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Change of Scale Strategy for the Microstructural
Modelling of Polymeric Rohacell Foams
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Abstract: In this paper a numerical model dedicated to the simulation of the me-
chanical behaviour of polymeric Rohacell foams is presented. The finite elements
model is developed at the scale of the microstructure idealized by a representative
unit cell: the truncated octahedron. Observations made on micrographs of Rohacell
lead to mesh this representative unit cell as a lattice of beam elements. Each beam
is assigned a brittle linear elastic mechanical behaviour in tension and an elasto-
plastic behaviour in compression. The plasticity in compression is introduced as a
way to mimic the buckling of the edges of the cells observed in experimental crush-
ing tests. A contact law introduced between the beams stands for densification. A
change in scale is then realized by increasing the length of the edges of the unit
cell. Several computations show the ability of the proposed approach to preserve
the physical degradation phenomena and the loads while drastically decreasing the
computational time.

Keywords: Rohacell foam, mechanical behaviour, microstructure, change of scale
strategy

1 Introduction

This paper is about the modelling of the mechanical behaviour of Rohacell poly-
meric foams. These polymetacrylimid foams are closed cells foams from [Evonik
(2011)]. Their typical microstructure is displayed in Fig. 1. It includes several
types of randomly distributed irregular polyhedra made of plastic.
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Figure 1: SEM micrography: microstructure of the Rohacell 51A foam

Rohacell foams are widely used as a core material for sandwich structures. These
structures are, for example, well suited for aeronautic constructions where high
levels of stiffness and strength are needed with a minimal associated mass.

However, composite sandwich structures are very sensitive to out-of-plan loadings,
like impacts. [Tawk, Aubry, Navarro, Ferrero, Marguet, Rivallant, Lemaire and
Rauch (2012); Navarro, Aubry, Marguet, Ferrero, Lemaire and Rauch (2012a)]
have studied the effects of oblique impacts on sandwich structures made of two
plies of glass fibres/epoxy resin woven fabrics and 20 mm thick Rohacell 51A
foam. The impactor, a steel ball of mass 28 g and diameter 19 mm, is launched
at the velocity of 65 m/s with an angle of 15◦ relative to the upper skin. The result-
ing degradations are displayed in Fig. 2.

The area of damaged foam is spread on a larger zone than the damaged skin one.
The major degradation phenomena are of two natures: crushing below the path
of the impactor and coupled crushing and shear around this crushed zone. These
damages lead to the separation of the foam and the skin. As a result the skin is
not stabilized anymore and becomes free to bend and buckle. The bending then
induces the tensioning of the fibres, leading to their brittle failure as observed by
[Navarro, Aubry, Marguet, Ferrero, Lemaire and Rauch (2012b)].

Therefore, despite its relatively low mechanical properties and density, the foam
plays a major role on the strength of the sandwich structure ([Schubel, Luo and
Daniel (2007)]). Being able to accurately predict its failure is essential for the
design process.

Generally, two main strategies are used to model this kind of materials: continuous
and discrete models.
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Figure 2: Degradation of a sandwich structure after oblique impact

In the continuous approach, the idea is to associate a simple continuous mesh with
a complex homogenized constitutive material law. One way to introduce the degra-
dations is to define a yield criterion in the material law to deal with the plateau ob-
served in the crushing of foams as was proposed by [Abrate (2008)]. This is most
of the time performed in the (hydrostatic pressure, Cauchy stress) space. Most
of commercial finite elements codes offers this kind of material laws ([Simulia
(2011); Altair (2009)]). Another way, used by [Azikri de Deus and Alves (2009)],
consists in the use of an elasto-visco-plastic law in which a term depending on the
volumetric strain is added to compute the hydrostatic pressure. In order to deal
with the compaction step, [Aktay, Johnson and Kröplin (2008); Aktay, Johnson,
Toksoy, Kröplin and Güden (2008)] have associated SPH formulations to classic
three dimensional finite elements. The idea is to replace crushed elements sub-
jected to huge strains with particles. Another strategy, proposed by [Bishay and
Atluri (2012); Bishay and Atluri (2013)], consists in developing continuous finite
elements that can intrinsically represent the microstructure. The authors have de-
veloped several Voronoi cell finite elements to build fine descriptions of hetero-
geneous microstructures. This approach has shown a good capability to predict
the behaviour of complex materials under a wide variety of physical phenomena
[Dong and Atluri (2013); Bishay and Atluri (2014)]. To summarize, continuous
approaches offer: simple geometries and attractive computational times at the cost
of a complex homogenized material law, farther from the physics than discrete
models.

In the discrete approach, a mesh as close as possible to the real microstructure
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is associated to a simple constitutive mechanical behaviour law. The underlying
idea is that the geometry of the microstructure is predominant over the mechanical
behaviour of the plastic in the macroscopic response of the foam. Many studies deal
with this kind of modelling. They rely on the use of an idealized microstructure
which can come from experiments or from mathematical constructions based on
polyhedra. For instance, [Gaitanaros, Kyriakides and Kraynik (2012)] have used
X-ray tomography on opened cells foam associated with Brakke’s Surface Evolver
[Kraynik, Reinelt and van Swol (2003)] to investigate the mechanical behaviour
of aluminium foams. The authors have paid particular attention to the random
distribution of the microstructure and to the geometry of the edges. [Laroussi,
Sab and Alaoui (2002)] have used a microstructure based on truncated octahedron
to investigate the yield surface of open cells foams related to the buckling of the
edges. All the aforementioned discrete models are well suited to understand the
physics that drives the response at the macroscopic scale. However, they generally
induce a huge computational time directly related to the fine description of the
microstructure.

In this study, a new modelling of Rohacell foams is proposed for impact applica-
tions. It is developed using the finite elements method with explicit time integration
scheme and relies on a simplified description of the microstructure and material law
described in section 2. The identification of the model is achieved on three proposed
scales in section 3. Finally, the ability of the model to preserve the physical degra-
dation phenomena and load transfer while drastically decreasing the computational
time is discussed in section 4.

2 Modelling strategy

This section starts with a short review of the macroscopic behaviour of Rohacell
foams. The modelling strategy is then detailed. It aims at building a model usable
at macroscopic scales and relies on several “pragmatic” assumptions which are
compromises between the micro and macro scales.

2.1 Macroscopic behaviour of Rohacell foams

The physical phenomena involved in the mechanical behaviour of polymeric foams
such as Rohacell are now well known and a comprehensive review is available
in [Gibson and Ashby (2001)].

In tension, a specimen S made of Rohacell foam exhibits a brittle linear elastic
response characterized by a macroscopic elasticity modulus ES and by a tensile
failure stress σS,t f .

In compression, after a short linear elastic part (modulus ES), the elastic buckling of



Microstructural Modelling of Polymeric Rohacell Foams 25

the cells initiates a plateau stress of value σS,y. The edges and walls of the cell start
to buckle in a localized zone that propagates through the thickness of the specimen.
Once the crushing strain is raised to a critical level (εS,d), the material accumulates
and densification occurs.

In shear, a specimen of Rohacell foam exhibits a linear elastic response up to the
failure. The associated elasticity modulus and shear failure stress are GS and σS,s f

respectively. If the shear specimen has a sufficient length / height ratio (12 accord-
ing to [ASTM Standard (2011)]), tensile failure initiates in the principal tensile
stress direction: the tensile behaviour drives the failure in shear.

A synthesis of the typical target values borrowed from the data-sheets of the man-
ufacturer [Evonik (2011)] is given in Tab. 1.

Table 1: Typical properties of Rohacell polymeric foams from [Evonik (2011)]

Property Value Unit
Density ρS around 52 kg/m3

Elastic modulus ES 70 - 75 MPa
Shear modulus GS 19 - 24 MPa

Compressive strength σS,y 0.7 - 0.9 MPa
Tensile strength σS,t f 1.6 - 1.9 MPa
Shear strength σS,s f around 0.8 MPa

These values are used in section 3 for the identification process.

2.2 Unit cell

As presented earlier in Fig. 1, Rohacell foams present a closed bubble shaped mi-
crostructure. Several options are available to generate a representative mesh of this
microstructure. [Gibson and Ashby (2001)] propose various arrangements of cubes
to distribute the material. [Okabe, Boots, Sugihara and Chiu (2000)] report the
importance of Voronoi’s cells in nature. Voronoi’s cells form a partition of space
by area of influence. They seem to be well suited for modelling phenomenon with
variability but are quite complex to build [Dong and Atluri (2012a); Dong and
Atluri (2012b)]. [Jang, Kraynik and Kyriakides (2008)] use a more sophisticated
approach which relies on the simulation of the growing process of the bubbles of
polymeric foam by including the superficial tension effects.

In this paper, the retained approach is chosen as a compromise between representa-
tiveness of the microstructure and simplicity. The microstructure is obtained from
one single cell: the truncated octahedron as was proposed by [Zhu, Knott and Mills
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(1997); Laroussi, Sab and Alaoui (2002); Gong and Kyriakides (2005); Gong, Kyr-
iakides and Jang (2005)]. This semi-regular polyhedron is one of the five plotted in
Fig. 3 able to pave the whole 3D space ([Thomson (1887)]).
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Figure 3: Polyhedra able to pave the 3D space

Only two polyhedra from Fig. 3 present an orthotropic geometry: the cube and the
truncated octahedron. Since the truncated octahedron is the only one of them to
offer a shape that matches the shape of the bubbles of Rohacell foam, it appears
to be the best candidate for the elementary cell of the mesh. This is the first main
simplification of the proposed model.

Once the geometry of a unit cell selected, a suited type of finite element has to be
chosen. The truncated octahedron includes 24 vertex, 36 edges and 14 faces: 6
squares and 8 hexagons. The second main simplification arises from the material
distribution in the microstructure. It can be seen from Fig. 4, that most of the plastic
is concentrated in the nearly straight edges and nodes of the cells. The remainder
constitutes the walls that link the edges ([Gibson, Ashby and Harley (2010); Gaita-
naros, Kyriakides and Kraynik (2012)]). This observation, in agreement with [Li,
Mines and Birch (2000)], can also be done for Nomex® honeycomb cores where,
due to surface tensions, the resin concentrates in the vertical straight edges ([Gor-
net, Marguet and Marckmann (2006); Aminanda, Castanié, Barrau and Thevenet
(2009)]). As a result, the walls of the cell are neglected in the proposed model.
Only one dimensional elements are used.
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Figure 4: Optical micrography: predominance of edges over walls in Rohacell

To choose between truss and beam elements, rotations must be considered. In the
microstructure, each vertex is most often in link with 4 other vertex (see point A in
Fig. 4). The accumulation of plastic at each vertex makes it difficult to rotate freely.
In other words, if an edge rotates, it will induce a moment on the other connected
edges. Hence, beam elements appear to be more suitable to take into account this
effect of constrained rotations. The linear 2 nodes Timoshenko beam element B31
of the Abaqus finite element code is used to build the mesh ([Simulia (2011)]).

In terms of cross-section of the beams, the use of a circular shape is retained. This is
of course a simplification over the observed cross-sections on micrographs which
look more triangular than circular ([Gong, Kyriakides and Jang (2005)]). This
choice is done for two reasons: it avoids the definition of an oriented local frame
for each beam and it greatly simplifies the contact between the beams when den-
sification occurs. Two radii are associated to the beam elements: the effective and
the contact ones. The effective radius is used to compute the stiffness of the fi-
nite beam element. The contact radius stands for densification. It enables to end
the plateau step at the suited strain by driving the initiation of the contact between
beam elements.

To finalize the description of the unit cell, the length a of the edge has to be selected.
[Li, Mines and Birch (2000)] have performed statistics upon the microstructure of
Rohacell foam. They have found a mean length a = 0.25 mm which is used in this
study as the “true” length.

However, for a given volume of structure, the number of cells involved in the mesh
is proportional to a3. This can quickly lead to a very high number of degrees
of freedom in the finite element model. Therefore, the proposed change in scale
strategy simply relies on an artificial increase of the length a of the edge. In the
following, it is shown that this approach can be used at various scales (a = 0.25, 0.5
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and 1 mm) with convincing results. Thus, the choice of the edge length a becomes
a compromise between the size of the structure, the details the engineer wants to
capture and the computational cost.

2.3 Constitutive mechanical behaviour

Here, the mechanical behaviour of the beam is discussed. The true stress versus
true strain curve presented in Fig. 5 is injected into the beam elements.
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Figure 5: Mechanical behaviour law introduced into the beam elements

In tension and shear, the response is linear elastic of modulus E and Poisson’s
coefficient ν . A brittle failure stress σ f in used in tension to break the beams. In
compression, an elasto-perfectly plastic behaviour is employed to mimic the elastic
buckling of the edges of the foam which drives the plateau stress when crushing
occurs. The associated yield stress is noted σ y.

2.4 Mesh generation

Up to now, only one single perfect elementary cell has been considered. The gen-
eration of a part made of Rohacell foam is performed in three steps: generation
of a parallelepipedic mesh of perfect cells; perturbation of the generated mesh to
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introduce variability and isotropy; bounding of the perturbed mesh to the suited
shape.

A program written in the Python programming language and using the Parallel-
Python library has been developed and used on a massively parallel infrastructure
with both shared and distributed memory.

2.4.1 Generation of a parallelepipedic mesh

The first step simply relies on translations of the reference unit cell in the three
directions of the space. The inputs of the procedure are: the length a of the unit
cell, the number of required cells in the x, y and z directions.

2.4.2 Perturbation of the generated mesh

This second step introduces variability in the model by moving the nodes according
to a Gaussian distribution. Each node of the model is shifted with a perturbation
displacement vector computed as follows:

1. Two angles φ and θ are drawn with equiprobability by step of 1◦: φ between
0◦ and 360◦ and θ between 0◦ and 180◦. They define the translation unit
vector of the node.

2. Then, a distance da following a Gaussian distribution law of mean value
µ = 0 and standard deviation σsd - which has to be chosen carefully - is
randomly chosen.

Once the perturbation vector is computed, the new coordinates of the node are
updated as displayed in Fig. 6.

Figure 6: Perturbation of nodes: illustration of the algorithm

The standard deviation σsd is computed in order to obtain a quasi-isotropic me-
chanical behaviour of a representative volume element of the microstructure. As
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mentioned in [Jang, Kyriakides and Kraynik (2010)], due to the manufacturing
process, most of the foams exhibits some anisotropy in their rise direction. Hence,
the proposed strategy should be enriched in the future to deal with this point (by
stretching the mesh in one direction for example). As can be seen on the left of
Fig. 7, five preferential directions can be extracted from a single unit cell.
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Figure 7: Preferential directions of a single truncated octahedron unit cell

Directions A and B are respectively orthogonal to a square and to a hexagonal face
of the unit cell. Direction C links the opposite edges of the unit cell located at the
intersection of a square and a hexagonal face. Direction D does the same thing for
the edges located at the intersection of two hexagonal faces and direction E is ori-
ented by two opposite points located at the intersection of two hexagonal and one
square faces.

To determine the standard deviation σsd parameter for the mesh perturbation, a
cube of edge length l at least equal to twenty times the length of a unit cell edge a
(l ≥ 20a) is filled with a perturbed microstructure (Fig. 7b). The ratio k = l/a' 20
is determined empirically by running several simulations while varying the number
of cells in each direction. k = 20 results in at least 12 cells in each direction which
is enough to have a homogenized behaviour. Five cubes are generated: one per
preferential direction. For each of them, the preferential direction is aligned with
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the z direction of the cube as displayed on the right of Fig. 7. The five cubes are then
crushed numerically in the z direction and the macroscopic load versus displace-
ment curves are extracted from the results. The simulations are performed with the
finite elements software Abaqus (Explicit module). The procedure is repeated with
various σsd parameters until a variation less than 15 % is obtained between the five
stress versus strain curves (in terms of elastic modulus and plateau stress). An il-
lustration is given in Fig. 8 for a cube of edge length l = 6 mm, a unit cell of length
a = 0.25 mm and arbitrary material characteristics.
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Figure 8: Study of the influence of the standard deviation parameter σsd on the
isotropic nature of the mechanical behaviour

With this methodology, the mechanical behaviour of the microstructure can be con-
sidered as quasi-isotropic. This is an assumption over the anisotropy of a real foam
that exhibits a slightly different mechanical behaviour in its rise direction. The val-
ues of σsd for the three cell sizes are given in Tab. 3.
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Fig. 9 gives an illustration of the distribution of the edge lengths for the three
meshes. In this plot it can be noticed that the minimal length amin of the mesh
can not be less than one fifth of the mean length a. This is done arbitrarily to avoid
too small elements that penalize the calculation time.
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Figure 9: Distribution of the edges length for typical meshes obtained with a=0.25,
0.5 and 1 mm

2.4.3 Bounding to the suited shape

At this stage, a parallelepipedic block of perturbed cells has been generated. This
last step consists in rebounding this block. In a first time, the domain corresponding
to the suited shape is meshed with tetrahedra. The position of each node of the
initial foam mesh is checked to determine if the node belongs to a tetrahedron
or not. Two groups of nodes are then created : the inside nodes and the outside
ones. The beam elements made of two outside nodes are deleted whereas the beam
elements made of two inside nodes are retained. The beam elements constituted
of one inside node and one outside node are subjected to a special treatment. For
each of them, the outside node is projected on the boundary of the domain, along
the direction of the element. At the end, all the nodes of the mesh are either inside
nodes, either border nodes. An illustration of what can be done is given in Fig. 10.
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Initial perturbed mesh Boundary mesh Intersection mesh

Figure 10: Rebounding step: example of a tensile test specimen

The generation of a part made of Rohacell foam is now over. In the next session,
the identification process of the value of the parameters of the model is discussed.

3 Identification

In this part the parameters of the model are obtained by inverse identification. For
reminder, these parameters are: a the length of the edge of the perfect unit cell, ρ

the density of the plastic, E the elastic modulus, ν the Poisson’s coefficient, σ f the
failure stress in tension, σ y the yield stress in compression, r the radius of the beam
elements and rc the radius of contact between the beam elements.

The starting point of the identification process is the choice of the lengths a of
the edges of the unit cell. In order to introduce the change in scale strategy, three
values are retained, evolving from the “real” value a = 0.25 mm to a = 1 mm with
an intermediate value of 0.5 mm.

For each of these three values of a, the elastic modulus and the Poisson’s coefficient
are taken equal to E = 3000 MPa and ν = 0.3. These values are chosen to represent
the elastic characteristics of polymetacrylimid. This choice is not critical since it
only shifts the other parameters without impacting the physics.

Before describing the next steps, it has to be recalled that the model is developed for
the simulation of impact loadings on sandwich structures in the context of the finite
elements method associated with explicit time integration scheme. As the com-
putational time can rapidly become important for the smallest microstructure, an
imposed strain rate of ε̇ = 200 s−1 is applied to the specimen for the identification
process.

The identification procedure makes use of virtual parallelepipedic specimens whose
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dimensions and loading conditions are listed in Tab. 2. An illustration of the shapes
of the meshes is displayed in Fig. 17 (shapes only, no sizes).

Table 2: Computations for identification
tensile compressive shear tie length b

a quasi-static ε̇ = 200 s−1 ε̇ = 200 s−1 ε̇ = 200 s−1

0.25 6×6×8 mm 6×6×8 mm 72×6×8 mm 2×1 mm
0.5 12×12×16 mm 12×12×16 mm 144×12×16 mm 2×2 mm
1 24×24×32 mm 24×24×32 mm 288×24×32 mm 2×4 mm

Tensile and compressive specimens are cubes involving at least 12 cells in each
direction as mentioned in subsection 2.4.2. The shape of the shear specimens is
chosen to present a length / height ratio equal to 12 in agreement with the C 273
specifications of [ASTM Standard (2011)].

The identification of the parameters then follows the steps:

1. The radius r of the beam elements is determined from a quasi-static tensile
virtual test of a cube of Rohacell. In this model, the material law is linear
elastic and the only prerequisites are E, ν and the mesh. A first computation
is done with an arbitrary radius r. The value of the radius r is adjusted to
match the computed macroscopic modulus with the value ES given in Tab. 1.

2. The density ρ of the material is then computed to ensure the mass conser-
vation. The mass of the specimen is computed from the volume vS of the
specimen and from the total length l of the beams: mS = vSρS = πr2lρ .

3. The tensile failure stress of the model σ f is obtained from dynamic tensile
simulations. In this model, the material law described in subsection 2.3 is
used with a huge value for yield stress in order to deactivate the plasticity
(standing for buckling) that does not occur in tension. Several computation
with varying values of σ f are done until the macroscopic tensile failure stress
of the specimen σS,t f matches the value of Tab. 1.

4. The yield stress σ y is found from dynamic crushing simulations. Several
computations are launched to match the plateau stress of the specimen σS,y

due to the buckling of the edges. In this part, the contact radius rc between
the beams can also be determined to initiate the densification at the suited
strain. However, since there is a lack of data for densification, in this study
the contact radius rc is simply taken equal to the true radius of the beams r.
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5. Shear computations are performed to validate the identified values since this
loading can be seen as a combination of tension and compression in the prin-
cipal stress space.

Table 3: Properties of the model at various scales
Property Symbol Unit Scales

Edge length a mm 0.25 0.5 1
Minimal edge length amin mm 0.05 0.1 0.2
Standard deviation σsd - 0.08 0.26 0.6

Plastic density ρ kg/m3 161 158 153.5
Cross section radius r mm 0,075 5 0.153 0.31

Contact radius (not identified) rc mm 0,075 5 0.153 0.31
Elastic modulus E MPa 3 000 3 000 3 000
Poisson’s ratio ν - 0.3 0.3 0.3

Brittle tensile failure stress σ f MPa 22.1 20.5 19.5
Compressive plastic yield stress σ y MPa 4.7 4.7 4.7

Now that the parameters of the model are available for three investigated sizes of
unit cell, the results are presented.

4 Results and discussion

In this section, the results are presented in terms of true stress versus true strain
curves and degradation phenomena. Tensile, crushing and shear tests are analysed.
The interest of the change in scale strategy is then discussed.

4.1 Boundary conditions

The boundary conditions are imposed to the specimens by the mean of two master
nodes controlling slave nodes located at the bottom and at the top of specimen.
In Tab. 2, the “tie length” b corresponds to the thickness of constrained nodes in
the z direction. For example, the 72× 6× 8 mm shear specimen has a 1 mm tie
length on each side. This means that the nodes such that z ∈ [0, 1] are tied to the
bottom master node and that the nodes such that z ∈ [7, 8] are tied to the top master
node. Hence, the free height of the specimen is 6 mm. The value of b is chosen
empirically to constrain enough slave nodes to impose the boundary conditions.
The bottom master node is locked, whereas the top master node can only translate
in one direction to induce a tensile, a compressive or a shear loading with an average
macroscopic strain rate of 200 s−1.
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4.2 Tensile tests

The mechanical response of Rohacell specimens subjected to tensile loading are
plotted in Fig. 11.
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Figure 11: Tensile responses for the three unit cell sizes a = 0.25, 0.5 and 1 mm

The true stress versus true strain curves are in very good agreement with values
available from Tab. 1 for the three investigated sizes of cells. After a linear elastic
part, the brittle failure of the edges induces the failure of the specimen has illus-
trated in Fig. 12.

For the three specimens, a macro crack quickly propagates through the whole
section leading to the brittle failure. These results match the observations made
by [Christensen, Freeman and DeTeresa (2002)].

4.3 Crushing tests

The results for the crushing simulations are plotted in Fig. 13.

Here, the model shows its ability to predict both the linear elastic part and the
apparition of the plateau stress due to the buckling of the edges. A similar curve is
obtained for the three scale up to a strain of around 0.5. However, after this level
of compaction, divergence appears between the smallest cell size specimen and the
two other. This is mainly due to the lack of identification upon the contact radius rc

in the model. Extra work should be accomplished to find a proper value for this rc
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a = 0.25 mm
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24x24x24 mm cube
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Figure 12: Tensile test for the three unit cell sizes a = 0.25, 0.5 and 1 mm

parameter, particularly for a = 0.25 mm. As the model tends to be used with bigger
cell sizes, this issue does not appear critical.

The scenario of failure of the specimen is illustrated in Fig. 14. As it is the same
for the three cell sizes, only the intermediate one of a = 0.5 mm is shown at several
steps of loading.

At 20 % of loading, a band of edges subjected to buckling appears on the left of
the specimen. This state correspond to the initiation of the plateau stress. Up to
70/80 % of loading, the band propagates through the thickness of the specimen.
When the beam elements are all in contact, the densification step initiates.

Once again, the model behaviour is in good agreement with observations made
by [Zhu, Mills and Knott (1997); Li, Mines and Birch (2000); Gibson and Ashby
(2001); Christensen (2000); Jang and Kyriakides (2009b); Jang and Kyriakides
(2009a)], even if some of these observations were made on open cells foams.
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Figure 14: Crushing test of a 12×12×12 mm specimen
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4.4 Shear tests

The results obtained under shear loading are plotted in Fig. 15.
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Figure 15: Shear responses of for the three unit cell sizes: a = 0.25, 0.5 and 1 mm

After a short linear part of satisfactory shear modulus, the stress versus strain curve
exhibits a non linear shape that is due to the apparition of plasticity (buckling)
in the zones subjected to compression and to the apparition of tensile failures of
some edges loaded in tension. As can be seen in Fig. 16, several cracks quickly
propagates in a plan perpendicular to the principal tensile stress direction. Once
they meet, the specimen fails. The residual stress is due to the contact between the
beam elements which induces a friction between the upper and lower parts of the
broken specimen.

The failure under shear loading appears at σ = 0.7 MPa rather than at 0.8 MPa as
might have been expected. This is maybe due to the perturbation process that can
not ensure convex shapes for the cells of the Rohacell model. Another strategy
relying on Voronoi’s cell will be investigated in the future.

Apart from this last point, the model produces satisfactory load response and degra-
dation phenomena for the three investigated scales. This validates the change in
scale approach in a physical point of view.
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Figure 16: Shear test for the three unit cell sizes a = 0.25, 0.5 and 1 mm

4.5 Computational time gains

In this part a comparison between the computational times obtained for the speci-
mens meshed with three edge lengths (a = 0.25, 0.5 and 1 mm), is performed. The
meshed specimens are presented in Fig. 17. Unlike the identification step, where
the dimensions of the specimens were chosen to preserve the number of cells re-
gardless of the size of the microstructure, here the size of the specimens is constant
so as to vary the number of cells for a given structure.

The tensile, crushing and shear loadings are simulated on a parallel computer in-
volving 16 cores (4 processors with 4 cores per processor). A summary of the
computation times obtained is available in Fig. 18.

The reference time is set to 1 for the miscrostructure with a = 0.25 mm. As the y
axis is in log scale, it can be seen from this bar plot that the gain in time is of an
order of 30 between the 0.25 and the 0.5 mm scales and of an order of 400 between
the 0.25 and the 1 mm scales.

In compression, large time is needed to reach an important crushing strain. In shear
the computation time is also significant but, this time, due to the high number of
cells. With this loading conditions, the gains are very impressive with a reference
time of more than 20 hours at 0.25 mm and of less than 3 minutes at 1 mm.
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Figure 17: Specimens used for testing the influence of the cell size (a = 0.25, 0.5
and 1 mm) on the computational time
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Figure 18: Computational times for a = 0.25, 0.5 and 1 mm

Two points can explain these results:

• for a given volume, a change by a factor 2 of the length a of the edge results
in a change by a factor of 23 of the number of cells;
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• when the edge length a of the unit cell increases, the explicit time step be-
comes higher, reducing the number of needed iterations.

More surprisingly, despite the small number of cells present in the specimen with
the larger size of microstructure (a = 1 mm - see Fig. 17), the true stress versus true
strain curves remain satisfactory as shown in Fig. 19.

(Evonik)

Tensile

a = 0.25 mm
a = 0.5 mm
a = 1 mm

Tr
ue

 st
re

ss 
σ 

[M
Pa

]

0

0.5

1

1.5

2

True strain ε [-]
0 0.01 0.02 0.03 0.04 0.05 0.06

(Evonik)

Crushing

True strain ε [-]
0 0.25 0.5 0.75 1 1.25 1.5

(Evonik)

ShearingTr
ue

 st
re

ss 
σ 

[M
Pa

]

0

0.2

0.4

0.6

0.8

1

True shear strain γ [-]
0 0.025 0.05 0.075 0.1 0.125

Figure 19: Tensile, crushing and shear curves for the three sizes of microstructures
(a = 0.25, 0.5 and 1 mm) used with the a = 0.25 mm specimens sizes

An illustration of the damage configurations, obtained in the case of the shear load-
ing, is presented in Fig. 20 for the three sizes of microstructure (a = 0.25, 0.5 and
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1 mm). The brittle failure and buckling of the edges are retrieved with the three
microstructures even if the description is finest for the smallest one (a = 0.25 mm).
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Figure 20: Damage configurations in the case of the shear loading for the three
sizes of microstructures (a = 0.25, 0.5 and 1 mm)

With a satisfactory mechanical behaviour at each scale and a huge gain in compu-
tational time, it becomes possible to consider the simulation of large-size structures
involving the modelling of the foam core material with the proposed strategy. Al-
though no study has been conducted at larger scales than a = 1 mm, there is no
fundamental reason that precludes the use of this approach at larger scales. The
choice of a larger edge length a enables the computation of large structures but
leads to a loss of details in the spatial description of the degradation phenomena,
which will still appear, but more coarsely.

5 Conclusion

In this paper, a modelling strategy dedicated to Rohacell polymeric foams has been
presented. It is developed in the context for the finite elements method with explicit
time integration scheme to face impact loadings. The model involves several as-
sumptions and simplifications used to make a compromise between the micro and
macro scales: truncated octahedron as unit cell, beam elements to mesh the lattice
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unit cell, simple perturbation process and material law. If this simple microscopic
model can probably be greatly improved, it has shown a good capability to be iden-
tified at various scales in order to match experimental data. Moreover, the physical
degradation phenomena are well represented at each scale. This enables a fine
analysis of the degradation of the foam, even for large structures since significant
computational time gains can be achieved due to the change in scale strategy.

The prospects of this study are: the improvement of the description of the mi-
crostructure as has been done by [Jang, Kraynik and Kyriakides (2008)], the in-
troduction of the slight anisotropy due to the manufacturing process of Rohacell
foams and the modelling of the strain rate effects as highlighted by [Bouix, Viot
and Lataillade (2009)].
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