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Heat Conduction Analysis of Nonhomogeneous
Functionally Graded Three-Layer Media
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Abstract: Functionally graded material (FGM) is a particulate composite with
continuously changing its thermal and mechanical properties in order to raise the
bonding strength in the discrete composite made from different phases of material
constituents. Furthermore, FGM is a potent tool to create an intermediate layer
in metal–ceramic composites to avoid the properties discontinuities and reduce,
thereby, the residual stresses. For the nonhomogeneous problem, the mathemati-
cal derivation is much complicated than the homogeneous case since the material
properties vary with coordinate. To analyze the problem, the Fourier transform
is applied and the general solution in transform domain is obtained. The inverse
Fourier transform is performed to get the results in physical domain for temper-
ature and heat fluxes. Numerical results for the full-field distributions of temper-
ature and heat fluxes with different functionally graded parameters are presented.
The continuous characteristics of the temperature and heat flux along the interface
are emphasized and some interesting phenomena are presented in this study. The
results show that all the fields (temperature and heat fluxes) are continuous at the
interface if the conductivities are continuous at the interface. Moreover, the first
derivatives of temperature and heat flux qy are continuous at the interface.

Keywords: Functionally graded material; Full-field solution; Fourier transform;
Heat flux; Interface; Three-layered medium

1 Introduction

In recent decades, in order to have high temperature resistance and strong mechani-
cal properties simultaneously, composite materials are wildly used. The aircraft and
aerospace industry and the computer circuit industry are interested in the possibil-
ity of materials that can withstand very high thermal gradients. This is normally
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achieved by using a ceramic layer connected with a metallic layer. In metal-ceramic
composite, ceramics can suffer high-temperature environment, but it mismatches
with the metal supplying high-toughness. Since homogeneous material properties
are constant and discontinuous at the interface, cracks are often generated at the
bonded interface. In order to avoid the discontinuity in material properties at the
interface, the functionally graded materials (FGMs) are made in such a way that the
material properties are continuous functions of the thickness coordinate, and have
the best properties of both materials at the interface. Functionally graded materials
have also drawn considerable attention in engine combustion chamber or nuclear
fusion reaction container to reduce the stress concentration or debonding at the in-
terface. Therefore, FGM has been widely used in the junction and can significantly
eliminate thermal residual stresses caused at the interface.

We must point out, however, that the dependences of material properties on the
spatial coordinate involves the essential difficulty into mathematical treatment of
the corresponding problems of mechanics for a nonhomogeneous solid. Such dif-
ficulty consists in the need to solve the partial differential equations with variable
coefficients. This makes it impossible, except for a few particular cases, to solve
the problems analytically. Most researchers analyzed the composition of FGM with
three types, power-law, polynomial, and exponential functions, which are widely
used due to the reason that these functions provide convenient process of theoreti-
cal investigation. In the literature for FGM with power-law function, Jabbari et al.
(2002) provided an analytical solution for steady-state thermal stresses in a hollow
thick cylinder made of power-law FGM. Jin and Paulino (2001) presented asymp-
totic analysis of a power-law FGM strip containing an edge crack under transient
thermal loading condition. The second type of FGM for polynomial function were
studied by Chiu and Erdogan (1999), Abu-Alshaikh and Köklüce (2006). Chiu
and Erdogan (1999) assumed that the stiffness and density of the FGM slab vary
continuously with arbitrary polynomial function, and stress wave with a rectan-
gular pressure pulse in nickel-zirconia, and aluminum-silicon media with either
free-free or fixed-free boundary conditions was analyzed in detail. Ma et al. (2012)
analyzed the transient response in a functionally graded material (FGM) slab by
Laplace transform technique and the numerical Laplace inversion (Durbin’s for-
mula (1974)) was used to calculate the dynamic behavior of the FGM slab. In
addition, the FGM slab is approximated as a multilayered medium with homoge-
neous material in each layer, and the transient responses of FGM formulation and
multilayered solution are discussed in detail. For the third type of FGM, i.e., expo-
nential variation of material constants in Cartesian coordinates, it was widely used
by many authors. Transient heat transfer in FGMs with an exponential spatial varia-
tion of material constants has been examined by Noda and Jin (1994). Erdogan and
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Wu (1995) investigated the thermal stress problem of FGM with an exponential-
form for an embedded or a surface crack. Jin and Batra (1996) analyzed thermal
stresses and the stress intensity factor in an edge-cracked strip of an FGM sub-
jected to sudden cooling at the crack surface. They assumed that the shear modu-
lus decreased hyperbolically from the surface and the thermal conductivity varied
exponentially. Ma and Lee (2009a, 2009b) and Lee and Ma (2010) derived ana-
lytical full-field solutions for two-dimensional problem of bimaterials and layered
half-plane for functionally graded magnetoelectroelastic materials. Tokovyy and
Ma (2008, 2009) provided an analytical approach to solve plane thermoelasticity
problems for inhomogeneous functionally graded hollow cylinders and half-planes.
The material properties were assumed to be arbitrary functions. Chen et al. (2004)
investigated the free vibration of an arbitrarily thick orthotropic piezoelectric hol-
low cylinder with a functionally graded property along the thickness direction and
?lled with a non-viscous compressible fluid medium. Wu et al. (2008) presented
an overview of various three-dimensional analytical approaches for the analysis of
multilayered and functionally graded (FG) piezoelectric plates and shells. Dondero
et al. (2011) proposed a numerical methodology for the design of random micro-
heterogeneous materials with functionally graded effective thermal conductivities.
This methodology was applied for the design of foam-like microstructures consist-
ing of random distributions of circular insulated holes. Dong and Atluri (2012)
developed T-Trefftz Voronoi Cell Finite Elements for micromechanical modeling
of composite and porous materials. This class of elements is very useful for mi-
cromechanical modeling of composite and porous materials.

Because of the mathematical difficulties, the analytical solution for the function-
ally graded media subjected to a heat source has not yet been obtained for the
FGMs with multilayered media. It is necessary to provide an effective method to
understand the behaviors of the nonhomogeneous materials. The general method-
ology presented in this study could be useful to the analysis and design of layered
composites of nonhomogeneous materials. This paper presents the theoretical re-
sults of two-dimensional problem for functionally graded three-layer media. From
the Fourier transform method, the full-field solutions of temperature and heat flux
are obtained in explicit forms. Numerical calculations based on the analytical so-
lutions are performed and are discussed in detail. For the computational result,
the full-field distributions of temperature and heat fluxes subjected to one or two
heat sources are presented with different functionally graded factors. Three dif-
ferent cases of functionally graded factors are used to investigate the interesting
phenomenon for the field quantities near the interface. It is noted that the tem-
perature and heat flux fields along the interface for nonhomogeneous functionally
graded materials are continuous if the conductivities are identical at the interface.
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Furthermore, it is also proved that the contour curves for the temperature T and
heat flux qyat the interface have the same slopes (first derivative).

2 Governing Equation for Heat Conduction Problems and General Solutions

In this study, the two-dimensional steady-state heat conduction problem of func-
tionally graded materials is considered. Assuming that the thermal properties de-
pend on the y-axis, the governing equation in the absence of heat source is given
by

∂

∂x

(
k(y)

∂T
∂x

)
+

∂

∂y

(
k(y)

∂T
∂y

)
= 0 (1)

where k, T are conductivity and temperature, respectively. From Fourier’s law of
conduction, the relationships between temperature and heat fluxes are

qx =−k
∂T
∂x

, qy =−k
∂T
∂y

. (2)

We assume that k varies along the yaxis with an exponential form, i.e., k = k(y) =
α eβy, where αis a positive constant and β is the functionally graded factor which
represents the degree of the material gradient in the y direction. Base on the as-
sumption, the governing equation for functionally graded materials can be rewritten
as

∂ 2T
∂x2 +β

∂T
∂y

+
∂ 2T
∂y2 = 0 (3)

The governing equation presented in Eq. (3) is a second order PDE. We apply
Fourier transform of the spatial coordinate x and the Fourier transform pairs of
temperature T (x,y) are defined as

T̃ (ω,y) =
∫

∞

−∞

T (x,y)e−iωxdx T (x,y) =
1

2π

∫
∞

−∞

T̃ (ω,y)eiωxdω (4)

where ω is the transform parameter and i =
√
−1. Then Eq. (3) becomes a second-

order linear ordinary differential equation,

∂ 2T̃
∂y2 +β

∂ T̃
∂y
−ω

2T̃ = 0 (5)

Assume T̃ = esy, and substitute into Eq. (5), then we have the characteristic equa-
tion

s2 +β s−ω
2 = 0, (6)
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with roots

s1 =
−β +Q

2
, s2 =

−β −Q
2

,

where

Q =

√(
β

2

)2

+ω2. (7)

The general solution of temperature in the transform domain is represented as

T̃ = c es1y +d es2y (8)

where cand d are undetermined coefficients and can be obtained from boundary
conditions. The general solutions of heat fluxes in the Fourier transform domain
are expressed as

q̃y(ω,y) =−k(y) ∂ T̃
∂y =−αeβy(s1ces1y + s2des2y),

q̃x(ω,y) =−k(y)iωT̃ =−αeβyiω(ces1y +des2y).
(9)

The inverse Fourier transform is performed to get the solution in physical domain
as follows:

qx(x,y) =
1

2π

∫
∞

−∞

q̃x(ω,y)eiωxdω, qy(x,y) =
1

2π

∫
∞

−∞

q̃y(ω,y)eiωxdω. (10)

The heat conduction equation for functionally graded material is different from the
classical heat conduction equation, so we can expect that the solution will be more
complicated than the classical one.

3 The Applied Heat Source in the Middle Layer (0≤ y0 ≤ h2)

Consider a two-dimensional problem of functionally graded three-layer media sub-
jected to a heat source q0 at (x0, y0) in material 2 as indicated in Figure 1. Gen-
erally, it is assumed that the thicknesses of the three layers are different, i.e., the
thicknesses are h1, h2, h3, and the conductivities are exponentially varying along
y axis, i.e.,

k( j) = α
( j)eβ ( j)y, j = 1, 2,3. (11)

The superscript j is employed to label material j, j=1, 2, 3. The governing equation
for heat conduction problem in functionally graded materials is

∂ 2T ( j)

∂x2 +β
( j) ∂T ( j)

∂y
+

∂ 2T ( j)

∂y2 = 0. (12)
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Figure 1: Configuration and coordinate system of functionally graded three-layer
media subjected to a heat source in material 2.

The boundary conditions are

q(1)y

∣∣∣
y=−h1

= 0, q(3)y

∣∣∣
y=h2+h3

= 0. (13)

And the continuity conditions at the interfaces are

T (2−)
∣∣∣
y=0

= T (1)
∣∣∣
y=0

, q(2−)y

∣∣∣
y=0

= q(1)y

∣∣∣
y=0

,

T (3)
∣∣∣
y=h2

= T (2+)
∣∣∣
y=h2

, q(3)y

∣∣∣
y=h2

= q(2+)
y

∣∣∣
y=h2

.
(14)

Near the heat source, the jump conditions are

T (2+)
∣∣∣
y→y+0

= T (2−)
∣∣∣
y→y−0

, q(2+)
y

∣∣∣
y→y+0

− q(2−)y

∣∣∣
y→y−0

= q0δ (x− x0). (15)

Applying the Fourier transformation on Eq. (12), we have

∂ 2T̃ ( j)

∂y2 +β
( j) ∂ T̃ ( j)

∂y
−ω

2T̃ ( j) = 0, j = 1, 2,3 (16)
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q̃(1)y

∣∣∣
y=−h1

= 0, q̃(3)y

∣∣∣
y=h2+h3

= 0, T̃ (2−)
∣∣∣
y=0

= T̃ (1)
∣∣∣
y=0

,

q̃(2−)y

∣∣∣
y=0

= q̃(1)y

∣∣∣
y=0

, T̃ (3)
∣∣∣
y=h2

= T̃ (2+)
∣∣∣
y=h2

, q̃(3)y

∣∣∣
y=h2

= q̃(2+)
y

∣∣∣
y=h2

,

T̃ (2+)
∣∣∣
y→y+0

= T̃ (2−)
∣∣∣
y→y−0

, q̃(2+)
y

∣∣∣
y→y+0

− q̃(2−)y

∣∣∣
y→y−0

= q0e−iωx0 .

(17)

The general solution of Eq. (16) is

T̃ ( j) = c( j)es( j)
1 y +d( j)es( j)

2 y, (18)

where c( j) and d( j) are undetermined coefficients and can be obtained from the
conditions indicated in Eq. (17) . Substituting Eq. (18) into Eq. (17), we can
rewrite the conditions as following form:

1 1 −1 −1 0 0l 0 0

s(1)1 s(1)2
−α(2)s(2)1

α(1)
−α(2)s(2)2

α(1) 0 0 0 0

0 0 0 0 es(2)1 h2 es(2)2 h2 −es(3)1 h2 −es(3)2 h2

0 0 0 0 s(2)1 es(2)1 h2 s(2)2 es(2)2 h2 A B

0 0 es(2)1 y0 es(2)2 y0 −es(2)1 y0 −es(2)2 y0 0 0

0 0 s(2)1 es(2)1 y0s(2)2 es(2)2 y0−s(2)1 es(2)1 y0−s(2)2 es(2)2 y0 0 0

s(1)1 e−s(1)1 h1s(1)2 e−s(1)2 h1 0 0 0 0 0 0

0 0 0 0 0 0 s(3)1 es(3)1 (h2+h3)s(3)2 es(3)2 (h2+h3)





c(1)

d(1)

c(2−)

d(2−)

c(2+)

d(2+)

c(3)

d(3)

=


0
0
0
0
0

q0e−iωx0

α(2)eβ (2)y0
0
0


(19)

where

A =
−α(3)eh2(β

(3)−β (2))s(3)1 es(3)1 h2

α(2) , B =
−α(3)eh2(β

(3)−β (2))s(3)2 es(3)2 h2

α(2) .

Thus the unknowns can be determined as follows:

c(1) =−
s(1)2

s(1)1

e(s
(1)
1 −s(1)2 )h1d(1), d(1) =

−eh2s(3)2 s(1)1 L(y0,ω)

s(3)1 P(y0,ω)
d(3),

c(2−)=
−Ω1s(1)1 s(1)2 α(1)−Ω2s(2)2 α(2)

s(1)1 (s(2)1 − s(2)2 )α(2)
d(1), d(2−)=

Ω1s(1)1 s(1)2 α(1)+Ω2s(2)1 α(2)

s(1)1 (s(2)1 − s(2)2 )α(2)
d(1),

c(2+) =
e−h2(s

(2)
1 −s(3)2 )

[
−s(2)2 α(2)Ω4 + eh2(−β (2)+β (3))s(3)1 s(3)2 α(3)Ω3

]
s(3)1 α(2)

(
s(2)1 − s(2)2

) d(3),
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d(2+) =
e−h2(s

(2)
2 −s(3)2 )

[
s(2)1 α(2)Ω4− eh2(−β (2)+β (3))s(3)1 s(3)2 α(3)Ω3

]
s(3)1 α(2)

(
s(2)1 − s(2)2

) d(3),

c(3) =−
s(3)2

s(3)1

e(s
(3)
2 −s(3)1 )(h2+h3)d(3), d(3) =

−eh2(s
(3)
1 −β (3))−iωx0q0s(3)1 P(y0)

e−2β (3)h2M
, (20)

where

Ω1 =−1+ eh1(s
(1)
1 −s(1)2 ), Ω2 = s(1)1 − eh1(s

(1)
1 −s(1)2 )s(1)2 ,

Ω3 = 1− eh3(−s(3)1 +s(3)2 ), Ω4 = s(3)1 − eh3(−s(3)1 +s(3)2 )s(3)2 ,

M = eh2s(2)2

(
s(2)1 α

(2)
Ω2 + s(1)1 s(1)2 α

(1)
Ω1

)(
eh2β (2)

s(2)2 α
(2)

Ω4− eh2β (3)
s(3)1 s(3)2 α

(3)
Ω3

)
− eh2s(2)1

(
s(2)2 α

(2)
Ω2 + s(1)1 s(1)2 α

(1)
Ω1

)(
eh2β (2)

s(2)1 α
(2)

Ω4− eh2β (3)
s(3)1 s(3)2 α

(3)
Ω3

)
,

and we define functions L(ξ ,ω) andP(ξ ,ω) as follows:

L(ξ ,ω) =eh2β (3)
(eh2s(2)2 +s(2)1 ξ − eh2s(2)1 +s(2)2 ξ )s(3)1 s(3)2 α

(3)
Ω3 + eh2β (2)

(eh2s(2)1 +s(2)2 ξ s(2)1

− eh2s(2)2 +s(2)1 ξ s(2)2 )α(2)
Ω4,

P(ξ ,ω) =
(

es(2)1 ξ − es(2)2 ξ

)
s(1)1 s(1)2 α

(1)
Ω1 +

(
es(2)1 ξ s(2)2 − es(2)2 ξ s(2)1

)
α
(2)

Ω2.

We substitute Eq. (20) into Eq. (18) and perform the inverse Fourier transform,
Green’s functions of the temperature and the heat fluxes in the functionally graded
three-layer media are presented as follows:

T (1) =
q0

π

∫
∞

0

(es(1)2 ys(1)1 − eh1(s
(1)
1 −s(1)2 )+s(1)1 ys(1)2 )L(y0,ω)

M
cos[ω(x− x0)]dω, (21)

q(1)y =
q0α(1)

π

∫
∞

0

e−h1s(1)2 +β (1)yL(y0,ω)(es(1)2 (y+h1)− es(1)1 (y+h1))ω2

M
cos[ω(x−x0)]dω,

(22)

q(1)x =
α(1)q0

π

∫
∞

0

eβ (1)y(es(1)2 ys(1)1 − eh1(s
(1)
1 −s(1)2 )+s(1)1 ys(1)2 )L(y0,ω)ω

M
sin[ω(x−x0)]dω,

(23)
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T (2−) =
−q0

2πα(2)

∫
∞

0

L(y0,ω)P(y,ω)

Q(2)M
cos[ω(x− x0)]dω, (24)

q(2−)y =
q0

2π

∫
∞

0

{
eβ (2)yL(y0,ω)

Q(2)M
∂P(ξ ,ω)

∂ξ

∣∣∣∣
ξ=y

cos[ω(x− x0)]

}
dω, (25)

q(2−)x =
−q0

2π

∫
∞

0

eβ (2)yL(y0,ω)P(y,ω)ω

Q(2)M
sin[ω(x− x0)]dω, (26)

T (2+) =
−q0

2πα(2)

∫
∞

0

P(y0,ω) L(y,ω)

Q(2)M
cos[ω(x− x0)]dω, (27)

q(2+)
y =

q0

2π

∫
∞

0

{
eβ (2)yP(y0,ω)

Q(2)M
∂L(ξ ,ω)

∂ξ

∣∣∣∣
ξ=y

cos[ω(x− x0)]

}
dω, (28)

q(2+)
x =

−q0

2π

∫
∞

0

eβ (2)yP(y0,ω)L(y,ω)ω

Q(2)M
sin[ω(x− x0)]dω, (29)

T (3)=
−q0

π

∫
∞

0

P(y0,ω)

M

(
es(3)2 (y−h2)s(3)1 − eh3s(3)2 +s(3)1 (y−h2−h3)s(3)2

)
cos[ω(x− x0)]dω,

(30)

q(3)y =
α(3)q0

π

∫
∞

0

eβ (3)yω2P(y0,ω)

M

(
eh3s(3)2 +s(3)1 (y−h2−h3)− es(3)2 (y−h2)

)
cos[ω(x− x0)]dω,

(31)

q(3)x =
−α(3)q0

π

∫
∞

0

{
eβ (3)yP(y0,ω)ω

M

(
es(3)2 (y−h2)s(3)1 − eh3s(3)2 +s(3)1 (y−h2−h3)s(3)2

)
sin[ω(x− x0)]

}
dω.

(32)

4 The Applied Heat Source is in the Bottom Layer (−h1 ≤ y0 ≤ 0) or on the
Boundary (y0 =−h1)

Here we consider the three-layer media subjected to a heat source at material 1
as indicated in Figure 2. The boundary conditions and continuity conditions at
the interface are the same as the previous case. Jump condition and continuity
condition near the heat source are

T̃ (1+)
∣∣∣
y→y+0

= T̃ (1−)
∣∣∣
y→y−0

, q̃(1+)
y

∣∣∣
y→y+0

− q̃(1−)y

∣∣∣
y→y−0

= q0e−iωx0 . (33)
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Figure 2: Configuration and coordinate system of functionally graded three-layer
media subjected to a heat source in material 1.

From Eq. (17), Eq.(18) and Eq. (33), the undetermined coefficients can be obtained
as follows:

c(1−) =−
s(1)2

s(1)1

eh1(s
(1)
1 −s(1)2 )d(1−),

d(1−)=
−e−iωx0 q0s(1)1

2α(1)Q(2)
×

[
α(1)

(
es(1)2 y0 s(1)1 − es(1)1 y0 s(1)2

)
L(0,ω)+α(2)

(
es(1)1 y0 − es(1)2 y0

)
∂L(ξ ,ω)

∂ξ

∣∣∣
ξ=0

]
(

α(1)Ω1ω2L(0,ω)+α(2)Ω2
∂L(ξ ,ω)

∂ξ

∣∣∣
ξ=0

) ,

c(1+) =−
s(1)2

s(1)1

eh1(s
(1)
1 −s(1)2 )d(1−)− es(1)2 y0−iωx0q0(

s(1)1 − s(1)2

)
α(1)

,

d(1+) = d(1−)+
es(1)1 y0−iωx0q0(

s(1)1 − s(1)2

)
α(1)

,

c(2) =
e−h2(s

(2)
1 −s(3)2 )

[
eh2(−β (2)+β (3))s(3)1 s(3)2 α(3)Ω3− s(2)2 α(2)Ω4

]
(

s(2)1 − s(2)2

)
s(3)1 α(2)

d(3),

d(2) =
eh2(s

(3)
2 −s(2)2 )

[
eh2(β

(3)−β (2))s(3)1 s(3)2 α(3)Ω3− s(2)1 α(2)Ω4

]
(

s(2)2 − s(2)1

)
s(3)1 α(2)

d(3),
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c(3) =−
s(3)2

s(3)1

e(h2+h3)(s
(3)
2 −s(3)1 )d(3),

d(3) =
e−h2s(3)2 Q(2)s(3)1 α(2)

L(0,ω)

e−iωx0q0

(
es(1)1 y0− ss(1)2 y0

)
α(1)Q(1) +

2Ω2d(1−)

s(1)1

 . (34)

Thus the full-field solutions of functionally graded three-layer media subjected to
a heat source in material 1 can be presented as follows:

T (1−) =
−q0

2α(1)π
×
∫

∞

0



[
α(1)

(
es(1)2 y0 s(1)1 − es(1)1 y0 s(1)2

)
L(0,ω)+α(2)

(
es(1)1 y0 − es(1)2 y0

)
∂L(ξ ,ω)

∂ξ

∣∣∣
ξ=0

]
×
(

es(1)2 ys(1)1 − es(1)1 y+2h1Q(1)
s(1)2

)
cos[ω(x− x0)]

×
[

Q(1)
(
−Ω1α(1)ω2L(0,ω)+α(2)Ω2

∂L(ξ ,ω)
∂ξ

∣∣∣
ξ=0

)]−1


dω,

(35)

q(1−)y =
q0

2π
eβ (1)y×

∫
∞

0



[
α(1)

(
es(1)2 y0 s(1)1 − es(1)1 y0 s(1)2

)
L(0,ω)+α(2)

(
es(1)1 y0 − es(1)2 y0

)
∂L(ξ ,ω)

∂ξ

∣∣∣
ξ=0

]
×
(

es(1)2 y− es(1)1 y+2h1Q(1)
)

ω2 cos[ω(x− x0)]

×
[

Q(1)
(
−Ω1α(1)ω2L(0,ω)+α(2)Ω2

∂L(ξ ,ω)
∂ξ

∣∣∣
ξ=0

)]−1


dω,

(36)

q(1−)x =
−q0

2π
eβ (1)y×

∫
∞

0



[
α(1)

(
es(1)2 y0 s(1)1 − es(1)1 y0 s(1)2

)
L(0,ω)+α(2)

(
es(1)1 y0 − es(1)2 y0

)
∂L(ξ ,ω)

∂ξ

∣∣∣
ξ=0

]
×
(

es(1)2 ys(1)1 − es(1)1 y+2h1Q(1)
s(1)2

)
ω sin[ω(x− x0)]

×
[

Q(1)
(
−Ω1α(1)ω2L(0,ω)+α(2)Ω2

∂L(ξ ,ω)
∂ξ

∣∣∣
ξ=0

)]−1


dω,

(37)

T (1+) =
−q0

2α(1)π
×
∫

∞

0



[
α(1)

(
es(1)1 ys(1)2 − es(1)2 ys(1)1

)
L(0,ω)+α(2)

(
es(1)2 y− es(1)1 y

)
∂L(ξ ,ω)

∂ξ

∣∣∣
ξ=0

]
×
(

es(1)1 y0+2h1Q(1)
s(1)2 − es(1)2 y0 s(1)1

)
cos[ω(x− x0)]

×
[

Q(1)
(
−Ω1α(1)ω2L(0,ω)+α(2)Ω2

∂L(ξ ,ω)
∂ξ

∣∣∣
ξ=0

)]−1


dω,

(38)

q(1+)
y =

−q0

2π
eβ (1)y×

∫
∞

0



[
α(1)

(
es(1)2 y− es(1)1 y

)
ω2L(0,ω)+α(2)

(
es(1)1 ys(1)1 − es(1)2 ys(1)2

)
∂L(ξ ,ω)

∂ξ

∣∣∣
ξ=0

]
×
(

es(1)1 y0+2h1Q(1)
s(1)2 − es(1)2 y0 s(1)1

)
cos[ω(x− x0)]

×
[

Q(1)
(
−Ω1α(1)ω2L(0,ω)+α(2)Ω2

∂L(ξ ,ω)
∂ξ

∣∣∣
ξ=0

)]−1


dω,
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(39)

q(1+)
x =

−q0

2π
eβ (1)y

×
∫

∞

0



[
α(1)

(
es(1)1 ys(1)2 − es(1)2 ys(1)1

)
L(0,ω)+α(2)

(
es(1)2 y− es(1)1 y

)
∂L(ξ ,ω)

∂ξ

∣∣∣
ξ=0

]
×
(

es(1)1 y0+2h1Q(1)
s(1)2 − es(1)2 y0 s(1)1

)
ω sin[ω(x− x0)]

×
[

Q(1)
(
−Ω1α(1)ω2L(0,ω)+α(2)Ω2

∂L(ξ ,ω)
∂ξ

∣∣∣
ξ=0

)]−1


dω,

(40)

T (2) =
q0

π

∫
∞

0

(
es(1)1 y0+2h1Q(1)

s(1)2 − es(1)2 y0s(1)1

)
L(y,ω)

−α(1)Ω1ω2L(0,ω)+α(2)Ω2
∂L(ξ ,ω)

∂ξ

∣∣∣
ξ=0

cos[ω(x− x0)]dω, (41)

q(2)y =
−α(2)q0eβ (2)y

π

∫
∞

0

(
es(1)1 y0+2h1Q(1)

s(1)2 − es(1)2 y0s(1)1

)
∂L(ξ ,ω)

ξ

∣∣∣
ξ=y

−α(1)Ω1ω2L(0,ω)+α(2)Ω2
∂L(ξ ,ω)

∂ξ

∣∣∣
ξ=0

cos[ω(x− x0)]dω,

(42)

q(2)x =
q0α(2)eβ (2)y

π

∫
∞

0

(
es(1)1 y0+2h1Q(1)

s(1)2 − es(1)2 y0s(1)1

)
ωL(y,ω)

−α(1)Ω1ω2L(0,ω)+α(2)Ω2
∂L(ξ ,ω)

∂ξ

∣∣∣
ξ=0

sin[ω(x− x0)]dω, (43)

T (3) =
2q0α(2)

π

∫
∞

0


Q(2)

(
e2h1Q(1)+s(1)1 y0s(1)2 − es(1)2 y0s(1)1

)
cos[ω(x− x0)]

×
(

es(3)2 (y−h2)s(3)1 − e−2h3Q(3)+s(3)1 (y−h2)s(3)2

)
×
(
−Ω1α(1)ω2L(0,ω)+Ω2α(2) ∂L(ξ ,ω)

∂ξ

∣∣∣
ξ=0

)−1

dω, (44)

q(3)y =
−2q0α(2)α(3)

π

∫
∞

0


Q(2)

(
e2h1Q(1)+s(1)1 y0s(1)2 − es(1)2 y0s(1)1

)
cos[ω(x− x0)]

×
(

es(3)2 (y−h2)− e−2h3Q(3)+s(3)1 (y−h2)
)

ω2eβ (3)y

×
(
−Ω1α(1)ω2L(0,ω)+Ω2α(2) ∂L(ξ ,ω)

∂ξ

∣∣∣
ξ=0

)−1

dω,

(45)

q(3)x =
2q0α(2)α(3)

π

∫
∞

0


Q(2)

(
e2h1Q(1)+s(1)1 y0 s(1)2 − es(1)2 y0s(1)1

)
sin[ω(x− x0)]

×
(

es(3)2 (y−h2)s(3)1 − e−2h3Q(3)+s(3)1 (y−h2)s(3)2

)
ωeβ (3)y

×
(
−Ω1α(1)ω2L(0,ω)+Ω2α(2) ∂L(ξ ,ω)

∂ξ

∣∣∣
ξ=0

)−1

dω. (46)
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The last case we consider is a nonhomogeneous three-layer media subjected to a
heat source on the boundaryy =−h1 as indicated in Figure 3. The solutions in this
case can be obtained from Eqs. (35) - (46) by settingy0 =−h1.

Figure 3: Configuration and coordinate system of functionally graded three-layer
media subjected to a heat source at boundary y =−h1

5 The Characteristics at the Interface for Continuous Conductivities in the
Nonhomogeneous Three-Layer Media

Functionally graded materials are used to connect two dissimilar materials, and
reduce discontinuous jump at the interface. In the previous section, the full-field
solutions of nonhomogeneous three-layer media subjected to a heat source are pre-
sented. For special case of nonhomogeneous three-layer media with continuous
conductivities at the interfaces, there are some phenomena we will discuss here in
detail.

For case (A), the conductivities are continuous at the interfaces (i.e., k(1)(0) =
k(2)(0) and k(2)(h2) = k(3)(h2)). From Eqs. (21) - (32), it is interesting to find out
that the temperature and heat fluxes are all continuous at the interface even for the
heat flux qx. In this case, the parameter M and functions P(ξ ,ω) and L(ξ ,ω) are
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degenerated to

M =− e−h2s(2)2

(
α
(1)
)2(

s(2)2 Ω2 + s(1)1 s(1)2 Ω1

)(
s(2)1 Ω4− s(3)1 s(3)2 Ω3

)
+ e−h2s(2)1

(
α
(1)
)2(

s(2)1 Ω2 + s(1)1 s(1)2 Ω1

)(
s(2)2 Ω4− s(3)1 s(3)2 Ω3

)
,

L(ξ ,ω) = α
(1)eh2β (2)

[
(eh2s(2)2 +s(2)1 ξ − eh2s(2)1 +s(2)2 ξ )s(3)1 s(3)2 Ω3 +(eh2s(2)1 +s(2)2 ξ s(2)1 − eh2s(2)2 +s(2)1 ξ s(2)2 )Ω4

]
,

P(ξ ,ω) = α
(1)
[(

es(2)1 ξ − es(2)2 ξ

)
s(1)1 s(1)2 Ω1 +

(
−es(2)2 ξ s(2)1 + es(2)1 ξ s(2)2

)
Ω2

]
.

From Eqs. (21) – (32), the heat fluxes at the interfaces are

q(1)x (x,0) = q(2−)x (x,0) =
α(1)q0

π

∫
∞

0

Ω2L(y0,ω)ω

M
sin[ω(x− x0)]dω, (47)

q(1)y (x,0) = q(2−)y (x,0) =
−q0α(1)

π

∫
∞

0

L(y0,ω)Ω1ω2

M
cos[ω(x− x0)]dω, (48)

q(2+)
x (x,h2) = q(3)x (x,h2) =

−α(2)eβ (2)h2q0

π

∫
∞

0

{
P(y0,ω)ωΩ4

M
sin[ω(x− x0)]

}
dω,

(49)

q2+)
y (x,h2)= q(3)y (x,h2)=

−α(2)eβ (2)h2q0

π

∫
∞

0

{
P(y0,ω)ω2Ω3

M
cos[ω(x− x0)]

}
dω.

(50)

Furthermore, the first derivatives of temperature T and heat flux qy are also contin-
uous at the interface, and the interesting results are presented as follows:

q(1)x,x (x,0)

q(1)x,y (x,0)
6= q(2−)x,x (x,0)

q(2−)x,y (x,0)
,

q(1)y,x (x,0)

q(1)y,y (x,0)
=

q(2−)y,x (x,0)

q(2−)y,y (x,0)
, (51)

q(2+)
x,x (x,h2)

q(2+)
x,y (x,h2)

6= q(3)x,x (x,h2)

q(3)x,y (x,h2)
,

q(2+)
y,x (x,h2)

q(2+)
y,y (x,h2)

=
q(3)y,x (x,h2)

q(3)y,y (x,h2)
. (52)

where

q(1)y,x (x,0) = q(2−)y,x (x,0) =
q0α(1)

π

∫
∞

0

L(y0,ω)Ω1ω3

M
sin[ω(x− x0)]dω, (53)
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q(1)y,y (x,0) = q(2−)y,y (x,0) =
−q0α(1)

π

∫
∞

0

L(y0,ω)Ω2ω2

M
cos[ω(x− x0)]dω, (54)

q(2+)
y,x (x,h2) = q(3)y,x (x,h2) =

α(2)eβ (2)h2q0

π

∫
∞

0

{
P(y0,ω)ω3Ω3

M
sin[ω(x− x0)]

}
dω,

(55)

q(2+)
y,y (x,h2) = q(3)y,y (x,h2) =

α(2)eβ (2)h2q0

π

∫
∞

0

{
ω2P(y0,ω)Ω4

M
cos[ω(x− x0)]

}
dω.

(56)

So it can be concluded that if the conductivities are continuous at the interfaces, not
only the temperature and heat fluxes are continuous at the interfaces, but also the
first derivatives of temperature T and heat flux qy are continuous.

Case (B), we investigate the case that a functionally graded layer sandwiched be-
tween two homogeneous layers, and the conductivities are continuous at the inter-
faces, i.e., β (1) = β (3) = 0,β (2) 6= 0,α(1) = α(2), and k(2)(h2) = k(3)(h2). In this
case, s(1)1 = ω ,s(1)2 = −ω, s(3)1 = ω , s(3)2 = −ω and the simplify functions are
indicated as follows:

Ω1 =−1+ e2h1ω , Ω2 = ω(1+ e2h1ω), Ω3 = 1− e−2h3ω , Ω4 = ω(1+ e−2h3ω),

M =eh2s(2)2 α
(3)
(

s(2)1 α
(2)

Ω2−ω
2
α
(1)

Ω1

)(
s(2)2 Ω4 +ω

2
Ω3

)
− eh2s(2)1 α

(3)
(

s(2)2 α
(2)

Ω2−ω
2
α
(1)

Ω1

)(
s(2)1 Ω4 +ω

2
Ω3

)
,

L(ξ ,ω) =(eh2s(2)1 +s(2)2 ξ − eh2s(2)2 +s(2)1 ξ )ω2
α
(3)

Ω3

+(eh2s(2)1 +s(2)2 ξ s(2)1 − eh2s(2)2 +s(2)1 ξ s(2)2 )α(3)
Ω4,

P(ξ ,ω) =
(

es(2)2 ξ − es(2)1 ξ

)
ω

2
α
(1)

Ω1 +
(

es(2)1 ξ s(2)2 − es(2)2 ξ s(2)1

)
α
(2)

Ω2.

From Eqs. (21) – (32), the solutions are presented as follows:

T (1) =
q0

π

∫
∞

0

(e−ωy + eω(2h1+y))ωL(y0,ω)

M
cos[ω(x− x0)]dω, (57)

q(1)y =
q0α(1)

π

∫
∞

0

eh1ωL(y0,ω)(e−ω(y+h1)− eω(y+h1))ω2

M
cos[ω(x− x0)]dω, (58)
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q(1)x =
α(1)q0

π

∫
∞

0

(e−ωy + eω(2h1+y))L(y0,ω)ω2

M
sin[ω(x− x0)]dω, (59)

T (2−) =
−q0

2πα(2)

∫
∞

0

L(y0,ω)P(y,ω)

Q(2)M
cos[ω(x− x0)]dω, (60)

q(2−)y =
q0

2π

∫
∞

0

{
eβ (2)yL(y0,ω)

Q(2)M
∂P(ξ ,ω)

∂ξ

∣∣∣∣
ξ=y

cos[ω(x− x0)]

}
dω, (61)

q(2−)x =
−q0

2π

∫
∞

0

eβ (2)yL(y0,ω)P(y,ω)ω

Q(2)M
sin[ω(x− x0)]dω, (62)

T (2+) =
−q0

2πα(2)

∫
∞

0

P(y0,ω) L(y,ω)

Q(2)M
cos[ω(x− x0)]dω, (63)

q(2+)
y =

q0

2π

∫
∞

0

{
eβ (2)yP(y0,ω)

Q(2)M
∂L(ξ ,ω)

∂ξ

∣∣∣∣
ξ=y

cos[ω(x− x0)]

}
dω, (64)

q(2+)
x =

−q0

2π

∫
∞

0

eβ (2)yP(y0,ω)L(y,ω)ω

Q(2)M
sin[ω(x− x0)]dω, (65)

T (3) =
−q0

π

∫
∞

0

{
P(y0,ω)

M
ω cos[ω(x− x0)]

(
e−ω(y−h2)+ e−2h3ω+ω(y−h2)

)}
dω,

(66)

q(3)y =
α(3)q0

π

∫
∞

0

{
e−h3ω P(y0,ω)ω2

M

(
eω(y−h2−h3)− e−ω(y−h2−h3)

)
cos[ω(x− x0)]

}
dω,

(67)

q(3)x =
−α(3)q0

π

∫
∞

0

{
e−h3ω P(y0,ω)ω2

M

(
e−ω(y−h2−h3)+ eω(y−h2−h3)

)
sin[ω(x− x0)]

}
dω.

(68)
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6 Numerical Results and Discussions

In this section, numerical calculations of the full-field distributions are constructed
by using the solutions presented in previous sections. Contour plot is used to
demonstrate the full-filed distributions of temperature and heat fluxes. In full-field
distribution contours, short dash lines and solid lines are used to indicate negative
and positive values, respectively.

Figure 4 - Figure 6 show the full-field contours of normalized temperature and
heat fluxes for the functionally graded factors α(1) = 5, α(2) = 2, α(3) = 1, β (1) =
2, β (2)= 1, β (3)= 3, and subjected to a heat source at (x0,y0)= (0,0.5h2), (0,−0.5
h2), and (0,−h1), respectively. The thicknesses of the three layers are set to be dif-
ferent, and h1 = 1.2, h2 = 1, h3 = 0.8. It is noted that the temperature and heat flux
qy are continuous at the interface due to the continuity conditions while heat flux qx

is discontinuous at the interface. For discontinuous conductivities at the interface,
we can see that the slopes of all the full-field distributions are discontinuous at the
interface.

Figure 4: Full-field distribution of temperature, heat flux qy and heat flux qx for a
three-layer media subjected to a heat source q0 at (0,0.5h2) with α(1) = 5, α(2) =
2, α(3) = 1, β (1) = 2, β (2) = 1, β (3) = 3 and h1 = 1.2, h2 = 1, h3 = 0.8.

Next, the continuity characteristics at the interfaces are presented in Figure 7 -
Figure 9 with continuous conductivities at the interfaces. In Figure 7 - Figure 9,
the functionally graded factors areα(1) = 1, α(2) = 1, α(3) = 3, β (1) =−2, β (2) =
ln3+ 2, β (3) = 2. Since the conductivities are continuous at the interfaces, we
can see that the temperature and heat fluxes are all continuous at the interfaces,
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Figure 5: Full-field distribution of temperature, heat flux qy and heat flux qx for a
three-layer media subjected to a heat source q0 at (0,−0.5h2) with α(1) = 5, α(2) =
2, α(3) = 1, β (1) = 2, β (2) = 1, β (3) = 3 and h1 = 1.2, h2 = 1, h3 = 0.8.

Figure 6: Full-field distribution of temperature , heat flux qy and heat flux qx for a
three-layer media subjected to a heat source q0 at (0,−h1) with α(1) = 5, α(2) =
2, α(3) = 1, β (1) = 2, β (2) = 1, β (3) = 3 and h1 = 1.2, h2 = 1, h3 = 0.8.
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and moreover, the slopes of the contour plots of temperature and heat flux qy are
also continuous at the interfaces. Figure 10 - Figure 12 show the results for a
functionally graded layer sandwiched between two homogeneous layers, and the
factors areα(1) = 1, α(2) = 1, α(3) = e, β (1) = 0, β (2) = 1, β (3) = 0. Because
conductivities are continuous at the interfaces, the continuity characteristics are
also found in this case.

Figure 7: Full-field distribution of temperature, heat flux qy and heat flux qx for a
three-layer media subjected to a heat source q0 at (0,0.5h2) with α(1) = 1, α(2) =
1, α(3) = 3, β (1) =−2, β (2) = ln3+2, β (3) = 2 and h1 = 1.2, h2 = 1, h3 = 0.8.

From the concept of Green’s function, if a structure is subjected to more than one
heat source, the solution can be constructed by superposing solutions for the struc-
ture subjected to one point heat source. Figure 13 - Figure 14 show that there are
two heat sources in this structure and the full-field distributions are constructed by
superposing the solutions in previous sections. Figure 13 show the case that the
conductivities are discontinuous at the interfaces, and Figure 14 show the results
that the conductivities are continuous at the interfaces.

In this section, from the contour plots, we can see the continuity characteristics at
the interfaces. If the conductivities are continuous at the interfaces, all the fields are
continuous at the interface, including the heat flux qx. Moreover, the slopes of the
contour plots for the temperature and heat flux qy are continuous at the interfaces.



196 Copyright © 2013 Tech Science Press CMC, vol.36, no.2, pp.177-201, 2013

Figure 8: Full-field distribution of temperature, heat flux qy and heat flux qx for a
three-layer media subjected to a heat source q0 at (0,−0.5h2) with α(1) = 1, α(2) =
1, α(3) = 3, β (1) =−2, β (2) = ln3+2, β (3) = 2 and h1 = 1.2, h2 = 1, h3 = 0.8.

Figure 9: Full-field distribution of temperature heat flux qy and heat flux qx for a
three-layer media subjected to a heat source q0 at (0,−h1) with α(1) = 1, α(2) =
1, α(3) = 3, β (1) =−2, β (2) = ln3+2, β (3) = 2 and h1 = 1.2, h2 = 1, h3 = 0.8.
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Figure 10: Full-field distribution of temperature, heat flux qy and heat flux qx for a
three-layer media subjected to a heat source q0 at (0,0.5h2) with α(1) = 1, α(2) =
1, α(3) = e, β (1) = 0, β (2) = 1, β (3) = 0 and h1 = 1.2, h2 = 1, h3 = 0.8.

Figure 11: Full-field distribution of temperature, heat flux qy and heat flux qx for a
three-layer media subjected to a heat source q0 at (0,−0.5h2) with α(1) = 1, α(2) =
1, α(3) = e, β (1) = 0, β (2) = 1, β (3) = 0 and h1 = 1.2, h2 = 1, h3 = 0.8.
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Figure 12: Full-field distribution of temperature, heat flux qy and heat flux qx for a
three-layer media subjected to a heat source q0 at (0,−h1) with α(1) = 1, α(2) =
1, α(3) = e, β (1) = 0, β (2) = 1, β (3) = 0 and h1 = 1.2, h2 = 1, h3 = 0.8.

Figure 13: Full-field distribution of temperature, heat flux qy and heat flux
qx for a three-layer media subjected to a heat source q0 at (0.2h2,0.3h2)and
(−0.3h2,−0.6h2) with α(1) = 5, α(2) = 2, α(3) = 1, β (1) = 2, β (2) = 1, β (3) = 3
and h1 = 1.2, h2 = 1, h3 = 0.8.
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Figure 14: Full-field distribution of temperature, heat flux qy and heat flux
qx for a three-layer media subjected to a heat source q0at(0.2h2,0.3h2)and
(−0.3h2,−0.6h2)with α(1) = 1, α(2) = 1, α(3) = e, β (1) = 0, β (2) = 1, β (3) = 0
and h1 = 1.2, h2 = 1, h3 = 0.8.

7 Conclusions

In this study, a two-dimensional heat conduction problem of nonhomogeneous
functionally graded materials with three layers subjected to a heat source is inves-
tigated. The conductivities are assumed to be exponential function of coordinates.
From the Fourier transform method, the full-field solutions of nonhomogeneous
functionally graded materials are presented. The analytical results presented in this
study can be easily extended for the problems of multiple heat sources by super-
position. If the functionally graded effect is neglected, the results are reduced to
solutions of the homogeneous problem. A computational program for numerical
calculation of the full field analysis is easily constructed using the analytical solu-
tions. Detailed numerical results of full-field distributions of temperature and heat
fluxes with different functionally graded parameters are presented and discussed.
One of the objectives for this study is focused on the continuous characteristics of
the field quantities at the interface. For the special cases that the conductivities are
continuous at the interface, it is shown in this study that all the physical fields (i.e.,
temperature T , heat fluxes qx and qy) are continuous at the interface. Furthermore,
the slopes of contour plots of the temperature and heat flux qy are also continuous.
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