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Correspondence Relations for Fracture Parameters of
Interface Corners in Anisotropic Viscoelastic Materials

Chyanbin Hwu1, Tai-Liang Kuo2

Abstract: The problems of the interface corners between two dissimilar anisotropic
viscoelastic materials are studied in this paper. Through the use of the well-known
correspondence principle between linear elasticity and linear viscoelasticity, frac-
ture parameters in the Laplace domain can be obtained from the path-independent
H-integral for the corresponding problems of anisotropic linear elastic materials.
Further application of the correspondence relations for fracture parameters pro-
posed in our recent study then leads us the solutions of fracture parameters in the
time domain. To show the applicability and accuracy of the proposed method, sev-
eral different kinds of numerical examples are presented such as a centered inter-
face crack, free edges between two dissimilar materials, and the interface corners
appeared within the electronic packages. The fracture parameters calculated in
this study include the orders of stress singularity and the stress intensity factors of
opening mode, shearing mode and tearing mode. The proposed method allows the
orders of stress singularity be real or complex, repeated or distinct, and the fracture
mode be pure mode or mixed mode.

Keywords: Correspondence principle, path-independent H-integral, interface
corners, stress singularity, stress intensity factors.

1 Introduction

In engineering applications, most of polymeric materials are treated as viscoelastic
materials which exhibit a time and rate dependence. To promote the development
of new materials for modern industries, considerable attention has been devoted to
the investigation of the materials which possess anisotropic viscoelastic properties
[Volkov (2005); Selovanov (2010)]. To deal with the two-dimensional problems
of anisotropic viscoelasticity and piezoelectricty, a special boundary element for
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anisotropic piezoelectric and viscoelastic solids containing interfaces/holes/cracks/inclusions
was developed [Chen and Hwu (2010); Chen and Hwu (2011)], and an extended
Stroh formalism for anisotropic viscoelasticity was established [Kuo and Hwu (2013)].

Many important works had been devoted to develop the computing technique for
the stress intensity factors of cracked body, such as the SGBEM-based methods
[Dong and Atluri (2013)] and the multipole dual boundary element method [Wang
and Yao (2011)]. However, comparatively few studies were presented to calculate
the stress intensity factors of a body containing the corner surrounded by many
different materials. The interface corners are structural configurations appearing
commonly within macro- or micro- engineering objects. Cracks in homogeneous
materials and interface cracks between two dissimilar materials are special cases
of interface corners by adjusting the corner angles and material properties to the
required conditions. Thus, a unified approach studying the problems of interface
corners is a connecting bridge for the understanding of fracture behavior of mate-
rials [Hwu and Kuo (2007); Hwu, Kuo, and Chen (2009)].

If the boundary of a viscoelastic body is invariant with time, the correspondence
principle is generally employed to obtain the viscoelastic solutions from the cor-
responding elastic solutions [Christensen (1982)]. In our recent study, the corre-
spondence relations for fracture parameters of interface corners in anisotropic vis-
coelastic materials have been proposed and justified through the comparison of four
different calculating approaches [Kuo and Hwu (2013)]. In that study, the approach
employing the proposed correspondence relations for fracture parameters together
with the use of path-independent H-integral was proved to be the most efficient and
accurate one. To extend the applicability of the proposed correspondence relations,
further discussions are provided in this paper on the repetition of orders of stress
singularity and the application to the common problems appeared in the electronic
packages. To avoid the complex expressions involved in the present problem, the
matrix form near tip solutions of interface corners proposed in [Hwu (2012)] were
utilized.

2 Linear Anisotropic Viscoelasticity

In a fixed rectangular coordinate system xi, i = 1,2,3, let ui, σi j, and εi j be, re-
spectively, the displacement, stress and strain. The constitutive laws for the linear
anisotropic viscoelastic materials, the strain-displacement relations for the small
deformations, and the equilibrium equations for static loading conditions can be
written as [Haddad (1995)]

σi j(t) =Ci jkl(t)εkl(0)+
∫ t

0 Ci jkl(t− τ) ∂εkl(τ)
∂τ

dτ,

εi j(t) = 1
2

{
ui, j(t)+u j,i(t)

}
, σi j, j(t) = 0,

(1)
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where i, j,k, l = 1,2,3, and the repeated indices imply summation; a subscript
comma stands for differentiation; Ci jkl(t) is the elastic stiffness tensor whose com-
ponents are also known to be the relaxation functions of the viscoelastic materials,
and the symmetry of stress and strain imply Ci jkl(t) = C jikl(t) = Ci jlk(t). Taking
the Laplace transform of Eq. 1 gives

^
σ i j(s) = s

^

Ci jkl(s)
^
εkl(s),

^
ε i j(s) =

1
2

{
^ui, j(s)+

^u j,i(s)
}
,

^
σ i j, j(s) = 0, (2)

where s is the transform variable and the Laplace transform
^

f (s) of f (t) is defined
as
^

f (s) =
∫

∞

0
f (t)e−stdt. (3)

Equations (2) are identical to the basic equations of linear anisotropic elasticity.
Thus, if the boundary of a viscoelastic body is invariant with time, the viscoelastic
solutions in the Laplace domain can be obtained directly from the solutions of the
corresponding elastic problems by replacing the elastic stiffness tensor Ci jkl with

s
^

Ci jkl(s). This statement is the so-called correspondence principle between lin-
ear elasticity and linear viscoelasticity and is applicable to anisotropic viscoelastic
materials.

By applying the correspondence principle and the Stroh formalism for two-dimensional
linear anisotropic elasticity [Ting (1996); Hwu (2010)], the general solutions satis-
fying the 15 partial differential equations, Eq. 2, can be written as

^u(x,s) = 2Re{As(s)fs(z,s)},
^

φφφ(x,s) = 2Re{Bs(s)fs(z,s)}, (4a)

where

^u =


^u1
^u2
^u3

 ,
^

φφφ =


^

φ 1
^

φ 2
^

φ 3

 , fs(z,s) =


f s
1(z1,s)

f s
2(z2,s)

f s
3(z3,s)

 ,

As(s) = [ as
1(s) as

2(s) as
3(s) ], Bs(s) = [ bs

1(s) bs
2(s) bs

3(s) ],
zk = x1 +µs

kx2, k = 1,2,3.

(4b)

^u and
^

φφφ are the displacement and stress function vectors in the Laplace domain,
and

^

φ i is related to the stresses in the Laplace domain by

^
σ i1 =−

^

φ i,2,
^
σ i2 =

^

φ i,1. (5)
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fs(z,s) is a function vector composed of three holomorphic complex functions
f s
α(zα ,s), α = 1,2,3.µs

α and (as
α ,bs

α) are the material eigenvalues and eigenvec-
tors in the Laplace domain. In [Kuo and Hwu (2013)], µs

α were proved to be inde-
pendent of the transform variable s for the standard linear viscoelastic solids, and
moreover, the explicit solutions of As(s) and Bs(s) for isotropic linear viscoelastic
solids were also derived.

3 Fracture Parameters in the Laplace Domain

Consider an interface corner between two dissimilar anisotropic viscoelastic mate-
rials (Fig. 1), in which perfect bond is assumed along the interface. Through the
use of correspondence principle and the matrix power function form solution for
the corresponding elastic problems, the near tip solution in the Laplace domain can
be expressed as [Hwu (2012)]

^
σσσ(r,θ ,s) =

1√
2π`

(r/`)−∆∆∆s(θ ,s)ks(θ ,s), (6)

where (r,θ) is a local polar coordinate with origin at the corner tip, and sis the
transform variable of the Laplace domain; ` is a reference length which may be
chosen arbitrarily;

^
σσσ(r,θ ,s) is a stress vector composed of the traction along θ =

constant, i.e.,

^
σσσ(r,θ ,s) =


σrθ (r,θ ,s)
σθθ (r,θ ,s)
σθ3(r,θ ,s)

 . (7)

∆∆∆s(θ ,s) and ks(θ ,s) are the matrix of singular orders and the stress intensity factors
ks(θ) in the Laplace domain, which can be calculated as follows [Hwu (2012)].

3.1 Matrix of singular orders in the Laplace domain

(i) If no matter the singular orders δ s
α ,α = 1,2,3, are real or complex, repeated

or distinct, their associated eigenfunctions λ s
α(θ),α = 1,2,3 are independent each

other, then

∆∆∆s(θ ,s) = ΛΛΛ
∗
s (θ)< δ

s
α > ΛΛΛ

∗−1
s (θ), ΛΛΛ

∗
s (θ) = ΩΩΩ(θ)ΛΛΛs(θ) (8)

where ΩΩΩ(θ) and ΛΛΛs(θ) are, respectively, the rotation matrix and the matrix of stress
eigenfunction defined by

ΩΩΩ(θ) =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 , ΛΛΛs(θ) = [λλλ s
1(θ) λλλ

s
2(θ) λλλ

s
3(θ)]. (9)
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Figure 1: Multi-material wedges.

The angular bracket <> used in Eq. 8 stands for a diagonal matrix in which each
component is varied according to the subscript α , e.g., < δ s

α >= diag.[ δ s
1 , δ s

2 , δ s
3 ].

(ii) If one of the singular orders δ s
α ,α = 1,2,3, is a double root and no enough

independent eigenfunctions exist, i.e., if δ s
1 = δ s

2 , λλλ
s
1(θ) = λλλ

s
2(θ), then

∆∆∆s(θ ,s) = Λ̇ΛΛ
∗
s (θ)< δ

s
α>̇Λ̇ΛΛ

∗−1
s (θ), Λ̇ΛΛ

∗
s (θ) = ΩΩΩ(θ)Λ̇ΛΛs(θ) (10a)

where

Λ̇ΛΛs(θ) = [λλλ s
1(θ) λ̇λλ

s
1(θ) λλλ

s
3(θ)]. (10b)

(iii) If one of the singular orders δ s
α ,α = 1,2,3, is a triple root and no enough

independent eigenfunctions exist, i.e., if δ s
1 = δ s

2 = δ s
3 , λ s

1(θ) = λ s
2(θ) = λ s

3(θ),
then

∆∆∆s(θ ,s) = Λ̈ΛΛ
∗
s (θ)< δ

s
α>̈Λ̈ΛΛ

∗−1
s (θ), Λ̈ΛΛ

∗
s (θ) = ΩΩΩ(θ)Λ̈ΛΛs(θ) (11a)

where

Λ̈ΛΛs(θ) = [λλλ s
1(θ) λ̇λλ

s
1(θ) λ̈λλ

s
1(θ)]. (11b)

In the above, the over dot means differentiation with respect to the singular order,
i.e.,

λ̇λλ
s
1(θ) =

∂

∂δ s
1

{
λλλ

s
1(θ)

}
, λ̈λλ

s
1(θ) =

∂ 2

∂δ s2
1

{
λλλ

s
1(θ)

}
. (12)
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The symbols with the forms of < fα>̇ and < fα>̈ are defined as

< fα>̇=

 f1
∂ f1
∂δ s

1
0

0 f1 0
0 0 f3

 , < fα>̈=

 f1
∂ f1
∂δ s

1

∂ 2 f1
∂δ s2

1

0 f1 2 ∂ f1
∂δ s

1

0 0 f1

 . (13)

Therefore,

< δ
s
α>̇=

 δ s
1 1 0

0 δ s
1 0

0 0 δ s
3

 , < δ
s
α>̈=

 δ s
1 1 0

0 δ s
1 2

0 0 δ s
1

 . (14)

In matrix operation, it is known that if f (∆∆∆) =
∞

∑
m=0

cm∆∆∆
m converges, and if ∆∆∆ is

similar to a diagonal matrix, such as ∆∆∆ = ΛΛΛ
∗ < δα > ΛΛΛ

∗−1 shown in Eq. 8, then
f (∆∆∆) = ΛΛΛ

∗ < f (δα) > ΛΛΛ
∗−1. With this understanding, the matrix power function

(r/`)−∆∆∆s(θ ,s) given in Eq. 6 can be calculated by

(r/`)−∆∆∆s(θ ,s) =


ΛΛΛ
∗
s (θ)< (r/`)−δ s

α > ΛΛΛ
∗−1
s (θ), for case (i),

Λ̇ΛΛ
∗
s (θ)< (r/`)−δ s

α >̇Λ̇ΛΛ
∗−1
s (θ), for case (ii),

Λ̈ΛΛ
∗
s (θ)< (r/`)−δ s

α >̈Λ̈ΛΛ
∗−1
s (θ), for case (iii).

(15)

In Eqs. 8-15, the singular orders δ s
α and their associated eigenfunctions λλλ

s
α(θ),α =

1,2,3 can be determined from the following eigenrelation [Hwu (2012)]

bonded : (Ke− I)w0 = 0, w0 = (u0 φφφ 0)
T ,

free− free : K(3)
e u0 = 0, φφφ 0 = 0,

fixed−fixed : K(2)
e φφφ 0 = 0, u0 = 0,

free−fixed : K(1)
e u0 = 0, φφφ 0 = 0,

fixed− free : K(4)
e φφφ 0 = 0, u0 = 0,

(16)

in which K(i)
e , i = 1,2,3,4 are the submatrices of Ke defined by

Ke =

[
K(1)

e K(2)
e

K(3)
e K(4)

e

]
, and Ke = EnEn−1 . . .E1. (17)

Ek = N̂1−δ

k (θk,θk−1) is the (1− δ )th power of the key matrix N̂k(θk,θk−1) whose
definition can be found in [Hwu, Omiya, and Kishimoto (2003)], and θk, θk−1 are
the angular location of the two sides of the kth wedge (Fig. 1).
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3.2 Stress intensity factors in the Laplace domain

From the near tip solution given in Eq. 6, the stress intensity factor in the Laplace
domain can be defined as

ks(θ ,s) = lim
r→0

√
2π`(r/`)∆∆∆s(θ ,s)^σσσ(r,θ ,s). (18)

Let ks(s) = ks(0,s) and ∆∆∆s(s) = ∆∆∆s(0,s), with θ = 0 we have

ks(s) = lim
r→0

√
2π`(r/`)∆∆∆s(s)^σσσ(r,0,s). (19)

Like the problems of anisotropic elasticity, the stress intensity factors defined in
Eq. 19 can be calculated by the path-independent H-integral through the following
relation [Hwu and Huang (2012)]

ks =


Ks

II
Ks

I
Ks

III

= ΛΛΛsH∗−1h,h =


H1
H2
H3

 , (20a)

where ΛΛΛs = ΛΛΛs(0)

H∗ =
∫

θn
θ0

[Λ̂ΛΛ′s
T
(θ)Vs(θ)− V̂T

s (θ)ΛΛΛ
′′′
s(θ)]dθ ,

Hk =
∫
Γ

(
^u

T
t̂k− ûT

k
^

t)dΓ,k = 1,2,3. (20b)

In Eq. 20a, Ks
II,K

s
I ,K

s
III are functions of s and are, respectively, the stress intensity

factors of shearing mode, opening mode and tearing mode in the Laplace domain.
In Eq. 20b, the integral ends θ0 and θn are the angle of corner flanks; ΛΛΛs(θ) and
Vs(θ) are, respectively, the eigenfunction matrices of stresses and displacements;
the prime •′ means the derivative with respective to the polar angle θ ; the over-
hat •̂ stands for the values of the auxiliary system; the superscript T denotes the
transpose of a matrix; ^u and

^

t in the second equation of Eq. 20b are the displace-
ment vector and traction vector of the actual system with the transformed elastic
properties s

^

Ci jkl(s), which can be obtained using appropriate method, such as finite
element, boundary element, or experimental testing, and ûk and t̂k are those of the
auxiliary system which have been obtained in [Hwu and Huang (2012)] as

ûk(r,θ ,s) =
√

2π`
r V̂s(θ ,s)< (1−δ s

α)(r/`)
δ s

α > ik,
t̂k(r,θ ,s) =

√
2π`
r2 Λ̂ΛΛ

′
s(θ ,s)< (1−δ s

α)(r/`)
δ s

α > ik,
(21a)

where

i1 =


1
0
0

 , i2 =


0
1
0

 , i3 =


0
0
1

 . (21b)
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4 Correspondence Relations

If the near tip solutions in the time domain can also be written in the matrix power
function form such as Eq. 6, we have

σσσ(r,θ , t)=
1√
2π`

(r/`)−∆∆∆(θ ,t)k(θ , t) (22)

The stress intensity factors k(θ , t) in the time domain can then be defined as

k(θ , t) = lim
r→0

√
2π`(r/`)∆∆∆(θ ,t)

σσσ(r,θ , t). (23)

Let k(t) = k(0, t) and ∆∆∆(t) = ∆∆∆(0, t), with θ = 0 we have

k(t) = lim
r→0

√
2π`(r/`)∆∆∆(t)

σσσ(r,0, t), (24a)

or
KII

KI

KIII

= lim
r→0

√
2π`(r/`)∆∆∆(t)


σrθ (r,θ , t)
σθθ (r,θ , t)
σθ3(r,θ , t)


θ=0

, (24b)

where KII,KI,KIII are, respectively, the stress intensity factors of shearing mode,
opening mode and tearing mode in the time domain. By inclusion of the non-
singular terms, equating Eq. 22 with the inversion of Eq. 6 leads to

(r/`)−∆∆∆(t)k(t)+nonsingular terms
= L−1{(r/`)−∆∆∆s(s)ks(s)+nonsingular terms}. (25)

From Eq. 25, the correspondence relations for the singular orders, the eigenfunc-
tions, and the stress intensity factors have been proposed to be [Kuo and Hwu
(2013)]

s
^

δ α = δ
s
α , s

^

∆∆∆ = ∆∆∆s, s
^

V = Vs, s
^

ΛΛΛ = ΛΛΛs,
^

k = ks, (26)

where V ≡ V(θ) and ΛΛΛ ≡ ΛΛΛ(θ) are eigenfunction matrices of displacements and
stress functions in the time domain, and ΛΛΛ(θ) is related to the matrix of singular
orders ∆∆∆(θ , t) by

∆∆∆(θ , t) = ΛΛΛ
∗(θ)< δα > ΛΛΛ

∗−1(θ), ΛΛΛ
∗(θ) = ΩΩΩ(θ)ΛΛΛ(θ) (27)

Using the correspondence relations shown in Eq. 26, the singular orders δα and
the stress intensity factor k in the time domain can then be calculated via Laplace
inversion as

δα(t) = L−1 {δ s
α/s} , k(t) = L−1 {ks(s)} . (28)



Correspondence Relations for Fracture Parameters 143

Step 1: orders of stress singularity in the Laplace domain 
Calculate  from the eigenrelation, Eq.16, with elastic constants . 
 

Step 2: orders of stress singularity in the time domain 
Calculate  from the correspondence relations, Eq. 281. 

Step 3: eigenfunction matrices of displacement, stress function and traction 
Calculate , and  from the eigenrelation, Eq.16, with singular 
orders . 

Step 4: auxiliary eigenfunction matrices of displacement, stress function and traction 
Calculate ,  and  from the eigenrelation, Eq.16, with singular 
orders . 

Step 5: stress eigenfunction matrices 
Calculate  from  obtained in step 3 with . 

Step 6: displacements and tractions of the auxiliary system 
Calculate  and  from Eq.21 with  obtained in step 1 and  

and  obtained in step 4. 

Step 7: displacements and tractions of the actual system in the Laplace domain 
Calculate  and  from ANSYS or BEM with elastic constants . 

Step 8: stress intensity factors in the Laplace domain 
Calculate  from the path-independent H-integral, Eq.20, using the values obtained in 
steps 1-7. 

Step 9: stress intensity factors in the time domain 
Calculate  from the correspondence relation, Eq.282. 

Figure 2: Flow chart for the calculation of stress intensity factors in the time do-
main.

5 Numerical Examples

In [Kuo and Hwu (2013)], the approach, Laplace domain H-integral with elastic
near tip solution, was suggested for calculating the orders of stress singularity and
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the stress intensity factors in the time domain. In this section three examples were
analyzed and discussed by following this approach whose calculating procedure is
shown in Fig. 2. Note that, in steps 2 and 9, the values of δα(t) = L−1 {δ s

α/s}
and k(t) = L−1 {ks(s)} were obtained through the use of Schapery’s collocation
method [Schapery (1962)]. Based on the convergent tests, the number of terms in
the exponential series of the collocation method is chosen to be 19 and the range of
transform variable s is chosen to be 10−6 ∼106 to perform all the following exam-
ples which include the analyses for the interface cracks, free edges, and interface
corners.
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a 

a=1mm, 
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0( ) ( )t H tσ =σ

Figure 3: A center interface crack between two dissimilar materials.

5.1 Example 1: Interface Cracks

Three cases are discussed in this example, i.e., an interface crack (1) between two
dissimilar isotropic viscoelastic materials, (2) between one isotropic viscoelastic
material and one isotropic elastic material, and (3) between one orthotropic vis-
coelastic material and one orthotropic elastic material. The loading and geometry
of this example are shown in Fig. 3 in which σ(t) = σ0H(t) and H(t) is the Heavi-
side step function. The material combinations for these three cases are listed in Tab.
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1 in which G(t), κ(t), and ν(t) are, respectively, shear modulus, bulk modulus, and
Poisson’s ratio measured from the relaxation test; C(t) is the 6×6 relaxation mod-
ulus matrix and C0

i j and C∞
i j , i, j =1,2,. . . ,6, are the components of the matrices C0

and C∞; the superscripts 0 and ∞ denote, respectively, the initial value and termi-
nal value; τ is the relaxation time that determines the rate of decay. All the three
examples are assumed to be under the generalized plane stress condition.

Table 1: Material combinations for the three cases of example 1.

material 1 material 2

case 1
G0 = 5.807GPa,G∞ = 2.652GPa,
G(t) = G∞ +(G0−G∞)e−t/τ ,
ν(t) = 0.3,τ = 10sec .

G0 = 1.308GPa,G∞ = 0.1308GPa
G(t) = G∞ +(G0−G∞)e−t/τ ,
κ(t) = 2.833GPa,τ = 0.1sec .

case 2 Young’s modulus: 85GPa
Poisson’s ratio: 0.2

G0 = 1.308GPa,G∞ = 0.1308GPa
G(t) = G∞ +(G0−G∞)e−t/τ ,
κ(t) = 2.833GPa,τ = 0.1sec .

case 3

C11 = 23.577GPa,
C22 =C33 = 22.772GPa,
C12 =C13 = 7.452GPa,
C23 = 8.276GPa,
C44 =C55 =C66 = 4.600GPa

C0
11 = 1.323GPa,

C0
22 =C0

33 = 1.111GPa,
C0

12 =C0
13 = 0.513GPa,

C0
23 = 0.518GPa,

C0
44 =C0

55 =C0
66 = 0.240GPa,

C∞
i j = 0.5C0

i j,

C(t) =C∞ +(C0−C∞)e−t/τ

τ = 0.5sec .

It’s known that the singular order of an interface crack between two dissimilar
elastic materials has a general expression as 0.5,0.5± iε , in which ε is the so-
called oscillatory index whose analytical closed-form solution has been given in
[Ting (1996)]. Using the correspondence principle, this analytical solution can be
extended in the Laplace domain. Then, through the closed-form solution for the
singular orders in the Laplace domain and the Schapery’s collocation method for
Laplace inversion, the numerical results of the singular orders show that δα(t) =
0.5,0.5± iε(t) whose real part doesn’t vary with time while the imaginary part is
time-dependent and can be calculated by

ε(t) = L−1

{
1

2πs
ln

^

G1 + s
^

G2
^
κ1

^

G2 + s
^

G1
^
κ2

}
,

^
κ =

3− s
^
ν

s(1+ s
^
ν)

, (29a)
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for the first two cases and

ε(t) = L−1
{

1
2πs

ln
1+β

1−β

}
, β =

[
−1

2
tr
(
WD−1)2

]1/2

, (29b)

for case 3.

(a) (b)

(c)

Figure 4: The orders of stress singularity for interface cracks: (a) case 1, (b) case
2, and (c) case 3 of example 1.

In Eq.29a, the subscripts 1 and 2 denote the properties of material 1 and 2, respec-
tively. In Eq.29b, the matrices D and W are the real and the negative of the imag-
inary parts of the bimaterial matrix M∗ [Hwu (1993); Hwu (2010)] whose elastic
constants are s

^

Ci jkl(s). The results of δα(t) = δR(t)+ iε(t) calculated numerically
through the flow chart shown in Fig. 2 and analytically through Eq. 29 are plotted
in Figs. 4a, 4b, and 4c which show excellent agreement between analytical and
numerical solutions for all three cases.
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(a) (b)

(c)

Figure 5: The stress intensity factors for interface cracks: (a) case 1, (b) case 2, and
(c) case 3 of example 1.

The numerical results of stress intensity factors are plotted in Figs. 5a, 5b, and 5c
in which the analytical solutions are also shown. Note that the analytical solutions
were provided in [Kuo and Hwu (2013)] as

KI(t) = L−1
{

σ0
s
√

πa
[
cos
(
εs ln 2a

`

)
−2εs sin

(
εs ln 2a

`

)]}
,

KII(t) = L−1
{
−σ0

s
√

πa
[
sin
(
εs ln 2a

`

)
−2εs cos

(
εs ln 2a

`

)]}
,

(30)

where the reference length ` is chosen to be 2a in this example. In Figs. 5a, 5b,
and 5c, the maximum difference between the numerical results and the analytical
solutions Eq.29 is only 0.15% for KII(t) at 1.3sec. of case 2.

5.2 Example 2: Free edges

Consider a bimaterial subjected to a uniform tension σ(t) = σ0H(t) under the gen-
eralized plane strain condition (Fig. 6). The bimaterial is made up of two dissimilar
isotropic viscoelastic materials whose properties can be characterized by the shear
relaxation function G(t) and the constant bulk modulus κ . The shear relaxation
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function is considered to have the form shown in case 1 of material 2 of Tab. 1. In
this example,

G0 = 1.31 GPa, G∞ = 0.13 GPa, τ = 0.1sec ., κ=2.84 GPa, for material 1,
G0 = 5.81 GPa, G∞ = 2.65 GPa, τ = 10sec ., κ=12.59 GPa, for material 2.

The point A located on the free edge of Fig. 6 is a special case of interface corners
whose corner angles upper and below the interface are both π/2. The reference
length ` needed for the calculation of the stress intensity factor is selected to be
0.01mm. Figs. 7a and 7b show the results of singular orders and stress intensity
factors at point A of free edge. To know the influence of the solution sources of
actual system, two different numerical solutions of actual system are used. One
is from the finite element software ANSYS using PLANE183 with 4028 elements
12213 nodes, and the other is from a special boundary element (BEM) developed
in [Chen and Hwu (2011)] with 80 elements 84 nodes. The results of Fig. 7b
show that the stress intensity factors calculated from the actual systems provided
by ANSYS and BEM with the transformed elastic properties s

^

Ci jkl(s) are close to
each other. It is worthy to mention that only one singular order exists as shown in
Fig. 7a during the time period of analyses for this example.
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Figure 6: Free edges between two dissimilar viscoelastic materials.
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(b)(a)

Figure 7: (a) The orders of stress singularity, and (b) the stress intensity factors at
point A of free edge of example 2.

5.3 Example 3: Interface Corners

To demonstrate the applicability of the proposed method, two representative por-
tions usually appearing within the electronic package are shown (see Figs. 8a and
8b), and the interface corners with tips A and B were analyzed in this example.
Both the EMC and the solder ball are assumed to be the viscoelastic materials
whose properties are given in case 1 of material 1 of Tab. 1. The FR4-PCB is an
orthotropic elastic material whose properties are given in case 3 of material 1 of
Tab. 1. The remaining of the electronic package are the silicon die and the BT
substrate which are isotropic elastic materials with

Young’s modulus=26GPa and Poisson’s ratio=0.3 for silicon die,

Young’s modulus=22GPa and Poisson’s ratio=0.11 for BT substrate.

Generalized plane stain condition is used in this example. Both of these two cases
use the reference length ` = 0.3mm. The effect of the angle of corner A on the
orders of stress singularity is plotted in Fig. 9 which shows that the larger the
opening angle β the smaller the singular order δ (t), while the decay rate of each
opening angle only has a little difference. Note that the singular order shown in
Fig. 9 is the most critical singular order whose real part is the largest among all the
singular orders.

Figures 10 and 11 show the results of singular orders and stress intensity factors
at points A whose opening angle of point A is fixed at β = 135◦, and point B with
opening angle 68.23◦. Reasonable time decay is shown in these two figures. Note
that point A has two singular orders and point B has three singular orders during the
time period of analyses. As stated in Section 3, the proposed method can always be
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employed no matter which kinds of singular orders appear in the interface corners.
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Figure 8: Interface corners within electronic packages: (a) portion 1, and (b) por-
tion 2.
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Figure 9: The orders of stress singularity δ (t) versus the opening angle β of the
interface corner A.
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(a) (b)

Figure 10: (a) The orders of stress singularity, and (b) the stress intensity factors of
the interface corner A of example 3.

(a) (b)

Figure 11: (a) The orders of stress singularity, and (b) the stress intensity factors of
the interface corner B of example 3.

6 Conclusions

The well-known correspondence principle between linear elasticity and linear vis-
coelasticity was extended to the relations for fracture parameters of interface cor-
ners. According to these correspondence relations, the orders of stress singular-
ity and the stress intensity factors of interface corners in anisotropic viscoelastic
materials were calculated in this paper for three different examples: (1) interface
cracks between two dissimilar materials, elastic and/or viscoelastic, isotropic or
orthotropic, (2) free edges between two dissimilar isotropic viscoelastic materials,
(3) interface corners appearing within the electronic package. The results show
that the proposed method is accurate and efficient for any kinds of corner angles
and material combinations of anisotropic viscoelastic materials. The combination
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covers the commonly interested cases of cracks, interface cracks and free edges.
The arbitrariness of angles and materials is reflected by the fact that the orders of
stress singularity are allowed to be real or complex, repeated or distinct.
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