
which are described below.

2.2 FSM and ACM with CBS pressure velocity-coupling

In FSM method, the pressure is calculated from Poisson’s equation

∇
2 p =

ρ

∆t
∇ ·v∗, (5)

with Neumann boundary conditions

∂ p
∂n

= 0. (6)

In ACM method, the pressure field is obtained from the following equation

p = p0−β
2
∆t(ρ∇ ·v∗−∆t∇2 p0), (7)

where −∆t∇2 p0 is a stabilization term as applied in the CBS, and β is the com-
pressibility coefficient. The selection of optimum compressibility coefficient is
problem dependent. A more detailed description of the FSM method can be found
in [Chorin, (1968)], and ACM method is elaborated in [Chorin (1967)], and in the
articles of [Zienkiewicz and Codina (1995); Zienkiewicz, Morgan, Sai, Codina, and
Vasquez (1995)] where CBS term is added.

Finally, the velocity and pressure are updated (v = v0, p = p0) and the solution is
ready for the next step. The steady state is reached when the following criteria is
satisfied in each of the N computational nodes

|vi−vi0|< εv, |pi− pi0|< εp, i = 1, . . . ,N, (8)

where εv, and εp are the velocity and pressure iteration criteria, respectively.
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2.3 Local radial basis function collocation method

In the LRBFCM, a set of RBF interpolation functions and collocation are used to
solve partial differential equations (PDEs). The method is implemented locally
on a set of neighboring nodes that can be uniformly or non-uniformly arranged.
The region consists of N calculation points, of which there are NΩ domain and NΓ

boundary points, and it is divided into N overlapping subdomains, each of which
consists of lM (in general) non-equally spaced nodes lpn, where l = 1, . . . ,N stands
for subdomain and n = 1, . . . , l Mis the number of subdomain nodes (see Fig. 1).

Figure 1: Scheme of the discretization. The Γ, Ω, lxiMAX , lyiMAX represent boundary,
domain and scaling parameters in x and y direction respectively. Empty dots rep-
resent boundary nodes whereas black dots represent domain nodes (see [Mramor,
Vertnik and Šarler (2013)] ).

On each of the N subdomains, function θ is expressed with RBFs as

θ(p)≈
M

∑
i=1

lψi(p)lγi, (9)

where p stands for a position vector, lψi are a set of RBFs centered in points lpi,
lγi are the expansion coefficients and M is the number of shape functions. In the
present paper, overlapping five-noded subdomains are used. The LRBFCM is in
the present work implemented with multiquadric (MQ) and inverse multiquadric
(IMQ) RBF shape functions [Franke (1982)]

lψiMQ(p) =
√

lr2
i + c2, lψiIMQ(p) =

1√
lr2

i + c2
, (10)
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where c stands for dimensionless shape parameter, which is predetermined, and lri

is

lri(p) =

√(
x− xi

xiMAX

)2

+

(
y− yi

yiMAX

)2

+ c2, (11)

where lxiMAX , and lyiMAX stand for a maximum distance in x and y direction in sub-
domain l, respectively. In order to determine the coefficients, the collocation

θ(lpn) =l θn =
M

∑
i=1

lψi(lpn)lγi, (12)

is used. A linear system of Mequations is obtained from Eq. 12

lψψψ lγγγ = lθθθ , (13)

where the components of interpolation matrix lψ are RBFs. In case, when the
number of domain nodes lM matches the number of the basis functions M and
when the basis functions matrix is non-singular [Hon and Schaback (2001)], the
expansion coefficients can be computed from

lγγγ = lψψψ
−1
l θθθ . (14)

θ(p) can afterwards be approximately expressed as

θ(p)≈
M

∑
n=1

lψi(p)
M

∑
k=1

lψ
−1
ik (p) lθk . (15)

In order to be able to solve the PDEs, the first and the second derivative of function
θ(p) have to be calculated on the influence domain. The operator applied on the
approximation function is expressed by [Kansa (1990a,b)]

∂ j

∂ χ j lθ(p) =
M

∑
i=1

lγi
∂ j

∂ χ j lψi(p), (16)

where the index j is used to denote the order of derivative and χ = x, y. The first
and the second derivatives of MQ in 2D are

∂ψiMQ
∂x = x−xi

x2
iMAX

(r2
i + c2)−

1
2 ,

∂ψiMQ
∂y = y−yi

y2
iMAX

(r2
i + c2)−

1
2 ,

∂ 2ψiMQ
∂x2 = 1

x2
iMAX

(r2
i + c2)−

1
2 − x−xi

x2
iMAX

(r2
i + c2)−

3
2 ,

∂ 2ψiMQ
∂x∂y =− x−xi

x2
iMAX

y−yi
y2

iMAX

(r2
i + c2)−

3
2

∂ 2ψiMQ
∂y2 = 1

y2
iMAX

(r2
i + c2)−

1
2 − y−yi

y2
iMAX

(r2
i + c2)−

3
2 ,

(17)
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and of IMQ in 2D are

∂ψiIMQ
∂x = x−xi

x2
iMAX

(r2
i + c2)−

3
2 ,

∂ψiIMQ
∂y = y−yi

y2
iMAX

(r2
i + c2)−

3
2 ,

∂ 2ψiIMQ
∂x2 = 3( x−xi

x2
iMAX

)2(r2
i + c2)−

5
2 − 1

y2
iMAX

(r2
i + c2)−

3
2 ,

∂ 2ψiIMQ
∂x∂y = 3( x−xi

x2
iMAX

)2( y−yi
y2

iMAX

)2(r2
i + c2)−

5
2

∂ 2ψiIMQ
∂y2 = 3( y−yi

y2
iMAX

)2(r2
i + c2)−

5
2 − 1

x2
iMAX

(r2
i + c2)−

3
2 .

(18)

The ACM method uses local updating of the pressure, explained in Eq. 7 to solve
the new pressure, whereas in the FSM method, the Poisson equation has to be
solved globally. The solution of the Poisson equation leads to a sparse matrix, with
a similar structure as introduced in [Lee, Liu and Fan (2003)] for solving boundary
value problems. The local lpn and global pk points in this case coincide and the
relation between them is introduced as pk(l,n) =l pn. The pressure is represented on
each of the subdomains by RBFs and their coefficients as

p(p) =
M

∑
n=1

ψi(l,n)(p)lγn, (19)

and lγ is determined as presented in Eq. 14. The pressure is thus

pi(l,m) =
M

∑
n=1

lΨmn lγn; m = 1, . . .M, (20)

and can be calculated in each of the subdomains as

p(p) =
M

∑
n=1

M

∑
m=1

lψi(l,n)(p)lΨ
−1
nm pi(l,m). (21)

The collocation in global point pk is finally expressed in a form

N

∑
j=1

Ψk jp j = Sk; k = 1,2, ...,N, (22)

where Ψk j is the global sparse matrix element.

2.4 Numerical implementation

The method has been numerically implemented with solver coded in Fortran and
executed on 2 Intel Xeon processors with 8 2.0 GHz cores with 64 bit Windows 8
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server operating system. The ACM with CBS pressure velocity coupling procedure
is solved locally with LRBFCM. The sparse matrix obtained in FSM for the solu-
tion of Poisson equation (Eq. 5) is solved in global points with Pardiso routine and
Intel Math Kernel Library 11. OpenMP is used for parallelization and Gnuplot 4.4.
is used for post-processing.

3 Numerical examples

The problem is solved on a fixed square domain Ω =[0,1] x [0,1] with boundary Γ,
where Dirichlet boundary conditions are applied on all walls. Cartesian coordinate
system is used (p= (px, py)). The velocity (v= (vx,vy)) is zero for stationary walls
(left, right and bottom) and have the value of vx=1 m/s and vy=0 for the top moving
wall. Eq. 1 and 2 are in their dimensionless form written as follows

∂v′

∂ t ′
+v′∇ ·v′ =−∇p′+

1
Re

∇
2v′, ∇ ·v′ = 0, (23)

where v′, t ′, p′ are dimensionless velocity, time and pressure and Re is Reynolds
number, defined as

v′ =
v
v`
, t ′ =

tv`
`
, p′ =

p
ρv2

0
, Re =

v``
ν

, (24)

where `=1 m stands for characteristic dimension and equals the length of the side
of the cavity L, v`=1m/s is the characteristic velocity and ν = µ/ρ is the dynamic
viscosity.

(a) (b)

Figure 2: Scheme of the computational domain of a two-dimensional cavity. (a)
boundary conditions, and (b) node arrangement (41 x 41, b=1.2).
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The solution of the problem v′(p), p′(p)with initial conditions v′0 = 0 and p
′
0 = 0,

is sought. The scheme of the problem with boundary conditions is depicted in Fig.
2.

The numerical examples are organized in the following way: (I) the convergence of
the method is investigated for different node arrangements, (II) the results are com-
pared with the results obtained by other authors, (III) the comparison of different
RBF types is checked and lastly (IV) a comparison between two different pressure
velocity couplings is made. All of the calculations are done for c=32. The time step
∆t ′ used is 10−3. The velocity and pressure iteration criteria are set to 10−5. Unless
otherwise stated, the calculations were done with MQ and FSM pressure velocity
coupling scheme.

3.1 Convergence of the method

The convergence of the method was investigated for Re = 1000 and four node
arrangements, varied between 1681 nodes (41 x 41) and 16641 (129 x 129) nodes.
The velocities were compared along vertical and horizontal lines through geometric
center of the cavity. The comparisons are shown in Fig. 3. As expected, the node
arrangement with the smallest number of nodes gives slightly poorer results. The
velocity profiles of the denser node arrangements are almost the same and are in
accordance with the expected velocity profiles.

Figure 3: Comparison of velocities for different node densities for Re=1000. Left:
v′x component of velocity along horizontal line through the center of the cavity.
Right: v′y component of velocity along the vertical line through the center of the
cavity.
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3.2 Comparison with reference results

Lid driven cavity flow was calculated for low to intermediate Re, ranging between
100 and 3200. The results, obtained with 81 x 81 node arrangement are shown
in Figs. 4-7. The velocities are compared to the spectra of results, given by [Ghia,
Ghia and Shin (1982); Erturk, Corke and Gökçöl (2005); Botella and Peyret (1998);
Sahin and Owens (2003a,b); Bruneau and Jouron (1990)]. As expected, the best
agreement between the calculated and the previously published velocity profiles is
achieved for small Re (100 and 400). The agreement between data and calculations
is slightly poorer for intermediate Re (1000 and 3200), which is expected as the
flow is more structured and a larger number of nodes is needed to get a reasonable
approximation. The odd data point in the right graph in Fig. 5 is probably a wrongly
entered number in the table to [Ghia, Ghia and Shin (1982)]. Additionally, for Re =
400, the velocity profiles are also compared to the results obtained with FLUENT
code.

The minimum (for v′x and v′y) and the maximum (for v′y) values of velocities along
horizontal and vertical lines that pass through the geometric center of the cavity are
given in Tab. 1 for 129 x 129 node arrangement for a variety of different Re.

Figure 4: Comparison of velocities for Re=100, calculated with LRBFCM and
results by [Ghia, Ghia & Shin (1982)]. Left: v′x component of velocity along hori-
zontal line through the center of the cavity. Right: v′y component of velocity along
the vertical line through the center of the cavity.

3.3 Comparison of MQ and IMQ RBF types

A comparison between two different RBF types was done for Re = 1000. As can
be seen in Fig. 8, the results are almost the same (minimum velocities in x di-
rection are -0.3674 (IMQ) and -0.3713 (MQ), and in y direction -0.5035 (IMQ)
and -0.5082 (MQ)) for both types of RBF. The number of iterations to achieve the
steady state is the same and the CPU time for IMQ is slightly higher due to slightly
more complicated algebraic expressions.
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Figure 5: Comparison of velocities for Re = 400, calculated with LRBFCM and
results by [Ghia, Ghia & Shin (1982)]. Left: v′x component of velocity along hori-
zontal line through the center of the cavity. Right: v′y component of velocity along
the vertical line through the center of the cavity.

Figure 6: Comparison of velocities for Re = 1000, calculated with LRBFCM and
results by [Ghia, Ghia & Shin (1982)]. Left: v′x component of velocity along hori-
zontal line through the center of the cavity. Right: v′y component of velocity along
the vertical line through the center of the cavity.

Figure 7: Comparison of velocities for Re = 3200, calculated with LRBFCM and
results by [Ghia, Ghia & Shin (1982)]. Left: v′x component of velocity along hori-
zontal line through the center of the cavity. Right: v′y component of velocity along
the vertical line through the center of the cavity.
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Table 1: Minimum and maximum velocities along horizontal line (y=0.5) and ver-
tical line (x=0.5) through the center of the cavity for different Re. 1: present, 2:
[Ghia, Ghia, and Shin (1982)], 3: [Erturk, Corke and Gökçöl (2005)], 4: [Botella
and Peyret (1998)], 5: [Sahin and Owens (2003a)], 6: [Bruneau and Jouron (1990)].

Re v′x (min) y v′y(min) x v′y (max) x Ref.

100

-0.21325 0.4542 -0.25296 0.8102 0.17884 0.2379 1
-0.21090 0.4531 -0.24533 0.8047 0.17527 0.2344 2
-0.21392 0.4598 -0.25660 0.8127 0.18089 0.2354 5
-0.2106 0.4531 -0.2521 0.8125 0.1786 0.2344 6

400
-0.32276 0.2876 -0.44523 0.8637 0.29453 0.2379 1
-0.32726 0.2813 -0.44993 0.8594 0.30203 0.2266 2
-0.32838 0.2815 -0.45632 0.8621 0.30445 0.2253 5

1000

-0.37126 0.1820 -0.50821 0.9070 0.35603 0.1665 1
-0.38289 0.1719 -0.51550 0.9063 0.37095 0.1563 2
-0.38690 0.1800 -0.52630 0.9100 0.37560 0.1500 3
-0.38866 0.1719 -0.52644 0.9063 0.37692 0.1563 4
-0.38810 0.1727 -0.52845 0.9087 0.37691 0.1573 5
-0.37640 0.1602 -0.5208 0.9102 0.3665 0.1523 6

3200
-0.39664 0.0930 -0.52900 0.94710 0.38611 0.1000 1
-0.41933 0.1016 -0.54053 0.9453 0.42768 0.0938 2
-0.43540 0.0921 -0.56915 0.9491 0.43245 0.0972 5

Table 2: Numerical examples for testing different RBFs with relevant parameters
at Re = 1000 and 129 x 129 nodes.

case RBF iter. CPU time [s] v′x (min) v′y(min)
1 MQ 20900 7825.88 -0.3713 -0.5082
2 IMQ 20900 9145.25 -0.3674 -0.5035

Figure 8: Comparison of two different RBF types (MQ and IMQ) (cases 1 and 2
in Tab. 2). Left: v′xvelocity along horizontal line through the center of the cavity.
Right: v′y velocity along the vertical line through the center of the cavity.
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3.4 Comparison of two different pressure velocity coupling schemes

The difference between two different velocity pressure coupling methods is inves-
tigated for 129 x 129 node arrangement and Re = 1000. The first method is FSM
and the second method is ACM with CBS term. The fixed compressibility coeffi-
cient used in ACM method is β = 1. The pressure, calculated with ACM with CBS
term is calculated directly in each of the nodes. The selection of optimum β is not
trivial. The FSM method, on the other hand, requires the calculation of a sparse
matrix which is a much more involved operation as pointwise pressure calculation.
The ACM with CBS term requires more iterations to reach the steady state. It turns
out that FSM is faster and needs less iterations to reach the steady state, despite
the need to calculate a sparse matrix, especially in cases with larger node arrange-
ments. In our case, both of the methods give similar results, which are shown in
Fig. 9. The CPU times and the number of iterations needed to reach the steady
state are presented in Tab. 3.

Table 3: Sensitivity study with respect to different pressure velocity coupling at Re
= 1000 and 129 x 129 nodes.

case RBF p-v coupling iter. CPU time [s] v′x (min) v′y(min)
1 MQ FSM 20900 7825.88 -0.3713 -0.5082
3 MQ ACM 31400 9951.03 -0.3780 -0.5080

Figure 9: Comparison of velocities for different pressure velocity coupling methods
(cases 1 and 3 in Tab. 3). Left: v′x component of velocity along horizontal line
through the center of the cavity.

In Tab. 4 a comparison of minimum velocities on centerlines as a function of β are
presented. The minimum velocities are not sensitive to the choice of β (see also
Fig.10), however, the largest β chosen in the study gives the most efficient solution.
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Table 4: Sensitivity study with respect to compressibility coefficient at Re = 1000
and 129 x 129 nodes.

case RBF β iter. CPU time [s] v′x (min) v′y(min)
3b MQ 0.5 72700 22597.94 -0.3809 -0.5116
3 MQ 1.0 31400 9951.03 -0.3780 -0.5080
3c MQ 1.5 26400 6974.48 -0.3702 -0.5019

Figure 10: Comparison of velocities for different β (Tab. 4). Left: v′x component of
velocity along horizontal line through the center of the cavity. Right: v′y component
of velocity along the vertical line through the center of the cavity.

4 Conclusions

The LRBFCM method is applied to the driven cavity problem with Re that vary
in the low and intermediate range, from 100 to 3200. The results are compared
to the published results of several authors [Ghia, Ghia and Shin (1982); Bruneau
and Jouron (1990); Botella and Peyret (1998); Sahin and Owens (2003a,b); Erturk,
Corke and Gökçöl (2005)], and with the results, obtained with FLUENT commer-
cial CFD package. The LRBFCM is for the first time applied on a lid driven cavity
benchmark case with Re 1000 and above. The convergence is explored for several
different node arrangements, ranging from 41 x 41 nodes to 129 x 129 nodes. The
calculated results are in good agreement with the reference results. The study was
made to test the efficiency and accuracy of the pressure-velocity coupling calcula-
tion schemes. Respectively, two different methods for pressure-velocity coupling
are compared. Both, the FSM and ACM with CBS give similar results. However,
the FSM method turns out to be slightly more efficient as it requires a lower num-
ber of iterations as well as CPU time to reach the steady state. The main advantage
of LRBFCM is its accuracy, no need for polygonisation and a very simple numer-
ical implementation on the non-uniform node arrangements. We will continue our
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research of the problem by considering the high Re non-steady situations. In this
case, the upwinding strategy, first proposed in connection with the meshless meth-
ods by Lin and Atluri [Lin and Atluri (2000)], will most probably have to be used.
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