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A Plastic Damage Model with Stress Triaxiality-Dependent
Hardening for Concrete
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Abstract: Emphases of this study were placed on the modelling of plastic dam-
age behaviour of prestressed structural concrete, with special attention being paid
to the stress-triaxiality dependent plastic hardening law and the corresponding dam-
age evolution law. A definition of stress triaxiality was proposed and introduced in
the model presented here. Drucker-Prager -type plasticity was adopted in the for-
mulation of the plastic damage constitutive equations. Numerical validations were
performed for the proposed plasticity-based damage model with a driver subrou-
tine developed in this study. The predicted stress-strain behaviour seems reason-
ably accurate for the uniaxial tension and uniaxial compression compared with the
experimental data reported in references. Numerical calculations of compressions
under various hydrostatic stress confinements were carried out in order to validate
the stress triaxiality dependent properties of the model.
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1 Introduction

The inelastic failure of concrete-like materials and structures is characterized by the
initiation and evolution of cracks and the frictional sliding on the closed crack sur-
faces. Plastic damage models are the major measures to deal with cracking-related
failure analysis, and are widely used by various researchers, see e.g. Lemaitre
(1990); Chaboche (1992); Seweryn and Mroz (1998); de Borst, Pamin, Geers
(1999). Owing to its simplicity and a reasonable capacity of problem represen-
tation, the isotropic damage model is the most popular damage model in the simu-
lation of the failure phenomena of concrete structures and is therefore the choice of
this study. Another important reason for the choice of an isotropic damage model
in this study is due to that the aim of this investigation is to analyse the cracking
process of concrete material of a prestressed concrete structure. Consequently the
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modelling of pre-peak nonlinearity of stress-strain curve under compression and
the stress-triaxiality dependent plastic hardening law and the corresponding dam-
age evolution law are the most important concerns of this study.

One of the plasticity-based isotropic damage models for concrete is the so-called
Barcelona model which is reported by Lubliner, Oliver, Oller, Onate (1989), and
has recently been adopted by Lee and Fenves (1998) and Nechnech, Meftah and
Reynouard (2002). In this model, a holonomic relationship between damage and
equivalent plastic strain has been presented, and two damage variables have been
designed for tensile damage and compressive damage respectively. It should be
noted that most of the existing plastic damage models have not emphasized on the
stress-triaxiality dependent plastic hardening law.

The framework of the constitutive model in this study is constructed on the basis of
the plasticity-based damage model reported by Saanouni, Forster and Ben Hatira
(1994). Although this model was proposed for the simulation of the plastic damage
phenomena of metals, it is still an attractive model for the purpose of this study
because of its important advantages over the other available damage models: firstly,
in this model, the damage evolution is not only closely connected to the increase of
plastic strain, but it is also influenced explicitly by the elastic strain; secondly, the
damage evolution is coupled with an increase of plastic strain; finally, this model
is relatively easy to modify to make it suitable for the simulation of plastic damage
phenomena of concrete-like material. The generalized Drucker-Prager criterion
introduced in Liebe and Willam (2001) for plastic loading, together with its plastic
potential for non-associated plastic flow rule, is referred to here.

The context of the article is organised in the following order: in section 2, the equa-
tions of the constitutive model are given for elasto-plasticity coupled with damage
in general; a definition of stress triaxiality is proposed and later introduced in the
plastic hardening and damage evolution laws. A driver subroutine for validation
of the constitutive models is developed with reference to the principle proposed by
Hashash, Wotring, Yao, Lee and Fu (2002). In section 3, results of numerical tests
of the proposed model are given for some typical loading cases. Some conclusions
are given in section 4.

2 Formulation of the proposed model

2.1 Fundamental equations of the plasticity-based damage model

With the ‘Energy Equivalence Principle’, the fundamental relationships of the
plasticity-based damage model proposed by Saanouni, Forster and Ben Hatira
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(1994) are listed in Eqn.(1) as:
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where σi j and εi j are total stress and strain tensors respectively, superscript p stands
for plastic and e represents elastic quantities, overhead tilt ∼ represents the quan-
tities for fictitious net materials, s̃i j is the deviatoric stress tensor, λ̇ is the inelastic
multiplier, D represents the isotropic damage variable, Y is the damage conjugate
force, E0

i jkl is the elasticity tensor of the intact material, δi j is the 2nd order unit
tensor, Ĩ1 is the sum of the effective principal stresses, J̃2 is the second invariant of
the deviatoric effective stress tensor, F is a plastic damage potential function.

It is seen from the above equations that the damage evolution is designed to be ac-
companied by plastic strain increase, and its quantity of increment is also dependent
on elastic strain tensor via damage conjugate force.

2.2 Specification for Drucker-Prager type plasticity coupled with damage

With reference to the generalized Drucker - Prager criterion introduced in Menétrey
and Willam (1995), together with the hardening model introduced in Besson
(2001), the plastic damage loading condition is primarily defined in the effective
stress space in the following form (stress triaxiality will be introduced later):

f̃ = αF Ĩ1 + J̃1/2
2 −

[
k+ k∞

(
1− e−bλ

)]
= 0≤ 0 (2)

where k is initial shear strength constant, k∞ is the strain hardening limit of the
fictitious net material, which corresponds to infinite equivalent plastic strain, i.e.
λ → ∞, and αF is a material constant designed for pressure-sensitivity properties,
parameter b is a model constant which can be determined by fitting experimental
phenomena.

The plastic part of the potential, i.e. Q̃, is given in the effective stress space as:

Q̃ = αQĨ1 + J̃1/2
2 −

[
k+ k∞

(
1− e−bλ

)]
(3)

where αQ is the dilatancy constant for non-associated flow rule if αQ 6= αF .
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The following form of plastic damage potential function F is adopted in order to
have non-associate plastic flow in the effective stress space:

F = Q̃+
S

s+1

(
Y
S

)s+1

(1−D)φ (4)

where s,S,φ are material parameters, D is damage variable, Y is damage conjugate
force.

It is observed that the experimental results of stress-strain curves of concrete-like
materials are highly dependent on the stress triaxiality. In fact, phenomena of stress
triaxiality dependency of the stress-strain curves exist in engineering for a wide
range of materials such as geometerials, ceramics, composites and metals. In or-
der to simulate this kind of phenomena, the stress triaxiality was used by several
references (see Alves and Jones, 1999; Horstemeyer, Lathrop, Gokhale and Dighe,
2000; Borvik, Hopperstad and Berstad, 2003; Li, Zhang and Ansari, 2002). The
forms of expressions of stress triaxiality are different from one to another: Alves
and Jones (1999), Borvik et al (2003) and Horstemeyer et al (2000) define their
stress triaxiality explicitly, while Li, Zhang and Ansari (2002) implicitly account
for stress triaxiality influence in its plastic hardening law by using the stress invari-
ants I1 and J2.

Here, for the convenience of model formulation, together with a reference to the
conventional expressions adopted in several references (Sfer, Carol, Gettu and Etse
2002; Etse and Willam 1999), the stress triaxiality is defined as:

γ =

∣∣∣∣∣ I1
/√

3
√

2J2

∣∣∣∣∣ , J2 6= 0 (5)

The stress triaxiality is introduced into the damage plastic loading condition and
the damage plastic potential function in the following form:

f̃ = αF Ĩ1 + J̃1/2
2 −

[
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= 0≤ 0 (6)
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where
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(8)

Consequently plastic strain increment is obtained as:
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with
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It is obtained with Eqn.(5) that:
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The damage evolution law can be derived as:
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The parameters used in this model are: E,ν ,k,αF ,αQ for plasticity, and s,S,φ for
damage. Stress triaxiality γ is a special variable introduced in this model.

2.3 Constitutive behaviour for a finite displacement increment ∆εi j

With above constitutive model, the constitutive behaviour can be derived for a
known initial stress state (σi j,ε

p
i j,D) and a given strain increment ∆εi j. The stress

increment can be obtained by making total differential operation over total stress
tensor in above Eqn.(1) and a subsequent linearization over the time increment ∆t,
thus
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With the above equations, the following equation is obtained:
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The plastic damage multiplier λ̇ can be determined explicitly with the following
consistency condition:

f̃ = ˙̃f = 0 (16)
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Consequently it is obtained the following equation:

d f̃ = ∂ f̃
∂σi j

dσi j +
∂ f̃
∂D dD+ ∂ f̃

∂λ
dλ

= ∂ f̃
∂σi j

(1−D)2 E0
i jkldεkl

−dλ

[
∂ f̃

∂σi j
E0

i jkl (1−D)2 ∂ Q̃
∂σkl

+2 ∂ f̃
∂σi j

E0
i jkl (1−D)εe

klȲ −
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Thus, the following expression for plastic multiplier can be derived:
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For the sake of brevity, Eqn.(18) can be re-written in another form as:
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For a given strain increment ∆εi j, the stress tensor increment can be obtained by
substituting Eqn. (20) into Eqn. (14) such that:
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Therefore the algorithmic tangential stiffness tensor can be deduced as
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The elastoplastic damage loading condition for a given strain increment ∆εi j can be
expressed conceptually in the effective stress space as

f̃ = f̃ 0 +
∂ f̃

∂ (∆λ )
·∆λ ≤ 0 (23)
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where f̃ 0 is the value of yielding function at the starting effective stress state σ̃0
i j.

With Eqn. (2), the following relationship is obtained:
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With Eqns. (1) and (2), the tensors and vectors on the right hand side of Eqn.(24)
are obtained as
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The formulation of Newton-Raphson iteration equation between ∆λ and f̃ is
formed as:

∆λ = ∆λ0− f̃0

(
∂ f̃
∂λ

)−1

(30)

where f̃0 is the value of yielding function at the starting effective stress state σ̃0
i j.

3 Numerical validation at local level

Here a driver subroutine is designed for the purpose of validation of 3-dimensional
constitutive model at local level, i.e. for a material point only, with reference to
the algorithm proposed in Hashash, Wotring, Yao, Lee, and Fu (2002). Its prin-
ciple can be illustrated with Fig. 1 as: a mixed loading condition is applied with
ε11 = ε11 (t), and σ22 = σ33 = const, which means that a strain loading will be ap-
plied incrementally under a constant stress confinement in the other two directions.
The strain loading is applied elastically in direction 11, while the self-equilibrium
mechanism at this material point will result in variation of lateral strains nonlinear-
ly (for the sake of damage) in order to keep the lateral confinement constant. The
details of the numerical calculations will be given in the following context.
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Figure 1: Illustration of the mixed loading condition.
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Figure 2: Flow chart of global equilibrium iteration.
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3.1 Iteration procedure for the constitutive validation: external equilibrium it-
eration.

The function of the external equilibrium iteration is: for a known stress and s-
train state and a set of internal variables

(
σi j,εi j,ε

p
i j,D

)
, apply a load increment

(∆ε1,∆σ2,∆σ3), to find out quasi-elastically the response of (∆σ1,∆ε2,∆ε3,D) by
an iterative procedure.

The following quasi-elastic equations (i.e. elastic relationship for a finite time in-
crement ∆t) are adopted in the calculation:{

∆ε22
∆ε33

}
=

[
E2222 E2233
E3322 E3333

]−1[{
∆σ22
∆σ33

}
−
{

E2211
E3311

}
∆ε11

]
(31)

where Ei jkl are components of the elasticity tensor of damaged material which is
expressed in Eqn.(22). The principle of the external equilibrium iteration is illus-
trated in Fig. 2.

In Fig. 2, UMAT is the constitutive module which checks elastoplastic load-
ing state and makes elastic and/or elastoplastic damage calculations. Subroutine
CONSTITUERE will be called in the UMAT. The function of subroutine CON-
STITUERE is to carry on the constitutive integration and will be introduced in
detail in the following sub-section. The elasto-plastic-damage loading stiffness
(Eepd

i jkl ), which also known as algorithmic tangential stiffness, will be updated after
every iteration, and will be used in the quasi-elastic calculation of ∆ε2 and ∆ε3 at
every first iteration step at each of the loading increments.

3.2 Iteration procedure for the constitutive validation: internal elasto-plastic
damage iteration

By using the ‘fixed-point’ method described in Chaboche and Cailletaud (1996), for
a given finite strain ∆εi j, the only unknown in the elastoplastic damage calculation
at local level is the plastic-damage multiplier ∆λ .

The solution steps adopted in the procedure of CONSTITUERE subroutine are:

• Step 1: Initiate the stress state and state of all the internal variables:
σ0

i j,ε
0
i j,ε

p
i j,D0;

• Step 2: Apply strain increment ∆εi j, with ∆εi j = 0 for i 6= j obtained from
the outer global equilibrium iteration;

• Step 3: Calculate ∆λ0 with given initial stress state, strain increment and
linearized Eqn.(18);
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• Step 4: With this ∆λ0 obtained in step 3, calculate consequently the following
quantities:

ε
e
i j = ε

e(0)
i j +∆εi j−∆λ0

∂ Q̃
∂σ0

i j

εi j = ε
(0)
i j +∆εi j
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e
i jD = D(0)+∆λ0Ȳ ,
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[(
1−D(0)

)
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i jklε
e
i jε

e
kl

Sγ

]s(
1−D(0)

)φ

σi j = E0
i jkl (1−D)2

ε
e
i j

• Step 5: With Eqn.(24) and (30), calculate iteratively the plastic-damage mul-
tiplier with the following equations:

∆(∆λ ) =− f̃0

(
∂ f̃
∂λ

)−1

∆λ = ∆λ0 +∆(∆λ )

• Step 6: Check convergence: if ∆(∆λ ) ≤ Tolerance, cease the iteration and
continue to the next load increment;

• Otherwise, make

∆λ0 = ∆λ

• Return to step 2 to carry on the next iterative calculation up to the maximum
iteration limit.

3.3 Numerical examples

In this sub-section, numerical validations of the constitutive model at local lev-
el are carried out with the driver subroutine developed here for 3 kind of typical
loading cases, i.e., (1) uniaxial tension; (2) uniaxial compression; and (3) uniaxial
compressions under various hydrostatic stress confinements.

With reference to the existing literatures (see Lee and Fenves, 1998; Ghavamian
and Carol, 2003; Etse and Willam, 1999), the following values of material param-
eters are adopted in the calculation. They are:
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E=31140MPa, ν=0.2, αF=αQ=0.15, k=2.0MPa, s=1, S=10-16 for tension and
4×10-5 for compression, φ=-1.0, b=88 for tension and 500 for compression,
k∞=100MPa for tension and 248MPa for compression. Tolerance=10-20 for in-
ternal iteration (i.e. for ∆(∆λ )) and 10-4 for external iteration (i.e. for constant
lateral stress confinement).

3.3.1 Uniaxial tension

The stress-stain behaviour under uniaxial tension of the model is shown in Fig.
3. No plastic hardening behaviours is observed in this case. Comparison between
the experimental data (Gopalaratnam, Shah, 1985) and the numerical results of
stress-strain response under uniaxial tension indicates that the prepeak stress-strain
behaviour can be predicated very well, while the postpeak behaviour can only be
predicted with a reasonable accuracy by the proposed model. Fig. 4 shows the
numerical results of the response of the lateral strain and volumetric strain. The
damage response in Fig. 5 shows that damage value asymptotically tends to maxi-
mum 1.0 with the increase of strain loading.
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Figure 3: Stress-strain behaviour under uniaxial tension: comparison between nu-
merical and experimental results.

3.3.2 Uniaxial compression

The stress-stain behaviour and damage evolution response of the proposed mod-
el under uniaxial compression are shown in the following Fig. s. Comparison
between the experimental data given by Karsan, Jirsa (1969) and the numerical re-
sults of stress-strain response under uniaxial compression in Fig. 6 indicates that
the prepeak behaviour can be predicated very well, and the postpeak behaviour can
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Figure 4: Stress-strain behaviours under uniaxial tension: lateral and volumetric
responses.

Figure 5: Damage evolution under uniaxial tension.
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Figure 6: Stress-strain behaviours under uniaxial compression.
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be predicted with a reasonable accuracy. The numerical results of the response
of the lateral strain and volumetric strain shown in the same Fig. 6 indicate the
dilatancy property of the model: there is a saturation of dilatancy at which the vol-
umetric strain ceases to increase. The corresponding damage evolution behaviour
is presented in Fig. 10.

3.3.3 Compressions with confinement

The stress-strain behaviour of a model for concrete under hydro-static stress con-
finement is an important aspect: it indicates the pressure-sensitivity behaviour of
the model. In the numerical tests performed here, the procedure of loading is given
as: the hydro-static confinement, i.e. σmI, is applied before strain loading in direc-
tion 11 being carried on. Fig. 7 shows the variation of the stress-strain response
caused by the confinement of the stress-stain behaviour and damage evolution re-
sponse, with the other parameters were kept unchanged: with the increment of the
stress confinement, the softening phenomena become weaker and weaker. It seems
that the stress-triaxiality dependent plastic hardening phenomena are properly sim-
ulated by the model proposed here.

In Fig. 8 and 9, the stress-strain curves under confinement of -10MPa and -30MPa
are given respectively, together with the responses of ε22−σ11 and εv−σ11. The
dilatancy phenomena become weaker with the increase of confinement pressure.
The prepeak nonlinearity of the stress-strain curve seems reasonably simulated. 
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Figure 7: Influence of hydrostatic stress confinement: stress-strain behaviour
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In order to illustrate the proposed model further in-depth, in Fig. 11 and 12, the
peak strength envelopes obtained numerically with the proposed model are given
out. Because of the different parameter values adopted in the calculation for tension
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and compression, it is seen in Fig. 11 that the shape of tensile strength envelope
is quite different from the shape of the compressive strength envelope. The axial
points in Fig. 11 are obtained analytically by using the Dracker-Prager condition
directly, because there is no prepeak nonlinearity for tensile case, which is judged
by criterion I1≥ 0. In Fig. 12, the envelope of peak-strengths of compression under
very high confinement up to -200MPa is shown in order to show the validity of the
model for a wide range of hydrostatic stress confinement.

              

Figure 1: Stress-strain behaviours under compression with -10MPa confinement. 
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Figure 8: Stress-strain behaviours under compression with -10MPa confinement.

                

Figure  1: Stress-strain behaviours under compression with -30MPa confinement. 
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Figure 9: Stress-strain behaviours under compression with -30MPa confinement.
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Figure  1: Damage-strain behaviours under compression with various stress confinements. 
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Figure 10: : Damage-strain behaviours under compression with various stress con-
finements.

             

Figure  1: Peak strength envelope in the 31I  - 22J  space (with confinements up to -30MPa). 
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Figure  1: Peak strength envelope in the 31I  - 22J   space (with confinements up to -200MPa). 
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4 Conclusions

In this article, a plasticity-based isotropic damage model has been proposed with
special concerns being given to the modelling of the stress-triaxiality dependent
plastic hardening law and corresponding damage evolution. Numerical validation-
s have been made for the proposed model with a driver subroutine developed in
this study. The numerical results of stress-strain behaviour seem reasonably accu-
rate for the uniaxial tension and uniaxial compression cases compared with the ex-
perimental data of the references. The phenomena of stress-triaxiality- dependent
plastic hardening have been simulated. Owing to the highly nonlinearity existing
among the model parameters and the experimental phenomena, it seems necessary
to choose values of constitutive parameters by some kind of technique of inverse
analysis.
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