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Stochastic Macro Material Properties, Through Direct
Stochastic Modeling of Heterogeneous Microstructures

with Randomness of Constituent Properties and
Topologies, by Using Trefftz Computational Grains (TCG)
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Abstract: In this paper, a simple and reliable procedure of stochastic compu-
tation is combined with the highly accurate and efficient Trefftz Computational
Grains (TCG), for a direct numerical simulation (DNS) of heterogeneous materi-
als with microscopic randomness. Material properties of each material phase, and
geometrical properties such as particles sizes and distribution, are considered to
be stochastic with either a uniform or normal probabilistic distributions. The ob-
jective here is to determine how this microscopic randomness propagates to the
macroscopic scale, and affects the stochastic characteristics of macroscopic mate-
rial properties. Four steps are included in this procedure: (1) using the Latin hy-
percube sampling, to generate discrete experimental points considering each con-
tributing factor (material parameters and volume fraction of each phase, etc.); (2)
randomly generating Representative Volume Elements (RVEs) of the microstruc-
ture for each discrete experimental point, and compute the effective macro-scale
material properties at these points, using the computationally most efficient Tre-
fftz Computational Grains; (3) relating the macro-scale material properties to the
microscale random variables using the Kriging method; (4) taking advantage of
the approximate macro-micro relation, and using the Monte Carlo simulation, to
establish the probabilistic distribution of the macro-scale material properties. By
considering the Al/SiC composite as an example, we give step-by step demonstra-
tion of the procedure, and give some comparisons with experimental results. The
obtained probabilistic distributions of the effective macro-scale material properties
have fundamental engineering merits, which can be used for reliability-based mate-
rial optimization, and integrated-design of micro- as well as macro-structures. The
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studies in this paper are germane to the concepts of the Materials Genome Initiative
(MGI), and Integrated Materials Science, Mathematics, Modeling, and Engineering
(IMSMME).
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1 Introduction

Increasing applications of heterogeneous materials, such as alloys with precipi-
tates/pores, composites with fiber/whisker/particulate reinforcements, have been
experienced in both civil and military engineering in the past few decades, because
of their superior mechano/thermo/electro/electromagnetic multi-physical proper-
ties. In fact, any material can be considered as heterogeneous if the scale is fine
enough, with its randomly distributed local complexities such as pores, inclusions,
micro-cracks, grain boundaries, dislocations, foreign atoms, atom vacancies, etc.
However, a simple, affordable, and reliable analytical/computational method to
model the complex heterogeneous microstructures, to rapidly estimate the macro-
level stiffness, strength, fracture toughness, and thermo/electro/electromagnetic
properties of various heterogeneous materials, given those of the constituent mate-
rials, are still under development. This will only be the basis of micro-, meso-, and
macro- multi-scale modeling of dynamic response and damage of heterogeneous
complex materials and structures, which is at the heart of the Materials Genome
Initiative (MGI), and Integrated Materials Science, Mathematics, Modeling, and
Engineering (IMSMME).

The recent pioneering work on Trefftz and SGBEM Computational Grains [Dong
and Atluri (2011, 2012a-e, 2013)], each of which can model, with the highest math-
ematical precision, a single grain of the constituent/composite microstructure, with
arbitrary embedded inclusions, pores, and micro-cracks, can be regarded as the
first step in the authors’ efforts to eventually achieve this goal of stochastic multi-
scale modeling for IMSMME. The Trefftz and SGBEM Computational Grains are
more powerful than the several analytical and semi-analytical methods, such as due
to [Eshelby (1957); Hashin and Shtrikman (1963); Hill (1965); Mori and Tanaka
(1973); Nemat-Nasser and Hori (1999)], because a truly representative material
element, such as a polyhedron, with many micro-complexities such as inclusions,
voids, and microcracks, can be directly modeled. Indeed, the work in Dong and
Atluri (2012 d), is essentially an advancement to the Eshelby’s (1957) celebrated
work on an ellipsoidal inclusion in an infinite body, in that Dong and Atluri (2012
d) essentially provide a solution for an ellipsoidal inclusion in a 3 dimensional
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grain of arbitrary polyhedral shape, with each face of the polyhedron being an
arbitrary polygon. The Trefftz and SGBEM Computational Grains are shown to
lead several orders of higher mathematical accuracy as well as computational effi-
ciency than the traditional, FEM-based models [Christman, Needleman and Suresh
(1989), Bao, Hutchinson, McMeeking (1991), Guedes and Kikuchi (1991)], be-
cause no meshing is needed for each grain, which greatly saves the human-labor
as well as computational burden. Compared to the VCFEM by [Ghosh and Mallett
(1994); Ghosh, Lee and Moorthy (1995)], the Trefftz and SGBEM computational
grains are not only mathematically much more correct and computationally more
efficient, but can also correctly and accurately capture the local stress concentra-
tions and interfacial/intergranular stress states which are microcrack precursors and
are germane to the studies of damage initiation and propagation.

However, for realistic heterogeneous materials, various micro-scale uncertainties
may exist, such as the material properties of each of the constituents, the particle
sizes and distributions of each constituent in the microstructure, the microcrack
lengths and density, etc. How this microscale randomness propagates to the macro-
scale, and affects the stochastic material properties of the macro-structure, is the
main scope of the present study. In order to achieve this, the previous determinis-
tic analyses by using Trefftz Computational Grains (TCG) are extended to include
microscopic randomness, with certain probabilistic distributions. A four-step pro-
cedure is presented here: (1) generate discrete samples of these uncertainties using
the Latin Hypercube; (2) compute the macro-scale material properties at discrete
experiment points by using TCG; (3) relate the macroscale material properties to
the microscale uncertainties by using the Kriging method; (4) compute the prob-
abilistic distributions of the macro-scale material properties, by using a Monte-
Carlo simulation, and the approximate macro-micro relation. The entire procedure
is very simple and efficient, and is much more accurate than the recent few studies
of stochastic homogenization, using semi-analytical methods or FEM-based unit
cell models [Kamiński and Kleiber (2000); Xu and Graham-Brady (2005); Sakata,
Ashida, Kojima and Zako (2008)].

This paper is organized as follows. In sections 2-5, the detailed discussion of each
step of the procedure is given, accompanied by numerical examples for Al/SiC
composites. In section 6, some comparisons with experimental results, and other
semi-analytical methods, are given. In section 7, a simple example of using the
computed stochastic material properties, to perform a macro-structure reliability
analysis is presented. In section 8, we complete this study with some concluding
remarks.
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2 Generation of Experimental Points Using a Latin Hypercube

Suppose we use the vector X ∈ Rn to denote the microscale random variables, for
which the probabilistic distributions are already known. We use Y ∈ Rp to de-
note the macroscale material properties, the probabilistic distributions of which are
to be determined, and are assumed to depend on those of X . In order to relate
Y to X through statistical regression, a sufficient number of experimental points
x1,x2, ...xm, and the responses y1,y2, ...,ym at these experimental points are needed.
Out of the many methods to generate experimental points, the Latin hypercube sam-
pling is a strategy for generating random experimental points while ensuring that
all portions of the vector space is represented, see [McKay, Conover and Beckman
(1979)] for details.

Consider the case where one wants to sample mpoints in the n-dimensional vector
space. The Latin hypercube sampling strategy is as follows:

(1) Divide the interval of each dimension into mnon-overlapping intervals having
equal probability;

(2) Sample a point randomly from a uniform distribution in each interval in each
dimension;

(3) Pair randomly the points from each dimension.

Table 1: Material Properties of Each Constituent of the Al/SiC Composite

EAl Normal Distribution, µEAl = 74GPa,σEAl = 5%µEAl

ESiC Normal Distribution, µESiC = 410GPa,σESiC = 5%µESiC

vAl Deterministic, vAl = 0.33
vSiC Deterministic, vSiC = 0.19

In this study, we take Al/SiC composite as an example. The distribution of material
properties of each constituent in the composite is listed in table 1. The Young’s
modulus of both Al and SiC are considered to be random variables subject to in-
dependent normal distributions. According to [Chawla, Sidhu and Ganesh (2006)],
we assume the expectations µ and standard deviations σ , respectively, of these
two random variables as : µEAl = 74GPa, σEAl = 5%µEAl , µESiC = 410GPa, σESiC =
5%µESiC . The coefficients of variations are thus CV (EAl)=5% and CV (ESiC)=5%.
On the other hand, the Poisson’s ratio of each constituent in the composite are con-
sidered as constants, i.e. vAl = 0.33, vSiC = 0.19, because they are relatively stable.
We also consider that the volume fractions of the SiC particles are distributed from
10% to 30%. From these variables, the vector X = [EAl,ESiC,SiC%] belongs to a
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Figure 1: The Latin sampling of 40 data points in 3-dimensional space

three dimensional space, and we can use the above mentioned procedure to generate
experimental points. In this study, 40 experimental points are randomly generated
using Latin hypercube, and their locations are shown in figure 1.

3 Predicting the Macroscale Material Properties at Discrete Points Using Tr-
efftz Computational Grains

For each generated experimental point xi, we use the Trefftz Computational Grains
to determine the macroscale material properties of the heterogeneous composite.
In order to do this, a truly representative material element needs firstly to be gen-
erated. For example, in this study, the particle diameters are assumed to have a
uniform distribution from 6µm to10µm, with an average size of 8µm. The sizes of
the particles are randomly sampled, subjected to a specific volume fraction of the
experimental point xi, and are distributed into a 40µm×40µm×40µm cube. The
locations of the particles are also randomly generated, using a “take and place” pro-
cedure similar to the one used by [Bazant, Tabbara, Kazemi and Pijaudier-Cabot
(1990)]. 3 out of the 40 randomly generated representative material elements are
shown in figure 2, with different volume fractions of SiC.

Each representative material element is thereafter discretized into many Trefftz
Computational Grains, each of which includes a single SiC particle, using the code
of Dirichlet Tessellation by [Rycroft, Grest, Landry, Bazant (2006)]. For each Tre-
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fftz Computational Grain as shown in figure 3, a polynomial type of displacement
field ũ is assumed at the grain boundary ∂Ωe, and a complete Trefftz trial displace-
ment field is assumed in both the matrix material Ωe

m as well as the inclusion Ωe
c, i.e.

um and uc. From [Lurie (2005)], these complete Trefftz solutions can be expressed
as the Papkovich-Neuber solution:

u = [4(1− v)B−∇(R ·B+B0)]/2G (1)

where the potentials B, B0 are harmonic functions depending on the shape of the
inclusion. For example, spherical harmonics λp for internal problems and λk for
external problems are respectively:
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The stiffness matrix can be developed for each Trefftz Computational Grain, using
the stationarity of the variational functional:
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For detailed algorithmic formulations, see [Dong and Atluri (2012c,d)].

By assembly of the stiffness matrices of all Trefftz Computational Grains com-
prising the RVE, the displacement, strain, and stress fields of RVE can be directly
computed. And the material properties ym at each experimental point xm can be
computed by relating the average stress to the average strain.

We should emphasize that, the Trefftz method used here does not need any further
discretization of each grain, as opposed to FEM-based methods. This procedure
would be too difficult for FEM, if not impossible, because enormous effort has to
be spent to develop a high-quality and compatible mesh for each of the many ran-
domly generated RVEs, as well as spend several orders of more computational time.
For this reason, the only few published FEM-based stochastic analyses of compos-
ites use unit-cell models, see [Kamiński and Kleiber (2000); Sakata, Ashida, Ko-
jima and Zako (2008)], which is too simplistic to be representative for the complex
random microstructural topologies of heterogeneous materials.
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Figure 2: Three of the 40 RVEs with randomly distributed SiC particles, modeled
by Trefftz Computational Grains

Figure 3: A Trefftz Computational Grain
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4 Building up the Macro-Micro Relation using the Kriging Method

After the computation of the macro-scale material properties y1,y2, ...,ym at differ-
ent experimental points x1,x2, ...,xm, one can relate Y to X by statistical regression.
One of the most commonly-used methods is the Kriging method. It starts by as-
suming:

y(x) = f T (x)β + z(x) (4)

where f (x) is the vector of polynomial basis, and z(x) is a random process, with
zero mean and covariance:

E [z(x1)z(x2)] = σ
2
ℜ(θ ,x1,x2) (5)

σ2 is the variance of the process, and ℜ(θ ,x1,x2) is a pre-defined correlation model
with undetermined parameter θ . In this study, the Gaussian correlation model is
used.

By appending the conditions of un-biasness and minimum mean square error, the
following estimation of the regression coefficients can be obtained:

β̂ =
(
FT R−1F

)−1
FT R−1G (6)

with

F = [ f (x1) f (x2) · · · f (xm)]
T

G = [y(x1)y(x2) · · ·y(xm)]
T

R =

 ℜ(x1,x1) . . . ℜ(x1,xm)
...

. . .
...

ℜ(xm,x1) · · · ℜ(xm,xm)

 (7)

and the estimated z(x) is:

ẑ(x) = rT (x)R−1
(

G−F β̂

)
(8)

with

r (x) = [ℜ(x,xm) ,ℜ(x,xm) , ...,ℜ(x,xm)]
T (9)

It should be noted that, in this process, the parameter θ is obtained by maximum
likelihood estimation, see [Lophaven, Nielsen, Søndergaard (2002)] for further de-
tails.
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Figure 4: Response surface of the Eh (effective Young’s Modulus) with respect to
EAl and ESiC, with different volume fractions of SiC



10 Copyright © 2013 Tech Science Press CMC, vol.37, no.1, pp.1-21, 2013

Figure 5: Response surface of the vh (effective Poisson’s ratio) with respect to EAl
and ESiC, with different volume fractions of SiC
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In this study, we are interested in the effective macro-scale Young’s modulus Eh,
and Poisson’s ratio of the Al/SiC material. Each of them can be related to the vec-
tor X , which includes the Young’s modulus of Al and SiC respectively, and the
volume fraction of SiC particles. Because it is relatively difficult to visualize a
four-dimensional space, and because naturally one is interested the macro-material
properties with specific volume fractions of SiC (volume fractions are relatively de-
terministic), we plot the regressed model of both Eh and vh at three specific volume
fractions: 10%, 20%, 30%. As can be seen from figure 4 and figure 5, at spe-
cific volume fractions of SiC particles, Eh demonstrates significant variation with
respect to EAl and ESiC, while the vh is relatively stable.

5 Compute the Probabilistic Distribution of Macroscale Material Properties
Using Monte Carlo Simulation

With the probabilistic distribution of X , and the relation between Y and Xestablished ,
the distribution of Y can be easily obtained by Monte-Carlo simulation. This pro-
cedure can be described as:

(1) Randomly generate a large sample x1,x2, ....,xq according to the probabilistic
distribution of X ;

(2) Predict the effective macro-scale material properties at these sample points:
y1,y2, ....,yq using the established Kriging model;

(3) Fit the empirical distribution of Y to an appropriate probabilistic distribution.

For Al/SiC material, we go through the above-mentioned steps at specific volume
fractions, and determine the probabilistic distribution of Eh. As shown in figure 6-
8. The effective modulus Eh is subject to normal distribution for different volume
fractions. The distributions of the effective material parameters are given in table
2.

Table 2: Material Properties of Al/SiC at different volume fractions of SiC, with
CV (EAl)=5%, CV (ESiC)=5%

10% SiC
Eh Normal Distribution, µEh = 87.3GPa,σEh = 3.96GPa
vh Deterministic, vh = 0.3182

20% SiC
Eh Normal Distribution, µEh = 102.9GPa,σEh = 4.45GPa
vh Deterministic, vh = 0.3026

30% SiC
Eh Normal Distribution, µEh = 121.2GPa,σEh = 4.99GPa
vh Deterministic, vh = 0.2905
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Figure 6: Fit the cumulative distribution of Eh with 10% SiC, when CV (EAl)=5%,
CV (ESiC)=5%
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Figure 7: Fit the cumulative distribution of Eh with 20% SiC, when CV (EAl)=5%,
CV (ESiC)=5%
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Figure 8: Fit the cumulative distribution of Eh with 30% SiC , when CV (EAl)=5%,
CV (ESiC)=5%



Stochastic Macro Material Properties 15

6 Discussion of the Al/SiC Experimental Results

Figure 9: Calculated mean value (µEh) and bounds ( µEh ± σEh ) of the effec-
tive Young’s Modulus with different volume fractions of SiC, with CV (EAl)=5%,
CV (ESiC)=5%

In figure 9, we plot the mean value (µEh) and bounds ( µEh±σEh ) of the computed
modulus together with other semi-analytical models and experimental results. It
can be seen that present computation is very close to the experimental results. On
the other hand, semi-analytical models such as Hashin-Strikman variational bounds
and Halpin-Tsai method deviate much from the experimental results. For this rea-
son, stochastic simulations based on semi-analytical models will be much less reli-
able, (if not completely useless), than the present method, as computed by Trefftz
Computational Grains.

We also repeat the procedures of section 2-5 with different distributions of EAl and
ESiC to analyze the sensitivity of the effective modulusEh. In figure 10 and 11, we
plot the calculated bounds of Eh, with two cases: (1) CV (EAl)=2.5%, CV (ESiC)=5%;
(2) CV (EAl)=5%, CV (ESiC)=2.5% . It is found that much smaller bounds are given
for case 1. Therefore, the uncertainty of Eh is more sensitive to the uncertainty
ofEAl at 10%-30% volume fractions of SiC particles.
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Figure 10: Calculated mean value (µEh) and bounds ( µEh ± σEh ) of the effec-
tive Young’s Modulus with different volume fractions of SiC, with CV (EAl)=2.5%,
CV (ESiC)=5%

Figure 11: Calculated mean value (µEh) and bounds ( µEh ± σEh ) of the effec-
tive Young’s Modulus with different volume fractions of SiC, with CV (EAl)=5%,
CV (ESiC)=2.5%
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7 Using the Obtained Stochastic Material Properties to Analyze the Reliabil-
ity of Global Structures

As is mentioned earlier, the computed probabilistic distribution of the effective
macro-scale material properties can be used for reliability-based material optimiza-
tion, and integrated-design of micro- as well as macro-structures. In this section,
we give a simple example by using the obtained stochastic material properties to
analyze the reliability of global structures.

Consider a simple cantilever beam as shown in figure 12. A shear force P = 30N
is applied to the free-end of the beam. The geometry parameters of the beam is
L = 240mm, c = 10mm. The analytical solution for this problem with deterministic
Young’s modulus and Poisson’ ratio is given by [Timoshenko and Goodier (1970)]:

ux =−
Py

6EI
[3x(2L− x)+(2+ v)(y2− c2)]

uy =
P

6EI
[x2(3L− x)+3v(L− x)y2 +(4+5v)c2x]

I =
2c3

3

(10)

We assume that the beam is made of 20% SiC reinforced Al composite, with ma-
terial properties given in table 2. Then the empirical distribution of the maximum
deflection uy can be obtained by Monte Carlo simulation, as shown in figure 12.
If we consider a design criterion, which states that uy should be no larger than 2.1
mm, then from the cumulative distribution of uy, we can obtain that the reliability
of the structure is 79.6%.

Figure 12: A cantilever beam subjected to shear load at the free end, made of
Al/SiC material, with 20% SiC, CV (EAl)=5%, CV (ESiC)=5 %

8 Conclusions

A simple four-step reliable procedure of stochastic modeling is combined with the
Trefftz Computational Grains (TCG), for the direct numerical simulation (DNS)
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Figure 13: The cumulative distribution of maximum beam deflection uy with 20%
SiC , when CV (EAl)=5%, CV (ESiC)=5%.

of heterogeneous materials with microscopic randomness. In this procedure, truly
random and representative material elements are automatically generated, and are
directly solved by using Trefftz Computational Grains. The direct numerical sim-
ulation (DNS) is made possible because no meshing of any grain is needed, as
opposed to the cumbersome FEM-based models. And because the randomly gen-
erated RVEs can account for the uncertain complex microstructural topologies, the
current method is much more realistic and reliable than semi-analytical methods
such as the Hanshin-Strikman bounds and Mori-Tanaka Method. This method can
also be used to compute the macro-level multifunctional material properties, by
taking advantage of the multi-physical computational grains by [Bishay and Atluri
(2012,2013)]. The present procedures are seminal to the micro-, meso-, macro-
multiscale dynamic and damage analyses of stochastic heterogeneous materials,
which are germane to the Materials Genome Initiative (GMI) and Integrated Mate-
rials Science, Mathematics, Modeling, and Engineering of microscopically hetero-
geneous multifunctional materials.
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