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A Note on Statistical Strength of Carbon Nanotubes

X. Frank Xu1,2, Yuxin Jie3 and Irene J. Beyerlein4

Abstract: This note aims to relate the measured strength statistics of individ-
ual carbon nanotubes (CNTs) to the physics of brittle fracture and the weakest
link model. By approximating an arbitrary flaw size distribution with a segmented
power law, an effort is made to extend applicability of the Weibull distribution to
arbitrary flaw populations, which explains why the Weibull distribution fits the ex-
perimental data of CNTs and many other brittle materials, and why in other cases
it is not so clear. A generalized Weibull distribution is proposed to account for all
non-asymptotic cases. The published CNT testing data are analyzed, and finally a
major issue present in existing interpretation of CNT bundle testing data is clari-
fied.

Keywords: Strength, Power law, Weibull distribution, Carbon nanotubes.

1 Introduction

Characterization and modeling are two fundamental scientific approaches. Char-
acterization of scattering or statistics of fracture strength must be empirical, on
the one hand. But this approach alone certainly does not satisfy one who distin-
guishes probabilistic modeling from statistical analysis, especially in dealing with
medium-to-high consequence events where the sample size is small. In his 1968
article Freudenthal noted clearly “the inherent weakness of this procedure (i.e. sta-
tistical analysis) is the impossibility of discriminating between different statistical
distribution functions on the basis of the moderate number of test replications usu-
ally available” [Freudenthal (1968)]. Perhaps addressing some debates constantly
occurring at that time, he warned that “Thus, for instance, to distinguish between
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a logarithmic normal and an extremal distribution with a reasonable degree of con-
fidence that would justify extrapolation, several thousand test results would have
to be available” [Freudenthal (1968)]. Not by coincidence, there were similar de-
bates and discussions [Lu, Danzer, Fischer (2002); Pugno and Ruoff (2006); Klein
(2007); Barber, Andrews, Schadler, Wagner (2005); Lu (2005); Wagner, Barber,
Andrews, Schadler (2008)] arising recently on statistical strength of carbon nan-
otubes (CNTs), in which case actually only dozens of CNT tensile testing speci-
mens were available.

Therefore, on the other hand, probabilistic modeling of scattering or statistics of
fracture strength is required. Freudenthal suggested that “An alternative approach
is to establish physically relevant probability models, which are then used for ex-
trapolation. . . not on the basis that the distributions they produced can be fitted to
existing test results (which is not a sufficient condition), but that they are germane
to the phenomenon” (Freudenthal, 1968).

In Section 2 of this note, an effort is made in attempt to relate the measured strength
statistics of individual CNTs to the physics of fracture and the weakest link model,
and explain why Weibull distribution fits the experimental data of CNTs and many
other brittle materials, and why in other cases it is not so. In section 3, published
CNT testing data are analyzed and commented. A major issue present in existing
interpretation of CNT bundle testing data is clarified.

2 Power Law and Weibull Distribution

2.1 Asymptotic Weibull distribution

The flaw size c in a CNT is characterized as half of the flaw dimension along the
cross section of the CNT, which has a lower bound a the lattice space, and an
upper limit cmax the half length of the CNT perimeter. A weakest link element of a
CNT is defined as the one with the strength statistically independent from any other
elements especially the upper and lower adjacent neighbors. The minimum length
of the element ` varies depending on the largest flaw considered. In the asymptotic
analysis the lower tail of the strength distribution of the element corresponds to
the flaw size approaching cmax. The minimum length ` then is ∼ πD with D the
diameter of the CNT.

Denote Pc
` (c) the probability of a flaw appearing in the weakest link element with

the size less than or equal to c. For an arbitrary distribution function Pc
` (c), we

assume, as is typical, that its large flaw tail can be approximated with a power law,
i.e.

1−Pc
` (c)≈ A(cmax− c)α , when c→ cmax (1)
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where α > 0 is the slope near the cmax (Fig.1), and A is a constant. Note the dis-
tribution Pc

` (c) depends on ` the length of the weakest link element that is chosen.
The form in Eq. (1) is not universal and other forms can arise, for instance, when
initial flaws are non-contiguous, containing bridging bonds, as seen in 1D and 2D
networks [Li and Duxbury (1987); Phoenix and Beyerlein (2000)]. When the con-
centration of large flaws is extremely low, i.e. negligible effect of flaw interaction,
by generalizing Griffith’s criterion the tensile strength of a CNT is formulated as

σ =
T

ψ c1/β
(2)

where T serves as the toughness, β is the exponent on the flaw size, equal to 2 for
cracks much longer than the individual bonds, and ψ the factor to account for the
finite size and curvature. In the extreme case when the flaw size approaches cmax,
the effect of ψ dominates. Following the familiar strength formula for a finite width
plate containing a crack, the CNT strength is approximated as

σ ∝

√
cmax− c

cmaxc
, when c→ cmax (3)

which by using Taylor’s series can be expanded as

σ ∝

√
cmax− c
cmax

+O

((√
cmax− c

cmax

)3
)
, when c→ cmax (4)

With (1) and (4), the lower tail of the strength distribution for a weakest link el-
ement is obtained as P̀ (σ) ∝ σ2α , when σ → 0, or explicitly written as P̀ (σ) =(

σ

σ0

)2α

with σ0 the scale parameter. According to the theory of extreme value
statistics [Fisher and Tippett (1928); Gumbel (1958)] when the total number of el-
ement in a CNT Ne becomes sufficiently large, the strength distribution of the CNT
converges to the Weibull distribution asymptotically

PW (σ) = 1− exp
(
−Ne

(
σ
/
σ0

)2α
)

(5)

While the derivation of the Weibull distribution (5) is mathematically rigorous and
consistent with the physics of failure by the weakest link model, it in this case has
little value of application since either the strength is so low or the event is so rare
that such an asymptotic result itself is generally out of engineering interest. Our
interests lie in the strength distribution for a finite length CNT, and how good the
form (5) is to represent it. In other words, if we are going to use (5), how fast the
true distribution converges to the Weibull distribution (5) as CNT length increases.
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Below we will discuss such a non-asymptotic Weibull distribution. Relevant stud-
ies on the size effect of the weakest link model can be found in [Wagner (1989);
Phoenix SL, Ibnabdeljalil M, and Hui (1997); Mahesh, S, Beyerlein, IJ, Phoenix
(1999); Yu, Lourie, Dyer, Moloni, Kelly, Ruoff (2000); Bhattacharya B and Lu
(2006); Bažant ZP and Pang (2007)].

2.2 Non-asymptotic Weibull distribution
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Figure 1: Schematic of a log-log plot of the flaw size distribution in a CNT.

An important point presented above in the asymptotic case is that the Weibull dis-
tribution can be related to the power law approximation of flaw size statistics near
the tail. In fact such an approximation can be extended to the whole domain of
P(c), the log-log slope of which varies slowly, by using a number of power law
segments, e.g. one segment to approximate Region II in Fig.1. As the number
of test specimens in engineering is typically hundreds or even dozens (e.g. in the
CNT case), the power law segments reached by a test is normally located in Re-
gion II (Fig.1), which is usually characterized by one or two power law segments.
Note that since P(c) is monotonic all the exponents of the segments in the log-log
plot are non-negative. Region I and III in Fig. 1 correspond to extreme high and
extreme low strength tails, respectively, which are usually not assessable in actual
engineering experiments. In other words, the sampled largest flaw size terminates
at c̃maxmuch smaller than cmax., and the distribution at this sampled tail can always
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be approximated as

1−Pc
` (c)≈ Ac−α (6)

when c is in the vicinity of c̃max, where A > 0 and α > 0. Note while Eq. (6)
can approximate any distribution at vicinity of c̃max, the power law approximation
becomes useful only when the exponent α is close to a constant over a statistically
sizable segment. With (2) and (6), the sampled lower tail of the strength distribution
for a weakest link element is obtained as

P̀ (σ) =
(

σ
/
σ0

)αβ

(7)

where σ is the strength corresponding to the flaw size at vicinity of c̃max. The scale
parameter

σ0 =
T

ψA1/αβ
(8)

varies with the length of the element. Now with the power law strength distribution
given, let us see how good the Weibull distribution (5) is to approximate the true
weakest link distribution for a finite Ne

PL(σ) = 1−
[

1−
(

σ
/
σ0

)αβ
]Ne

(9)

When the length of the weakest link element is taken as the minimum length, the
scale parameter σ0 is valued at the three-digit level, e.g. the scale parameter of a
weakest link element with the minimum length 50 nm and diameter D = 20 nm
is found to be 213 GPa (see Section 3.1). According to the CNT tensile testing
data [Klein (2007); Yu, Lourie, Dyer, Moloni, Kelly, Ruoff (2000)], the Weibull
modulus m=αβ is between 2∼3. By letting σ0 = 150GPa, the absolute relative
error of the approximation |PW (σ)−PL(σ)|

PL(σ) is plotted in Fig.2 (see Appendix). The
figure shows with 50 weakest link elements, the Weibull approximation is good
enough with the maximum relative error about 0.6%.

In the above exposition the sampled tail is supposed to be located in Region II
(Fig. 1), i.e. change of the slope within the region is slow and one modulus is
statistically good enough, which is the case in CNTs according to the reported
data [Barber, Andrews, Schadler, Wagner (2005); Klein (2007); Yu, Lourie, Dyer,
Moloni, Kelly, Ruoff (2000)]. However, with increase of the number of testing
specimens, the sampled tail will eventually invade into Region I or III. If the slopes
of these regions are obviously different, then a bi-modal or multi-modal Weibull
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Figure 2: Relative errors of the Weibull distribution (5) when approximating the
weakest link distribution (8)

distribution will become necessary, which has two or more moduli corresponding
to several strength regions.

Based on the above exposition, we propose the following generalized Weibull dis-
tribution to cover all the non-asymptotic cases, as

PW (σ) = 1− exp
(
−Ne

(
σ
/
σ0

)m(σ)
)

(10)

where the Weibull modulus m is generally a function of strength σ . For an inter-
mediate value of the strength σ corresponding to the maximum defect located in
Region II, mis treated approximately as a constant, i.e.

mII = αIIβII (11)

where βII is 2 that fracture mechanics applies approximately, and αII is a constant
between approximately 1∼ 1.5 based on CNT tensile testing data [Klein (2007);
Yu, Lourie, Dyer, Moloni, Kelly, Ruoff (2000)]. When the strength σ in (10) in-
creases entering into the high strength region, the maximum defect size moves into
Region I, and as shown in Fig. 1 the Weibull modulus αI continuously decreases
being not a constant. For the upper strength limit at the left tail in Region I, the
modulus can be expressed as

m+
I = α

+
I β

+
I (12)
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with superscript + denoting the upper strength limit. In this single lattice defect
case, m+

I is expected to be smaller than mII , indicating greater statistical scattering
that is consistent with physics.

With the strength σ in (10) decreasing, the maximum defect size moves into Region
III, where the Weibull modulus αIII also continuously increases, while βIIIremains
to be the constant 2. In the low strength region, clearly the modulus mIII(σ) in-
creases with the decrease of σ , and accordingly the statistical scattering reduces.
The lower strength limit at the right tail of Region III is exactly the asymptotic case
discussed in Sub-section 2.1.

In most engineering applications, the slope of the flaw size distribution P(c) varies
very slowly with c, and consequently the number of the Weibull modulus is usually
small. As validated in practice, for many brittle materials the uni-modal Weibull
distribution alone is already sufficient, which corresponds to Region II. In the sin-
gle CNT case, unlike a macroscopic material specimen, the CNT structure is not
described by multiple length scales above that of the atomic lattice. Therefore the
chance is expected to be small for the flaw size distribution to be abnormally dif-
ferent from the one in Fig. 1. Consequently the number of the moduli for CNTs in
the range of engineering interest is very possibly just 1 or 2.

Prior work on the strength of fiber bundles points to the notion that the flaw size may
be fixed within one power law segment but vary from segment to segment. Like
CNTs, the strength distribution of a Weibull fiber bundle can also be described as
segmented [Harlow and Phoenix (1978); Beyerlein and Phoenix (1996)]. Accord-
ing to the theory of Harlow and Phoenix (1978), the underlying mechanism that
gives rise to the segmented distributions is a stress-dependent critical cluster size,
where ‘size’ is expressed in terms ofk the number of broken fibers contained in the
critical cluster. The high strength extreme tail corresponds to k = 1, the second
highest segment to k = 2, and so on. The theory finds that when the individual bond
strength is Weibull-distributed with modulus α , then the exponent of the match-
ing segments is kα . It has been demonstrated through subsequent works that this
basic idea prevails in describing more complex patterns in two-dimensional and
three-dimensional systems [Mahesh, Phoenix, Beyerlein (2002)], with or without
a pre-existing flaw [Beyerlein and Phoenix (1997)], and assuming either diffuse or
localized load sharing among the bonds [Li and Duxbury (1987)]. In the present
context of CNTs, this theory would rationalize that, for instance, the largest flaw
size cmax was not wholly pre-existing but grew under load via a sequence of new
bond failures. As the number of samples tested increases, the likelihood of encoun-
tering CNTs that are extremely weak (k is large, Region III) or extremely strong (k
is small, Region I) increases. Accordingly, the measured CNT modulus m = 2 – 3
[Klein (2007); Yu, Lourie, Dyer, Moloni, Kelly, Ruoff (2000)] could indicate, for
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instance, that the power law segment corresponding to the average strength has a
modulus of say α = 1 and a cluster size of k = 2-3. We will return to this analogy
in the next section.

As a closing remark of this section, the duality between Weibull and Gaussian is
extended from the asymptotic cases to the non-asymptotic regime, i.e. thanks to
universality of the power law approximation (central limit theorem), the Weibull
(Gaussian) distribution arises as the natural outcome of the finite size serial (paral-
lel) model independent of the statistics of the elements.

3 Interpretation of CNT Testing Results

In this section, we will first estimate the flaw statistics based on the CNT testing
data, and then discuss a major issue present in existing interpretation of CNT bundle
testing data.

3.1 Effect of flaw statistics

The expected equilibrium concentration of point defects λ in a pristine CNT is re-
ported to be on the order of 10−6 or even lower [Collins (2010)], which fits well
the so-called the law of rare events, i.e. all the point defects that occur indepen-
dently from each other can be modeled as the Poisson process, like the occurrence
of mutations in a given sequence of DNA. Note this low concentration also justifies
non-interaction of flaws assumed in the fracture model, e.g. Eq. (2). These point
defects serve as possible origins to subsequently evolve into nanometer size flaws
due to various physical and chemical effects, e.g. oxidation pitting. Therefore the
flaw model consists of two steps; the first a Poisson process to produce the num-
ber n and locations of point defects, and the second step the evolution of a single
defect into a nanometer flaw that contains connected and strongly correlated de-
fects. The second step determines the size distribution of flaws. In connection with
earlier fiber models, broad flaw size distributions can lead to segmented strength
distributions.

A CNT with diameter D = 20 nm and length L =5 µm (aspect ratio = 250) is
chosen as a benchmark, as it is representative of CNTs tested in studies in the
literature (Yu, Lourie, Dyer, Moloni, Kelly, Ruoff, 2000). As the CNT contains
about N ∼ 107 carbon atoms, with the rate λ = 10−6 a quick estimate for the defect
free probability shows P(n = 0) = exp(−10) = 4.54×10−5, i.e. with such a defect
concentration there is little chance of reaching the theoretical strength in tensile
testing (Yu, Lourie, Dyer, Moloni, Kelly, Ruoff, 2000) to the three-digit level. In
contrast, if we were to reduce the CNT length to 0.5 µm, i.e. reducing the aspect
ratio from 250 to 25, the defect free probability drastically increases nearly 10,000
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times toP(n = 0) = exp(−1) = 0.369. This simple estimate tells there should not
be much surprise when a tensile test on a CNT with the length ∼ 0.5 µm shows
a defect free strength at the three-digit level [Demczyk, Wang, Cumings, Hetman,
Han, Zettl, Ritchie (2002)].

Based on the results of atomistic simulation [Zhang, Mielke, Khare, Troya, Ruoff,
Schatz, Belytschko (2005)], in the following estimate the parameter β in Eq. (2) is
taken as 2, and T /ψ ≈ 40 GPa

√
nm [Zhang, Mielke, Khare, Troya, Ruoff, Schatz,

Belytschko (2005)]. With (2), the critical flaw size c between 1∼6 nm corresponds
to the range of strength between 16∼40 GPa, which corresponds to the central
part of the sampled distribution [Klein (2007)], apart from the extreme upper and
lower tails of the distribution. As data in this core region is considered the most
reliable, we use it to estimate the corresponding power law approximation of the
flaw distribution 1−P(c) ≈ Ac−α , c ∈ [1 nm,6 nm]. Segments in the lower tail
would correspond to larger size flaws and upper tail to smaller ones.

The sampled Weibull modulus in the core range is 2.5. The slope α is estimated to
be 1.25 since β =2. The length of the weakest link element is chosen to be 50 nm
about the minimum length. Given the mean strength being 30 GPa, with Ne=100
from Eq. (9) the scale parameter is found to be 213 GPa. Further from Eq. (8) we
obtain A= 0.0153, i.e.

1−Pc
` (c)≈ 0.0153c−1.25, c ∈ [1 nm,6 nm] (13)

With the above result, the true weakest link distribution (9) shows that PL(18.5GPa)=
0.2and PL(40.7GPa) = 0.8, which compare well with the Weibull fitting (Klein,
2007). The estimate (13) tells that 1.53% and 0.163% of CNTs have the maximum
flaw more than 1 nm and 6 nm, respectively.

3.2 A comment on back calculation of CNT bundle testing

Since high uncertainty is expected in measurement of both mechanical and geo-
metrical properties of individual CNTs, the CNT bundle testing is considered to be
the alternative approach. From the fabrication perspective, the idea of the CNT
bundle and yarn also provides an engineering approach to eventually bring the
high strength of carbon nanotubes up to macroscopic applications, e.g. [Beyerlein,
Porwal, Zhu, Hu, Xu (2009)]. In [Yu, Files, Arepalli, Ruoff (2000)] the strength
data for a dozen of bundles of single-walled CNTs (SWCNTs) were reported. The
strength of individual CNTs was simply back-calculated as division of the total ten-
sile force by the total wall areas of CNTs at the perimeter of a bundle. This calcu-
lation however overlooked the load transfer effect due to heterogeneity of fracture
strength of individual CNTs, i.e. the CNTs in a bundle are not broken simultane-
ously under an identical tensile force, but rather participate in a fracture process
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involving a non-uniform distribution of tensile force by consecutively transferring
the load from a newly broken CNT to its neighbors. The calculation therefore un-
derestimated almost half of the strength of individual CNTs. In other words, the
strength reported in [Yu, Files, Arepalli, Ruoff (2000)] actually corresponds to that
of a ring of CNTs, but not individual CNTs. The correct procedure to account
for the local loading transfer has been described in [Xu, Hu, Beyerlein, Deodatis
(2011)]. Below we just provide a lower bound estimate for individual CNTs.

Based on the zeroth-order generalized local load sharing (GLLS) rule [Xu, Hu,
Beyerlein, Deodatis (2011)] or equal load sharing rule [Daniels (1945)], the mean
strength for a ring of CNTs is given as

σ̄ = φσL

(
1
α

) 1
α

exp
(
−1/

α

)
(14)

where σL is the scale parameter for individual CNTs at the gauge length L, and φ

the factor to account for the bundle size (number of fibers) effect. For infinitely
large bundle sizes, the factor φ becomes 1 reducing to Daniels’ asymptotic result
[Daniels (1945)]. In the finite size case with dozens of CNTs in a ring, the factor
φ is found to be slightly larger than 1 by using the zeroth-order GLLS simulation
[Xu, Hu, Beyerlein, Deodatis (2011)]. According to experimental measurement
[Barber, Kaplan-Ashiri, Cohen, Tenne, Wagner (2005)], the ring of CNTs has the
Weibull scale parameter 33.9 GPa, and modulus α =2.7, which corresponds to the
mean strength 30.1 GPa. The Weibull modulus of individual CNTs certainly is
smaller than 2.7, the modulus for the ring of CNTs, due to the upscaling effect as
demonstrated in [Xu, Hu, Beyerlein, Deodatis (2011)]. By simply letting φ = 1
and α =2.7 for CNTs, according to Eqn 11 a lower bound estimate for σL, the scale
parameter of individual CNTs, is found to be 63.0 GPa, which is almost double of
the original estimate made in [Yu, Files, Arepalli, Ruoff (2000)]. This brings the
mean strength of SWCNTs in [Yu, Files, Arepalli, Ruoff (2000)] from 30.1 GPa up
to 56.0 GPa. Considering the diameter of SWCNTs is about 1/10 of those CNTs
described in Subsection 3.1, and the gauge length is not more than 50 µm, this
increase in strength is consistent with the Poisson distribution as the total number
of carbon atoms is reduced.

4 Conclusion

In this note, we formulate a power law approximation to explain the seemingly
robustness of Weibull distribution in experimental fitting of the strength of brittle
materials. We further propose a generalized Weibull distribution to account for
all non-asymptotic cases. In pursuing this theme, published CNT test data are



A Note on Statistical Strength of Carbon Nanotubes 27

analyzed, and a major issue pertaining to improper interpretation of CNT bundle
test data to infer single nanotube properties is discussed in some detail.

While still facing many critical challenges, carbon nanotubes remain the most
promising low-dimensional structural components for three-dimensional assem-
bling of the next generation super-strong materials and structures. It is not diffi-
cult to envision the statistical characterization developed today will evolve into the
future standards for quality control of industrialized high strength CNTs, in a way
similar to that routinely practiced in nowadays fiber industry. By justifying the wide
applicability of the Weibull distribution to CNTs and other brittle materials such as
nanowires, e.g. [He, Xiao, Zhao, Dai, Ke, Zhu (2011)], and clarifying a major issue
in the interpretation of CNT bundle testing, we hope this note will provide useful
information especially to experimentalists.
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Appendix

err(x) =

∣∣∣PW (σ)−P(
Lσ)
∣∣∣

P(
Lσ)

=
exp(−Nex)− (1− x)Ne

1− (1− x)Ne
(A1)

where x =
(

σ

σ0

)m
. The maximum of the error function can be found by letting

∂err
∂x = 0, which yields that

exp(Nex)− x = (1− x)1−Ne (A2)
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When Ne is large, e.g. bigger than 50, and x is less than 1, exp(Nex)− x can be
approximated as exp(Nex), i.e.

exp(Nex)≈ (1− x)1−Ne (A3)

which has the solution

x = 1+
(

1− 1
Ne

)
ProductLog

[
Ne

1−Ne
exp
(

Ne

1−Ne

)]
(A4)

where ProductLog gives the principal solution for w in z = wew. Substitution of the
solution (A4) into (A1) yields the result shown in Fig. 2. Note the solution (A4) is
always less than 1 and the approximation made in (A3) is sufficiently accurate for
Ne > 50.


