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Estimation of the Mechanical Property of CNT Ropes
Using Atomistic-Continuum Mechanics and the

Equivalent Methods
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Abstract: The development in the field of nanotechnology has prompted numer-
ous researchers to develop various simulation methods for determining the mate-
rial properties of nanoscale structures. However, these methods are restricted by
the speed limitation of the central processing unit (CPU), which cannot estimate
larger-scale nanoscale models within an acceptable time. Thus, decreasing the
CPU processing time and retaining the estimation accuracy of physical properties
of nanoscale structures have become critical issues. Accordingly, this study aims
to decrease the CPU processing time and complexity of large nanoscale models by
utilizing, atomistic-continuum mechanics (ACM) to build an equivalent model of
carbon nanotubes (CNTs). The results of tensile and modal analyses agree with pre-
vious experimental results indicating that the ACM model can accurately describe
mechanical properties. This study also adopted three definitions of cross-sectional
area to explore whether the structure properties of CNT ropes depends on the defini-
tions of cross-sectional area. Results indicate that the Young’s modulus distribution
based on the circumcircle assumptions agrees well with most of the experimental
results. Hence, most experimental methods adopted the circumcircle to obtain the
Young’s modulus of the CNT ropes. The circumcircle assumption involves the dis-
tribution of the tubes and the gap between each tube. The ratio between the gap and
tube areas becomes a stable value when the diameter of the CNT ropes is increased.
Therefore, a larger diameter of CNT ropes that represents the Young’s modulus be-
comes a stable value, as mentioned in literature. This study also investigated the
equivalent solid, shell, and beam models to generate similar mechanical behaviors
with the ACM model. The similar mechanical behavior of the equivalent model
includes the model under tensile, torsion, or shear external loading. These equiv-
alent models can significantly reduce the required total element number and CPU
processing time to investigate a larger nanoscale structure.
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1 Introduction

In the past three decades, nanotechnology has been a pioneer in the discovery of
innovative material properties and applications. Most studies aimed at identifying
the particular properties of nanoscale structures. Many simulation methodologies
have been proposed to obtain the material properties of nanoscale structures, such
as Quantum Mechanics, Molecular Dynamics (MD), or Monte Carlo (MC), which
are suitable for different situations. Computational ability for atomistic simulations
that are utilized in the nanoscale material behavior with good performance is con-
tinuously increasing, but the computational ability of these numerical simulation
methods cannot simulate a nanoscale structure that contains more than a few bil-
lion atoms. The atomistic-continuum mechanics (ACM) method has recently been
developed to overcome the limitation of the computational ability and to calculate
the nanostructure with higher efficiency than that of the other aforementioned meth-
ods. The ACM is built on the concepts of atomic mechanics, continuum mechan-
ics, finite element method (FEM), and the equilibrium method. ACM has also been
adopted to investigate a larger nanoscale structure for years, and it is a reliable and
acceptable technique used for numerical simulations and experiment validation.

The extraordinary material properties of CNTs were first discovered in 1991 by
Iijima (1991) in the NEC laboratory in Japan. Carbon nanotubes (CNTs) contain
ultra-high Young’s modulus, thermal conductivity, and high aspect ratio. These
characteristics make CNTs to be the most exciting new materials to have been ex-
hibited in the past three decades. Many studies on the field of CNT modeling have
been conducted in the last decade. These studies can be generalized into two main
simulation methods, namely, atomistic-based and continuum-based models. Tser-
pesa and Papanikos (2009) presented CNT-based super-nanotubes, super-graphene,
and super-square, all of which were modeled using the equivalent beam concept via
MD simulations. Chang (2007) used molecular mechanics simulations to investi-
gate the mechanical response of single-walled carbon nanotubes (SWNTs) under
torsion. Liu, Jiang, Huang, Qu, Yu, and Hwang (2005) developed an atomic-scale
FEM (AFEM) with the same formal structure as the continuum FEM, in which
the interactions within similar CNTs were characterized using the Brenner poten-
tial with the AFEM element. Jalalahmadi and Naghdabadi (2006) demonstrated
the applicability of the FEM model and the new wall thickness, as well as the in-
fluence of tube wall thickness, diameter, and chirality on the Young’s modulus of
SWNTs. Ruoff, Qian, and Liu (2003) discussed the elastic properties of CNTs
in terms of deformability (e.g., buckling, twisting, flattening, and inelastic behav-
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ior). Rossi and Meo (2009) provided an SWNT-FEM model by using nonlinear
and torsional spring elements to evaluate the mechanical properties of the Young’s
modulus. Jeng, Tsai, Huang, and Chang (2009) investigated a series of Molecular
Statics and MD simulations to investigate the mechanical properties of SWCNTs
under a uniaxial tensile strain.

The spring network models were widely utilized in FEM based nanostructure stud-
ies in the previous study [Gusev (2004); Chung, Hosson, and Giessen (2002); Chi-
ang, Chou, Wu, and Yuan (2006)] analyzed an atomic-level single-lattice method
by using a closed-form equation to predict the elastic characteristics of bulk met-
als. Many nanoscale studies [Iijima (1991); Sun, and Chen (2009); Salvetat, Briggs,
Bonard, Bacsa, Kulik, Stöckli, Burnham, and Forró (1999); Lawrence, Berhan, and
Nadarajah (2009); Poncharal, Wang, Ugarte, and de Heer(1999)] aimed at identi-
fying and understanding the innovative properties of CNTs. Wu Chou, Han, and
Chiang (2009) proposed the ACM method to discuss tensile and vibration analy-
ses. Chiang, Chou, Wu, Huang, and Yew (2008) adopted the ACM and FEM to
construct an equivalent-continuum model to investigate the mechanical properties
of CNT. The results showed that the Young’s modulus wouldn’t change obviously
with the variation of tube radius and length, and the average of Young’s modulus is
about 1,050 GPa with agreed with the most experimental and analytical results.

The ACM method established in the FEM with equivalent spring elements are used
to analysis the Young’s modulus using the tensile and the modal behavior in the
nanoscale (atomic scale) structure. The ACM atomic model is not only suitable for
the axial tensile loading condition, but also for modal analysis. The results from
both tensile and modal analyses agree well with the experimental results described
in literature. Moreover, this novel simulation method for investigating nanoscale
materials is not limited to specific materials; it can also be applied to any hetero-
material when the inter-atomic potential and the atomic structure of the material
are known. Several studies used the ACM method to validate its acceptability and
reliability. The ACM method depends on two factors. First, the potential function
should be based on known properties. If one is interested in the properties of a
new type of molecule, an appropriate force field might not be available for that
type of molecules. Second, the electronic properties of molecule prediction are not
applicable because ACM models are assembled by groups of springs.

Although the single CNT yields good mechanical, thermal, and electrical perfor-
mances, it still has limitations in terms of the Young’s modulus and the diame-
ter of the CNT ropes. That might attribute to the different experimental method
adopting the different cross-sectional area types in the CNT ropes. Sun and Chen
(2009) designed an experiment to test the tensile strength of CNT-reinforced cop-
per composites with different diameters, through which they found a parabolic re-
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lationship between the CNT diameter and the resultant tensile strength. Salvetat,
Briggs, Bonard, Bacsa, Kulik, Stöckli, Burnham, and Forró, (1999) used an atomic
force microscopy (AFM) and a special substrate to determine the elastic and shear
moduli of SWNT ropes, which were measured to be in the order of 1 TPa and 1
GPa, respectively. Lawrence, Berhan, and Nadarajah (2009) proposed a three-point
bending test process by using AFM and transmission electron microscopy (TEM) to
suspend individual nanofibers and measure their deflection accurately. Cheng, Hsu,
and Chen, (2009) used MD simulation to investigate atomistic defects in SWCNTs
on their nanomechanical properties.

Poncharal, Wang, Ugarte, and de Heer (1999) used resonant information on in-
dividual nanotubes to investigate the tendencies in elastic modulus with different
nanotube diameter. Chen, Zhang, Dikin, Ding, Ruoff, Pan, and Nakayama (2003)
characterized the mechanical properties of a nanocoil established on a nonlinear
relationship between the spring constant of the nanocoil and the shear modulus, in
which the contributions of all components of the restoring force were involved. Yu,
Files, Arepalli, and Ruoff (2000) investigated the mechanical response of 15 SWNT
ropes under a tensile load, in which the values of the Young’s modulus ranged from
320 GPa to 1,470 GPa, with the mean value of 1,002 GPa. Krishnan, Dujardin,
Ebbesen, Yianilos, and Treacy (1998) estimated the stiffness of SWNTs by ob-
serving their free-standing room temperature vibrations via TEM. Fan, Liu, and
Hwu (2009) discussed the relationship between the mechanical properties and the
nanotube size of CNTs, and found that mechanical properties are dependent on the
diameter of the CNTs. Kis, Cs?nyi, Salvetat, Lee, Couteau, Kulik, Benoit, Brugger,
and Forr? (2004) proposed that the bending modulus of CNT ropes is dependent
on the tube diameter. ?vila and Lacerda (2008) proved that CNT configuration
influences stiffness. By varying the radius and the curvature, the Young’s modu-
lus increased from 0.95 TPa to 5.5 TPa, and the Poisson’s ratio ranged from 0.15
to 0.29. The numerical simulations were in good agreement with those presented
in literature. This study investigates three typical cross-sectional area definitions to
explore whether the Young’s modulus of CNT ropes depends on the cross-sectional
area definition. Individual CNTs showed an elastic constant that matches with the
constant value acquired in most literature results. However, the mechanical strength
of CNT ropes exhibited highly dependent on the cross-sectional area definitions.

To consider the mechanical behavior of the atomic groups, the clustered atomistic
investigation should be based on the classic macro-micro numerical analysis pro-
cedure. The macro-micro technique, also known as the equivalent method or the
global-local, was first established in the 1970s. Mote (1971) proposed a global-
local FEM analysis concept and defined specific parts of the analysis domain as
the local areas, which where modeled using the fine mesh or high-order finite el-
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ement. The local areas were often defined as the mechanically interested region
or the areas with high stress concentration. Alternatively, the other domains were
defined as global areas, which were established using a coarse mesh or a low-order
element. Mote (1971) also used a global-local linking stiffness matrix to combine
the two stiffness matrices of the global and local areas. The computations of the lo-
cal and global areas were thus accomplished simultaneously. Therefore, this FEM
technique could obtain mechanical information on the local area with limited cal-
culating capability. Wang and Corssman (1977) applied the concept of the effective
modulus to investigate the extensional response of multi-layered structures.

Voleti, Chandra, and Miller (1996) proposed the micro-macro FEM technique and
defined the stiffness of the micro model, after which they used this stiffness as a
material property in the macro model. The result of the macro model was extracted
and regarded as the loading condition of the micro model. Hence, although the
macro model used the coarse mesh, the mechanical characteristics of the micro
model with fine mesh were suitably considered in the macro model. The equiv-
alent method is the major technique used for overcoming CPU limitations. The
equivalent method involves searching for the equivalent element that can demon-
strate the material mechanical behavior based on the ACM model. This multi-scale
model can reduce computational modeling and simulation time to obtain the mate-
rial properties and maintain the level of accuracy.

2 Methods

2.1 Introduction of ACM

The ACM is a novel atomistic level numerical methodology based on the elas-
tic finite element theory. The ACM method transfers an originally discrete atomic
structure into an equilibrium continuum model by using atomistic-continuum trans-
fer elements. All inter-atomic forces described using the empirical potential func-
tion can be transferred into the atomic force with springs to construct the atomic
structure. The spring network models are also utilized in FEM-based nanostructure
studies.

The movement of an atom from its equilibrium position involves attractive and
repulsive behaviors as shown in Fig.1. If an atom is pulled to increase its distance
from another atom, the spring yields an attractive force on the atom and attempt
to attract it back to its equilibrium position. If the atoms are pushed closer to each
other, the spring produces a repulsive force on the atom and restores the single atom
to its equilibrium position. The relationship between the interaction force and the
elongation of diatom (r) is derived from the differentiation of the potential function
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(Ebond) with regards to the position of the atom, i.e.,

Fbonds =
∂Ebond

∂ r
(1)

(a) (b) 
 Figure 1: The relationship between (a) potential and bond length. (b) interaction
force and bond stretching.

The mean positions of the atoms of the elements can be regarded as the positions
that can obtain the minimum total energy. To move one atom aside from its equilib-
rium position requires stretching/compressing or attractive/repulsive behavior. The
minimization of the total potential energy is considered due to the ACM. There-
fore, this section utilizes the principle of minimum potential energy. For example,
Fig. 2 shows the face centered cubic (FCC) lattice structure transfer from the dis-
crete atomic structure into an equilibrium spring element. All inter-atomic forces
described using the empirical potential function can be transferred into the atomic
force with springs to construct the lattice structure.

Figure 2: ACM method in the FCC lattice.

Although researchers have developed equivalent methods to determine chemical
bonds, the accurate cross-sectional area of the equivalent continuum element, such



Estimation of the Mechanical Property of CNT Ropes 105

as the truss, beam, or solid element, should be defined. This research utilized ACM
to estimate the mechanical properties of an atomic structure by applying an appro-
priate potential energy. Therefore, equivalent spring elements were utilized this
study. Spring elements have two characteristics that are distinct from those of prior
elements. Spring elements cannot be bent, and the cross-sectional area cannot be
defined. According to these two characteristics, spring elements can represent a
more realistic equivalent model because the chemical bond can neither be bent nor
be defined by a cross-sectional area. Two assumptions exist in the ACM model:
(1) the structure is without any defect, and (2) the structure only experiences small
deformations. The various diatom distances should be less than the material proper-
ties obtained from the relationship between the displacement and the diatom force.

This study utilized the ACM model to investigate an atomic-scale/nanoscale model
for tensile and modal investigations to estimate the mechanical properties of an
atomic-level structure by using a proper potential energy. The numerical model
tested using ANSYSr obtained the reaction forces and natural frequencies of the
nanostructures that assisted in the derivation of the mechanical properties of the
nanostructures. Overall, the distinct feature of the ACM method lies in its usage of
the same model for tensile and modal analyses. In the tensile analysis, the Young’s
modulus could be defined as the ratio between the normal stress σ and the normal
strain ε based on the Hooke’s law as shown in Eq. (2)

E = σ/ε (2)

Furthermore, the normal stress σ can be expressed as the force per unit area, stress
is a measure of the internal forces acting within a deformable test vehicle. Quanti-
tatively, it is a measure of the average force per unit area of a surface within the test
vehicle. The normal strain ε can be defined as the ratio of total deformation to the
initial dimension of the test vehicle in which the forces are being applied. Hence,
the Young’s modulus E can be defined as the ratio of the normal stress σ to the
normal strain ε under a uniaxial tension condition as Eq. (3) and Fig. 3

E =
Ftotal/A

∆l/l
(3)

where Ftotal is the total reaction force, ε represents the applied tensile strain loading,
which is the elongation per length, A represents the equivalent area in the ACM
model, l is the total length of the structure, and ∆l denotes the small prescribed
extension length.

Tensile testing is the most common strategy to obtain the Young’s modulus of a
structure. As nano-scale structures might be too small to test, the alternative strat-
egy applies modal testing to overcome this limitation. The Young’s modulus can be
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Figure 3: Tensile analysis in the beam structure

derived based on the resonant frequency by using the Euler-Bernoulli beam theory
[Rao, S. S. (2005)]. Euler-Bernoulli beam theory is a simplification of the linear
theory of elasticity which provides a means of calculating the load-carrying and de-
flection characteristics of beams. This theory covers the case for small deflections
of a beam which is subjected to lateral loads only. It is thus a special case of Tim-
oshenko beam theory which accounts for shear deformation and is applicable for
thick beams. In the modal analysis, consider the free-body diagram of an element
of a beam shown in Fig. 4.

Figure 4: Free body diagram of a beam in natural frequency analysis.
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where M (x, t) is the bending moment, V (x, t) is the shear force, and f (x, t) is
the external force per unit length of the beam. Since the inertia force acting on
the element of the beam is ρ A(x)dx ∂ 2w(x,t)

∂ t2 the force equation of motion in the z
direction gives

−(V +dV )+ f (x, t)dx+V = ρ A(x)dx
∂ 2w(x, t)

∂ t2 (4)

where ρ is the mass density and A(x) is the cross-sectional area of the beam. The
moment equation of motion about the y axis passing through point O in Fig. 4 leads
to

(M+dM)− (V +dV )dx+ f (x, t)dx
dx
2
−M = 0 (5)

By writing dV = ∂V
∂x dx and dM = ∂M

∂x dx and disregarding terms involving second
powers in dx. The natural frequencies of the beam are computed from Eq. (6) as

ω = β
2

√
EI
ρA

= (β l)2

√
EI

ρAl4 (6)

where l is the length of the model, and ω is called the natural frequency of vibration.
For any beam, there will be an infinite number of normal modes with one natural
frequency associated with each normal mode. The cantilever beam with a fixed
side and a free side could derive the Young’s modulus and frequencies from Eq. (6)
to Eq. (7)

E =
4π2 f 2

n l2ρA
λ 4

n I
(7)

The density is equal to (NatomMelement/Vtotal), where Natom is the number of atoms,
Melement is the mass of the atom, Vtotal is the volume of the model, and fn represents
each resonant frequency of the atomic structure. In addition, λn is the constant
of each resonant frequency (λ1= 1.87 for the first mode, λ2= 4.69 for the second
mode, and λ3= 7.85 for the third mode). I is the moment of inertia in the cross-
sectional area. The ACM method has extensive applications; it can be applied
in other nanostructured materials when the interatomic potential and the atomic
structure of the material are known.

2.2 Potential Function

For the material properties of the spring element in the CNT structure, the Brenner’s
second-generation reactive empirical bond order (REBO) potential function [Bren-
ner, Shenderova, Harrison, Stuart, Ni, and Sinnott (2002)] was broadly selected
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to define the binding energy between carbon atoms, including the bond strength
and the bond angle. The REBO defines the interatomic potential for carbon atoms
as follows. The chemical binding energy Eb can be simply written as a sum over
nearest neighbors in the form

Eb =
∫

i

∫
j(>i)

[
V R (ri j)−bi jV A (ri j)

]
(8)

where ri j is the distance between atoms i and j, V R and V A are the repulsive and
attractive pair terms, respectively. bi j is a bond order between atoms i and j that is
derivable from Huckel or similar level electronic structure theory.

The first-generation hydrocarbon expression used Morse-type terms for the pair
interaction in Eq.(8). However, it was determined that this form is too restrictive to
simultaneously fit equilibrium distances, energies, and force constants for carbon-
carbon bonds. This form has the further disadvantage that both terms go to finite
values as the distance between atom decreases, limiting the possibility of modeling
processes involving energetic atomic collisions. In the REBO, the repulsive was
shown in Eq. (9). And the attractive terms was shown in Eq. (10).

V R (r)= f c(r)(1+Q/r)Ae−αr (9)

V A (r) = f c (r)
∫

n=1,3
Bne−βnr (10)

The subscript n refers to the sum in Eq. (10), and r is the scalar distance between
di-atoms. The screened Coulomb function used for the repulsive pair interaction
(Eq. (9)) goes to infinity as interatomic distances approach zero, and the attractive
term (Eq. (10)) has sufficient flexibility to simultaneously fit the bond properties
that could not be fitted with the Morse-type terms used previously. The function
f c(r) limits the range of the covalent interactions. The parameter fitting for carbon
discussed below assumes a value of one for f c(r) for nearest neighbors and zero for
all other interatomic distances. The general Abell-Tersoff form Eq. (8) is used for
the total potential energy. Following the earlier hydrocarbon bonding expression,
the empirical bond order function used here is written as sum of terms:

bi j =
1
2

[
bσ−π

i j +bσ−π

ji

]
+bπ

i j (11)

Values for the functions bσ−π

i j and bσ−π

ji depend on the local coordination and bond
angles for atoms i and j, respectively. The function bπ

i j is further written as a sum
of two terms:

bπ
i j = π

RC
i j +bDH

i j (12)
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The value of the first term πRC
i j depends on whether a bond between atoms i and j

has radical character and is part of a conjugated system. The value of the second
term bDH

i j depends on the dihedral angle for carbon-carbon double bonds. Following
the earlier hydrocarbon effort, the first term in Eq. (11) is given as

bσ−π

i j =

[
1+

∫
k(6=i, j)

f c
ik(rik)G

(
cos(θ i jk)

)
eλi jk +Pi j

(
NC

i ,N
H
i
)]−1/2

(13)

The function f c(r) ensures that the interactions include nearest neighbor only. The
function P represents a bicubic spline and the quantities NC

i and NH
i represent the

number of carbon and hydrogen atoms, respectively, that are neighbor of atom i.
The term πRC

i j in Eq. (11) represents the influence of radical energetics and π-bond
conjugation on the bond energies. As discussed in relation to the first-generation
form of this potential, this term is necessary to correctly describe radical structures
such as the vacancy formation energy in diamond, and to account for non-local
conjugation effects such as those that govern the different properties of the carbon-
carbon bonds in graphite and benzene. This function is taken as a tricubic spline
F :

π
RC
i j = Fi j

(
Nt

i ,N
t
j,N

con j
i j

)
(14)

That depends on the total number of neighbors of bonded atoms i and j. And Ncon j
i j

depends on local conjugation. The term bDH
i j in Eq. (12) is given by

bDH
i j = Ti j

(
Nt

i , Nt
j, Ncon j

i j

) [∫
k(6=i, j)

∫
l(6=i, j)

(
1− cos2 (

Θi jkl
) )

f c
ik (rik) f c

jl
(
r jl
)]

(15)

The value of f c(r) is defined by a cut-off radius function of the form

f c
i j =


1 r < Dmin

i j[
1+ cos

((
r−Dmin

i j

)
/
(

Dmax
i j −Dmin

i j

))]
/2 Dmin

i j < r < Dmax
i j

0 r > Dmin
i j

(16)

where Dmax
i j −Dmin

i j defines the distance over which the function from one to zero.
The problem comes in defining the nearest-neighbor distance. In diamond the

nearest-neighbor distance is 1.54
◦
A, and in graphite the second-neighbor distance

is 2.46
◦
A. To describe both structures, the function must go from one to zero be-

tween 1.54 and 2.46
◦
A. Because this is a rather abrupt cut-off, it is advantageous to

maximize the difference between Dmax and Dmin.
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All inter-atomic forces described using the empirical potential function can be
transferred into the atomic force with springs to construct the atomic structure.
This study implemented the commercial software ANSYSr to demonstrate the
finite-element modeling and simulations. The ACM model for the CNT was based
on the accuracy of the potential energy. The tensile and modal analyses both had
the Young’s modulus of approximately 1 TPa, which fell within the range of the
Young’s modulus in reported literature [Conwell and Wille (1997); Chang and Gao
(2003)].

2.3 CNTs

A CNT is a hollow structure formed by sheets of graphene. The chiral vector de-
scribes the sheets rolled at specific directions, the radius, and the arrangement of
hexagonal cells in the nanotube, as shown in Fig. 5. The chiral type depends on
the θ (the angle between a1 and a2) and armchair type (θ =0◦) and zigzag type
(θ =30◦) are generally chiral types. The chiral vector (Ch) is defined by the unit
vector (a1, a2) and the graphene sheet lattice translation indices (n1, n2): Ch =
n1
−→a 1 + n2

−→a 2, where n1 and n2 are integers. The relative parameters were as fol-

lows: carbon-carbon distance: ac−c = 1.44
◦
A; unit vector −→a 1 =

(√
3/2, 1/2

)
a,

−→a 2 =
(√

3/2, −1/2
)

a; length of chiral vector L = |Ch| = a
√

n12 +n22 +n1n2
and diameter of CNT: dt = L/π . The multi-walled nanotubes were considered as
an assembly of multiple concentric SWNTs with a layer spacing of about 0.34 nm.
In continuum mechanical analysis, the elastic modulus can be obtained not only

Armchair

Zigzag

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0)

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1)

(2,2) (3,2) (4,2) (5,2) (6,2) (7,2)

(3,3) (4,3) (5,3) (6,3) (7,3)

(4,4) (5,4) (6,4) (7,4)

(5,5) (6,5)

a1

a2

 
Figure 5: Graphitic sheet showing the basis vectors a1 and a2 of the two-
dimensional unit cell.
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through traditional tensile experiment, but also through modal analysis. Several
case studies [Chiang, Chou, Wu, Huang, and Yew (2008); Chiang, Chou, Wu, and
Yuan (2006); Wu, Chou, Han, and Chiang (2009)] are presented in the reference to
validate the ACM method. In addition, the ACM could obtain the Young’s modulus
with high efficiency through tensile and modal analyses of the same model. ACM
has higher efficiency than MD and MC, among others.

3 Modeling and Analysis

3.1 ACM modeling and results

The carbon-hydrogen bond energy can be derived by the bond-additive energies
for molecular carbon-carbon single, double, conjugated double and triple bonds.
The final parameter values were adopted to derive the carbon atomic potential Eq.
(8) as shown in Tab. 1 and Tab. 2. The function GC

(
cos(θijk)

)
in Eq. (13)

modulates the contribution that each nearest neighbor makes to the empirical bond
order according to the cosine of the angle of the bonds between atoms i and k and
atoms i and j. The parameters were shown in Tab. 3.

Table 1: Parameters for the carbon-carbon pair term [Brenner, Shenderova, Harri-
son, Stuart, Ni, and Sinnott (2002)]

B1 = 12388.79 eV β1 = 4.720452
◦
A
−1

Q = 0.31346029608
◦
A

B2 = 17.56740 eV β2 = 1.433213
◦
A
−1

A = 10953.544162 eV

B3 = 30.71493 eV β3 = 1.382691
◦
A
−1

α= 4.736539060
◦
A
−1

Dmin = 1.7 Dmax = 2.0

Table 2: Parameters for the bi j to the carbon bond order [Brenner, Shenderova,
Harrison, Stuart, Ni, and Sinnott (2002)]

λi jk Pi j = 0 f c (r) πRC
i j θi jk = 1200

value 0 0 1 -0.30113 G
(
θi jk
)
= 0.0528

The force-displacement material properties of CNTs could be determined by Eqs.
(17) and (18), which was derived using the differentiating Eqs. (9) and (10) with
respect to displacement

∂V R (r)
∂ r

= f c(r)A
[
−αe−αr−Qr−2e−αr−αQr−1e

−αr
]

(17)
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∂V A (r)
∂ r

= f c(r)
∫

n=1,3
−βnBne−βnr (18)

Table 3: Parameters for the angular contribution to the carbon bond order [Brenner,
Shenderova, Harrison, Stuart, Ni and Sinnott (2002)]

θ (rad) G(cos( θ)) dG/d(cos( θ)) d2G/d(cos( θ))2
γ (θ)

0 8 – – 1
π/3 2.0014 – – 0.416335
π/2 0.37545 – – 0.271856

0.6082π 0.09733 0.400 1.980 –
2π/3 0.05280 0.170 0.370 –

π -0.001 0.104 0.000 –

The CNT force-elongation of the two-body term can be illustrated by Fig. 6 (a).
On the other hand, the relationship between force and angle of the three-body term
is shown in Fig. 6 (b).

  
(a) (b) 

 Figure 6: The relationship between (a) force and bond elongation; (b) force and
bond angle.

The atomic structure of a CNT is constructed by atomic and bonding distributions.
The atomic distribution of the hexagonal pattern was arranged using the methodol-
ogy of [Dresselhaus, Dresselhaus, and Saito (1995)] which provided the modeling
process. In the CNT modeling, covalent bonds are the main chemical bonds be-
tween each carbon atoms with characteristic bond length, bond angle, and dihedral
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angle building up a hexagonal structure on the cylindrical wall of the nanotube. The
processes of ACM modeling are shown in Fig. 7, which is described as follows:

1. The bonding force (interaction force between diatoms) is described by artifi-
cial spring element (force-elongation curve from REBO) as shown in Fig. 7
(a).

2. There is a two-body bonding term in the hexagonal structure, as described in
Fig. 7 (b).

3. Fig. 7 (c) shows corner of the hexagonal structure deformation condition,
where the solid black line shows the undeformed condition and the dashed
blue line shows the small deformed condition. The geometry assumptions
can derive the relationship Eq. (19) and (20).

4l
2

= Rc−c
4θ

2
, 4θ =

4l
Rc−c

. (19)

1
2

Kθ4θ
2= 1

2 kθ ′4l2, k
θ
′=Kθ

4θ 2

4l2 =
Kθ

Rc−c
2 . (20)

The bond angle could equivalent into bond stretch using Eq.(20).

4. The three-body terms (dashed red line) of the hexagonal structure are illus-
trated in Fig. 7 (d).

5. ANSYSr software was utilized to derive the mechanical properties of the
CNTs with tensile and modal analyses. The whole SWNT structure is shown
in Fig. 7 (e).

As boundary conditions for Young’s modulus analysis, one end of the ACM model
is fully fixed, and the other end is applied constant small strain along axial direction
in the tensile analysis. Beside, ACM model could also use only half of the model,
together with symmetrical boundary conditions. This was done to reduce the CPU
time during the simulation. Fig. 8 (a) shows a small displacement, which is 0.1%
of the total length, along the axial direction of the SWNT. Fig. 8 (b) presents the
boundary condition for modal analysis; it fixes all DOF on one side without any
external loading.

The ACM model with tensile loading assumes that the stresses acting on each sec-
tion are uniformly distributed, as shown in Fig. 8 (c). In the modal analysis, each
atom considered includes the mass of the carbon nucleus and neglects the mass of
the electrons. Meanwhile, by considering the atomic structure of carbon atom, the
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atom

Artifical Spring Element

(b)

(a)

REBOBonding

(d) (e)

Figure 7: ACM modeling process: (a) All interatomic bonding forces (diatom and
hexagonal structures) transforming to atomic force with springs to form the ACM
model by REBO. (b) The hexagonal structure of the CNT contains a two-body term
(solid black line), and (c) each corner is assumed to have a small deformation. (d)
The hexagonal structure of the CNT contains two-body term (solid black line) and
a three-body term (dashed red line). (e) Part of the SWNT structure.
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mass of carbon nucleus (mcarbon = 1.99×10−23g), neglecting the mass of electrons,
is assumed to be concentrated at the center of atom which is equivalent to the mass
of node in the ACM model. The first three mode shapes are shown in Fig. 8 (d-1)
to (d-3).

Figure 8: Boundary conditions for (a) tensile analysis and (b) modal analysis; (c)
displacement distribution when the model is under tensile loading. Mode results:
(d-1) first mode; (d-2) second mode; (d-3) third mode.

If the nanotubes are considered as continuum hollow beam, the cross-section area
definition could be defined as shown in Eq. (21)

A = πdt (21)

where d is the tude diameter, and t is the thickness. The thickness is taken as 0.34
nm the interlayer spacing of CNT [Dresselhaus, Dresselhaus, and Saito (1995)].
The moment of inertia is

I =
π

4
(
r2

o− r2
i
)

(22)

where ri and ro are inner and outer radius of nanotubes. Therefore, the Young’s
modulus could be derived using the tensile and modal analysis. The Young’s mod-
ulus of SWNTs can be derived using tensile loading method (Eq. (3)) and modal
analyses (Eq.(7)) as shown in Tab. 4 and Fig. 9.

The Young’s modulus of both tensile analysis and modal analysis is about 1,000
GPa, which falls within the range of the Young’s modulus reported by [Conwell
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Table 4: The Young’s modulus of SWNTs at different chiral vector using tensile
and modal analyses

Chiral vector (8,8) (15,15) (14,0) (26,0)
Length [nm] 80 80 80 80

Elongation [%] 0.001 0.001 0.001 0.001
Area [nm2] 1.16 2.17 1.17 2.17

Tensile Analysis Reaction force [pN] 0.012 0.022 0.012 0.023
E (tensile) [GPa] 1,021 1,025 1,068 1,070

1st mode [Hz] 4.70E+09 8.84E+09 4.72E+09 8.76E+09
2nd mode [Hz] 1.29E+10 2.40E+10 1.30E+10 2.38E+10

Modal Analysis 3rd mode [Hz] 2.52E+10 4.69E+10 2.53E+10 4.61E+10
E (1st mode) [GPa] 9.79E+02 1.05E+03 9.71E+02 1.03E+03
E (2nd mode) [GPa] 9.81E+02 1.03E+03 9.73E+02 1.01E+03
E (3rd mode) [GPa] 9.71E+02 1.02E+03 9.63E+02 9.88E+02

and Wille (1997)] (MD), [Salvetat, Briggs, Bonard, Bacsa, Kulik, Stöckli, Burn-
ham, and Forró (1999); Yu, Files, Arepalli, and Ruoff (2000)](experimental result),
and [Chang and Gao (2003)] (continuum theory). The ACM was based on the di-
atom structure method which can exclude variety assumptions from microcosmic
to macroscopic conditions. In the literature experimental result, the Young’s mod-
ulus of CNT decreased from microcosmic to macroscopic. That indicated the CNT
application and assumption influence proportional with the Young’s modulus, such
as the cross-sectional area definition.

3.2 CNT ropes

3.2.1 The categories of SWNTs cross-sectional area definition

The structure properties of CNT ropes utilized in the nanocomposite structure are
in the main category of the CNT application. However, the structure property of
CNT ropes (CNT bundles) has not been defined specifically until now. There-
fore, there have been a number of cross-sectional area assumptions utilized in the
literature. The four major types of cross-sectional area can be classified in Tab.
5. The cross-sectional area definitions include curve fitting by SEM [Yu, Files,
Arepalli, and Ruoff (2000)], circumference multiplied by thickness [Pop, Mann,
Wang, Goodson, and Dai (2006)], diameter [Zhang, Ichihashi, Landree, Nihey, and
Iijima (1999)], and area of specific location [Salvetat, Briggs, Bonard, Bacsa, Ku-
lik, Stöckli, Burnham, and Forró (1999)].
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Figure 9: Young’s modulus of SWNT estimation simulation results using tensile
loading method and first three modes.

Table 5: CNTs with different cross-sectional area definitions

Figure
Area
Curve

fitting by
a (x−b)

circumference
πDt

diameter D specific location
a2cosπ/6

3.2.2 Cross-sectional area assumptions

This study discussed two typical cross-sectional area types, including solid cross-
sectional area and hollow cross-sectional area. The CNT structure was rolled from
the grapheme sheets into a hollow tube. The inner diameter of each CNT was
assumed to be too small to accommodate other elements. The CNT was arbitrary
embedded into the material to transfer the external force; the force path involved
grapheme occupation and inner diameter. Therefore, the CNTs resisted the external
loading not only in the grapheme occupation but also in the inner diameter. In this
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study, the distribution of CNT ropes were assumed to be in close-packed array.
Three cross-sectional area assumptions were also used, as shown in Fig. 10. In the
first case, the ropes of CNT were composited using the individual hollow circle,
and the CNT ropes of the cross-sectional area were assumed to be equal to 2nπrt,
where n is the number of CNT, r is the radius of each CNT, and t refers to the
wall-thickness of CNT. In the second case, the cross-sectional area of individual
CNT was solid; thus, the solid area of the CNT ropes was equal to nπr2. In the
final case, the diameter of the ropes was equal to the maximum radius (R), and the
cross-sectional area was equal to πR2.

(a) (b) (c) 

Figure 10: Cross-sectional area definitions of CNT rope: (a) individual hollow
circle, (b) individual solid circle, and (c) total solid circumcircle.

The structure property of the CNTs was found to be independent of the diameter of
the SWNTs when the cross-sectional area was defined by individual hollow or in-
dividual solid circles. The difference in the cross-sectional area definition between
the individual hollow and individual solid circle was 2t/r. When the chiral vector
was (10, 10), the radius approached twice the well thickness; hence, the Young’s
modulus was very close regardless of whether the cross-sectional area was defined
as hollow or solid. Furthermore, this study found a larger diameter of individual
CNTs and a larger Young’s modulus difference between individual hollow and solid
areas. The results are shown in Table 6.

Table 6: Young’s modulus difference between individual hollow and individual
solid areas in different chiral vectors.

Chiral vector Radius (nm) EHollow (GPa) ESolid (GPa)
(10,10) 0.678 1037 1040
(12,12) 0.813 1037 867
(14,14) 0.949 1037 743
(16,16) 1.0848 1037 650
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This study discusses the relationship between the Young’s modulus and the three-
kinds of cross-sectional area definitions, when the diameter of CNT clusters is dis-
tributed from 1.36 nm to 50 nm. The CNT clusters are composed using four kinds
of chiral vectors of SWCNT, such as the chiral vector equal to (10,10) (diameter =
1.36 nm), (12,12) (diameter = 1.63 nm), (14,14) (diameter = 1.90 nm), and (16,16)
(diameter = 2.17 nm). The Young’s modulus distribution when the cross-sectional
area of the CNT cluster is composed of an individual hollow circle is shown in Fig.
11 (a). The figure indicates that the Young’s modulus will not decrease when the
diameter of the CNT cluster increases. Clearly, the Young’s modulus of the CNT
cluster from the experimental result is dependent on the cross-sectional assump-
tions. Fig. 11 (b) shows the Young’s modulus distribution when the cross-sectional
area is composed of an individual solid circle. The difference between the indi-
vidual hollow and the individual solid circle is 2t/r. A larger diameter will lead
to further differences between these two assumptions. Only the smaller diameter
of the SWNT can decrease the difference for these two cross-sectional area as-
sumptions. Fig. 11 (c) describes the Young’s modulus distribution when the cross-
sectional area is equal to a circumscribed circle. The circumscribed circle covers
the SWNTs and the gaps among tubes.

The larger diameter of CNT cluster indicates the stable value of the ratio between
the gap and the individual solid circles. That is the reason why the Young’s mod-
ulus decreases when the diameter of CNT clusters increases. The circumscribed
circle results also agree with the experimental results from the study of Sun and
Chen (2009); Salvetat, Briggs, Bonard, Bacsa, Kulik, Stöckli, Burnham, and Forró
(1999), which indicated a parabolic relationship between the tensile strength and
the CNT diameter, as shown in Fig. 12 and Tab. 7. The Young’s modulus of
SWNTs approaches 400 GPa and has a similar trend when the cross-sectional area
is assumed to be a circumscribed circle. Therefore, the circumscribed circle as-
sumption might be closer to the cross-sectional area defined in the experimental
operation.

Table 7: Young’s modulus distribution in the different diameter and length [Gibson
(2007)]

Material Diameter (nm) Length (nm) Young’s Modulus(GPa)
Vapor-grown 100-200 30,000-100,000 400-600

SWNT ˜1.3 500-40,000 320-1470
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Figure 11: Young’s modulus distribution when the cross-sectional area is defined
as an (a) individual hollow circle, (b) individual solid circle, and (c) circumcircle.

    
(a)
                                                     

(b)
 

Figure 12: Relationship between the CNT diameter and the (a) ultimate tensile
stress [Sun and Chen (2009)] and (b) reduced modulus [Salvetat, Briggs, Bonard,
Bacsa, Kulik, Stöckli, Burnham, and Forró (1999)]
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4 Equivalent Modeling

To date, simulations of the larger scale of the nanostructure are still limited, which
raises the importance of using the equivalent method to reduce CPU time and ob-
tain good agreement between the nanoscale and equivalent models. Papanikos,
Nikolopoulos, and Tserpes (2008) proposed an atomistic-based FEM analysis, which
is combined with the mechanics of materials to evaluate the geometrical charac-
teristics and elastic properties of beams that have the same tensile, bending, and
torsion behaviors as CNTs. Yuan and Chiang (2003) proposed a process that can
be used to significantly reduce the CPU simulation time using an equivalent beam
method based on the micro-macro technique.

The previous section result of the ACM method has been proven to be in agreement
with the experimental result. As such, the following discussion is based on the me-
chanical behavior of the ACM. The adoption of a suitable element type to replace
the ACM model is discussed at first. The goal of this section is to provide dif-
ferent equivalent element simulations that could remain the mechanical behavior.
Thus, different models under the same tensile, vibration, shear, or torsion loading
conditions should have similar mechanical behaviors. Therefore, the models are
acceptable and have equivalent efficiencies. The individual CNT structure modeled
by the ACM method is shown in Fig. 8. Exposure of the structure to different exter-
nal loading conditions allows the rigidity of the structure to be obtained through its
reaction force or displacement. Fig. 13 shows three types of boundary conditions
of ACM model, including tensile, bending, and torsion.

 
Figure 13: Equivalent boundary condition of the individual CNT.
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The rigidity of the structure should be determined at first. To determine the rela-
tionship between displacement and loading condition, this study illustrates the three
equations for each case. The tensile loading, bending, and torsion can be described
by Eqs. (23), (24), and (25), respectively. In the tensile and bending conditions, the
relationship between displacement and external loading are shown in Eqs. (23) and
(24) as follows:

δT =
PL
AE

(23)

δB =
FL3

3EI
(24)

φ =
T L
GJ

(25)

where δ is the deflection; P and F are the axial and bending forces, respectively; L
is the length of the structure; E is the modulus of elasticity; A is the cross-sectional
area; I is the moment of inertia; φ is the angle of twist; G is the shear modulus of
elasticity; and J is the polar moment of inertia

Four kinds of element types are utilized in the present study to significantly reduce
CPU simulation time. All of these four elements are briefly described below, and a
summary is presented in Tab.8.

Table 8: Element properties of Combin39, Shell 181, Solid 45, and Beam 44.
Element Type Combin39

(ACM method)
Shell181 Solid45 Beam44

Node/Space 2 node/ 3D
space

4 node/ 3D
space

8 node/ 3D
space

2 node/ 3D
space

DOF 6 DOF 6 DOF 3 DOF 6 DOF

Figure

Application

(1) Combin39 is a unidirectional element with nonlinear generalized force-deflection
capability that can be used in any analysis. This element has longitudinal or tor-
sional capabilities in one-dimensional, two-dimensional, and three-dimensional ap-
plications. (2) Shell181 is suitable for analyzing thin to moderately-thick shell
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structures, and has a four-node element with six DOFs at each node: translations
in the x, y, and z directions, and rotations on the x, y, and z-axes. (3) Solid45 is
used for three-dimensional modeling of solid structures. The element is defined by
eight nodes that have three DOFs at each node, including translations in the nodal
x, y, and z directions. (4) Beam44 is a uniaxial element with tension, compres-
sion, torsion, and bending capabilities that has six DOFs at each node, including
translations in the nodal x, y, and z directions and rotations on the nodal x, y, and
z-axes.

The equivalent of the CNT structure process is obtained through the following
method. The chiral vector (15, 15) and length of SWNT is set at 100 nm. The
three-dimensional, two-dimensional, and one-dimensional equivalent elements can
be described using solid, shell, and beam elements, respectively. By comparing the
analytical solution of the CNT structure with the simulation results of equivalent-
continuum solid/shell/beam model, the reasonable wall-thickness of CNT, which
is 0.34 nm in most studies, is acquired. The different equivalent models under the
same tensile, vibration, shear, or torsion loading conditions would be discussed as
follow:

4.1 Modal Analysis

The mode shapes of the equivalent models are shown in Fig. 14. All equivalent
models illustrated the first mode is one-half sine wave, the second mode is one sine
wave, and the third mode is one and half sine waves. The frequency distribution in
the different equivalent model is shown in Fig. 15, which exhibit equivalent models
and ACM model have the similar frequency distribution. That indicated the ACM
model could be replaced by the equivalent model in the vibration condition.

Figure 14: The equivalent CNT model results in the modal analysis.
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Figure 15: The equivalent CNT frequency distribution in the modal analysis.

4.2 Tensile Analysis

One end of the equivalent CNT models are applied the same external tensile loading
(0.05 nN) in z direction, and the other end is fixed all DOFs. The displacement
distributions of the equivalent models are shown in Fig. 16. All of them have
the similar displacement distribution. In addition, Fig. 17 shows the maximum
displacement distribution that indicated the displacement value difference are very
small. That indicated the ACM model could be replaced by the equivalent model
in the tensile condition.

 
Figure 16: The equivalent CNT model results in the tensile analysis
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Figure 17: The equivalent CNT model displacement distribution in the tensile anal-
ysis

4.3 Bending Analysis

One end of the equivalent CNT models is applied the same external bending (0.5
pN) in y direction, and the other end is fully fixed. The displacement distributions
of the equivalent models are shown in Fig. 18. All of them have the similar dis-
placement distribution. In addition, Fig. 19 shows the maximum displacement dis-
tribution that indicated the difference of displacement values are very small. That
result indicated the ACM model could be replaced by the equivalent model in the
bending condition.

4.4 Torsion Analysis

One end of the equivalent CNT models is applied the torsion force (0.001 pN) in
tangential direction, and the other end is fully fixed. The torsional angle distribu-
tions of the equivalent models are shown in Fig. 20. All of them have the similar
displacement distribution. In addition, Fig. 21 shows the maximum torsion angle
distribution that indicated the torsion angle value difference is very small. That
indicated the ACM model could be replaced by the equivalent model in the torsion
condition.

This section shows the displacement value and the differences in the Young’s mod-
ulus among modes frequency, tensile, shear, and torsion analysis in Fig. 22 and Tab.
9. Fig. 22 illustrates the acceptability and trustworthiness of all these equivalent
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Figure 18: The equivalent CNT model results in the bending analysis.
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Figure 19: The equivalent CNT model displacement distribution in the bending
analysis.

elements. The differences for all the analysis results are less than 6%. Adopt-
ing these equivalent models could contribute to maintaining the physical behavior
of the displacement using different boundary conditions. The equivalent models
are sufficiently accurate to present the mechanical behavior of CNT. The computer
equipment used has the following properties: Intel Core 2, CPU 2.66 GHz, and
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Figure 20: The equivalent CNT model results in the torsion analysis.
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Figure 21: The equivalent CNT model torsion angle distributions in the torsion
analysis.

2.0 GB RAM. Fig. 23 presents the total element number and CPU time for each
equivalent element. The CPU time depends on the total number of each equivalent
model.
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Figure 22: Difference in percentage among beam, shell, and solid elements based
on the ACM model.

 
Figure 23: CPU time with different equivalent models.

Table 9: The CNT equivalent model results with different boundary conditions
adopted Combin, Beam, Shell, and Solid elements.

Tensile [nm] Shear [nm] Torsion [rad]
Combin 0.0627 3.52 0.373e-4

Shell 0.0660 3.74 0.394e-4
Solid 0.0664 3.52 0.383e-4
Beam 0.0660 3.65 N/A
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5 Conclusions

The ACM transfers an originally discrete atomic structure into an equilibrium con-
tinuum model, and does not require the assumption of the Young’s modulus and
the cross-sectional area of each chemical bond. The ACM models based on FEM
with equivalent-spring elements are proposed to investigate the Young’s modulus
and the modal analysis of nano-scale structures. All interatomic forces that are de-
scribed using the empirical potential function can be transferred into atomic forces
with springs to construct the atomic structure. The tensile and modal analysis re-
sults are in good agreement with the experiment results described in the literature.
This study explored the ACM method to estimate the mechanical properties of an
atomic-level structure through a proper potential energy. All results were validated
using experimental results from literature. The ACM results are dependent on the
following factors. First, the potential function is based on known properties. In re-
lation to the properties of a new type of molecule, an appropriate force field may not
be available for that type of molecule. Second, because ACM models are assem-
bled by groups of springs, they cannot be used to predict the electronic properties
of molecules. Moreover, this novel simulation method to investigate nano-scale
materials is not limited to specific materials; it can be applied to any nano-structure
materials once the inter-atomic potential and the atomic structure of the material
are known. The ACM model can properly describe the mechanical properties of
CNTs. From the CNT mechanical properties perspective, the CNT mechanical
behavior could be presented using the ACM model based on the REBO potential
function.

This study adopted three cross-sectional area assumptions to investigate the Young’s
modulus of CNT ropes. The first assumption indicates that the CNT ropes is com-
posed by individual hollow CNT (the cross-sectional area of CNT rope A1 = 2nπrt,
where n is the number of CNT, r is the radius of each CNT, and t is the wall-
thickness of CNT). The results showed that the Young’s modulus does not depend
on the diameter because the real CNT is a hollow tubular structure. The second
cross-sectional area assumption comprised the individual solid CNT (A2 = nπr2).
The difference between these two assumptions is a constant value (A1/A2 = 2t/r).
Hence, the second assumption shows that the Young’s modulus decreases when the
diameter of individual CNT is larger. The third cross-sectional area assumption
adopted the circumcircle area (A3 = πR2, where R is the radius of the CNT ropes).
The circumcircle assumption contains the distribution of the tubes and the gaps be-
tween each tube. The ratio between the gaps and the tube areas becomes a stable
value when the diameter of the CNT ropes is increased. Therefore, the larger the
diameter of CNT ropes representing the Young’s modulus, the more stable is the
value, as proven by prior studies. The results indicate that the circumscribed circle
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assumption might be a major option in the experimental operation in tensile and
model testing.

This study investigated the equivalent solid, shell, and beam models to generate
similar mechanical behaviors with the ACM model to reduce the CPU processing
time. The equivalent models are accurate enough to be accepted, and can be used
to obtain the mechanical behavior of CNTs through less element number. The
equivalent methodology is based on the ACM method. This study investigates the
equivalent solid/shell/beam model to reduce the CPU time by 60% to 80% and to
maintain the accuracy of the ACM model. The equivalent solid/shell/beam models
generate accurate ACM analysis results and significantly reduce the required CPU
time. The equivalent models are accurate enough to be accepted and they can be
used to obtain the Young’s modulus of a greater number of CNTs.
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