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Abstract: The most important surface susceptibility models for the electromag-
netic characterization of periodic metafilms, based on the dipole approximation
method, are systematically analyzed in this paper. Specifically, two well-known
techniques, which lead to a set of local effective surface parameters, are investigat-
ed along with a new dynamic non-local modeling algorithm. The latter formulation
is properly expanded, in order to be applicable for any arbitrary periodic metafilm,
irrespective of its way of excitation. The featured schemes are then directly com-
pared toward their ability to efficiently predict the reflection and transmission prop-
erties of several lossless and lossy metafilms. Their outcomes are carefully verified
through an assortment of numerical simulations, while novel physical insights of
the observed phenomena and diverse implementation aspects of the models are ex-
tensively discussed.
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1 Introduction

Since the first experimental demonstration and subsequent exploding developmen-
t of double-negative (DNG) metamaterials after the year 2000, one of the most
significant challenges that occurred has been the push of artificial magnetic prop-
erties toward optical frequencies. To this end, a large number of homogenization
methods has been suggested, in order to validate the effective magnetic response
of such artificial structures. However, despite the multitude of successive efforts
that have been published in the literature, a unified approach for the unambiguous
effective-medium representation of all bulk metamaterials is yet to be developed.

In the meanwhile, the 2-D equivalents of bulk metamaterials, frequently designat-
ed as metafilms, have also been heavily analyzed. These structures are typically

1 Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.



232 Copyright © 2014 Tech Science Press CMC, vol.39, no.3, pp.231-265, 2014

formed by the 2-D periodic repetition of non-intersecting, properly-engineered s-
catterers or meta-atoms. Initially, their theoretical treatment has been, in essence,
identical to that of their 3-D counterparts, thus leading to the assignment of bulk
effective constitutive parameters εeff and µeff. Later, the authors of [Holloway, Di-
enstfrey, Kuester, O’Hara, Azad and Taylor (2009)] have proven the inconsistency
of such procedures, as for realistic metafilms (when the thickness of the structure
along the direction normal to the periodicity is d� λ ), the values of εeff and µeff
depend on thickness d. Since d cannot be uniquely defined, due to the lack of
periodicity along this direction, the corresponding bulk effective constitutive pa-
rameters do not have their usual physical meaning and cannot be considered as
characteristic parameters of the structure under study.

A viable alternative for the electromagnetic characterization of metafilms is the
extraction of appropriate boundary conditions, which efficiently correlate the elec-
tromagnetic fields on the two sides of the metafilm to a macroscopic average of its
actual micro-structure. These macroscopic parameters are called effective surface
susceptibilities and represent the surface equivalent of εeff and µeff bulk consti-
tutive parameters. Nonetheless, contrary to them, surface susceptibilities can be
unambiguously attributed to a metafilm and hence, they constitute a sufficient set
of parameters for its description. In fact, once these parameters are known or can
be calculated, an effective-medium representation of the metafilm is achieved and
boundary conditions are only needed to compute the reflection and transmission
coefficients of the metafilm.

Such generalized boundary conditions have been first developed in [Kuester, Mo-
hamed, Piket-May and Holloway (2003)], based on the dipole approximation of the
individual meta-atoms of the metafilm. Apart from this important contribution, the
authors of this work have also presented a simple procedure for the determination
of the surface susceptibility matrix for arbitrary non-bianisotropic scatterers. This
process, which can be regarded as the 2-D translation of the well-known Clausius-
Mossotti formulas of the classical mixing theory [Sihvola (1999)], assumes only
quasistatic electromagnetic interactions between meta-atoms. Two years later, ana-
lytical expressions for the reflection and transmission coefficients of such metafilms
have been derived in [Holloway, Mohamed, Kuester and Dienstfrey (2005)], thus
completing the first general-purpose surface susceptibility model. Furthermore, the
extension of this model to bianisotropic scatterers has been presented in [Belokopy-
tov, Zhuravlev and Terekhov (2011)], in which the cross-polarized reflection and
transmission coefficients of a metafilm have also been evaluated. Similar results to
the latter paper have been published in [Koledintseva, Huang, Drewniak, DuBroff
and Archambeault (2012)], where the more general form of the metafilm’s bound-
ary conditions has also been introduced.
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An alternative approach has been suggested in [Holloway, Dienstfrey, Kuester,
O’Hara, Azad and Taylor (2009)], according to which the desired surface suscep-
tibilities can be directly retrieved from the simulated values of the reflection and
transmission coefficients of the metafilm. To this aim, the previously reported an-
alytical expressions of the scattering coefficients [Holloway, Mohamed, Kuester
and Dienstfrey (2005)] have been properly inverted. This extraction technique,
which is − to some extent − similar to the well-known Nicolson-Ross-Weir re-
trieval algorithms for bulk metamaterials, has been proven very reliable and also
applicable to realistic scatterer arrays, imprinted on a substrate material. Moreover,
it has been successfully employed for the electromagnetic characterization of two
parallel metafilms with shperical nanoparticles, located on the opposite sides of a
dielectric substrate [Morits and Simovski (2010)]. However, the main shortcoming
of this algorithm is that it has been rigorously developed only for structures with
non-bianisotropic particles, thus restricting its general applicability.

Another analytical method has been proposed in our latest works [Dimitriadis,
Sounas, Kantartzis, Caloz and Tsiboukis (2012); Dimitriadis, Kantartzis and T-
siboukis (2013)]. Contrary to the other models, this technique results in a set of
non-local effective susceptibilities, namely parameters which depend on the inci-
dent wavevector. Despite the fact that these parameters do not represent meaningful
physical entities, characteristic of the specific structure, they have been proven very
efficient in the prediction of the reflection and transmission properties of metafilms.
The key difference is the availability of a large number of off-diagonal matrix com-
ponents, which can flexibly model the weak spatial dispersion phenomena, usually
associated with such devices. Nevertheless, this approach has been previously pre-
sented only for specific metafilms illuminated by a TE-polarized plane wave.

In this paper, we review the most important aspects of the three general surface sus-
ceptibility models mentioned above, which are exclusively founded on the dipole
approximation of the constituting meta-atoms. The structure of the paper is as fol-
lows: In Section 2, we provide a brief introduction to the dipole approximation
technique and the properties of the corresponding particle polarizabilities. The dif-
ferences between the two existing types of polarizabilities, i.e. the quasistatic and
the dynamic ones, are carefully addressed, by providing, also, the basic principles
that apply to each category. In Section 3, the three prescribed models are more
elaborately present, highlighting possible implementation issues and other impor-
tant traits. The third approach (the “proposed" technique) is adequately generalized
compared to its structure-specific form in our previous publications. Furthermore,
in Section 4, the three algorithms are implemented and extensively compared for
various structures with lossless and lossy particles of increased practical interest.
Their outcomes are also certified via numerical simulations, acquired by means of a
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commercial computational suite. In the process, a set of new analytical formulas for
the scattering coefficients of metafilms, comprising magneto-dielectric spheres and
Ω-shaped bianisotropic particles, are derived and many novel physical insights on
the phenomena under study are provided. Finally, in Section 5, we briefly summa-
rize the main conclusions deduced during our investigation. Note that throughout
the following analysis an e jωt time dependence is assumed and suppressed.

2 Polarizabilities of electrically-small scatterers

Prior to introducing the different surface susceptibility models for the electromag-
netic characterization of a metafilm, we should, first, focus on the building blocks
of such periodic structures, namely the meta-atoms. The properties of the individ-
ual particles are indeed very important, since they significantly affect the behavior
of the overall device. The periodicity in metafilms is not as crucial a factor as in the
traditional frequency selective surfaces (FSSs), because it only affects the strength
of the inter-particle interactions on the lattice. In principle, periodicity is not even
necessary for the operation of a metafilm, although it is usually preferable, in order
to facilitate the analysis and fabrication procedures.

For the scatterers themselves, the most critical parameters are their shape and the
electric/magnetic properties of the materials from which they are made. However,
these parameters are not convenient for a unified description of such periodic ar-
rays and hence, the latter are typically modeled via the classical multipole theory
[Raab and De Lange (2005)]. According to this approach, charges and currents, in-
duced on an isolated scatterer by externally-applied electromagnetic fields, can be
expressed as the superposition of various polarization terms with increasing order
of complexity (dipole, quadrupole, octopole etc.). The proportionality factors be-
tween these polarization moments and the externally applied electromagnetic fields
are called polarizabilities and are tensors of increasing rank (second-rank for dipole
polarizabilities, third-rank for quadrupole polarizabilities and so on).

In this paper, we examine only metafilm models which have been developed under
the dipole approximation of the constitutive meta-atoms. The main parameters and
notations of this approach are briefly introduced in the following subsections.

2.1 Dipole approximation

If a meta-atom is sufficiently smaller than the free-space wavelength of the imping-
ing radiation (typically D ≤ λ/4, where D is the largest dimension of the parti-
cle), its electromagnetic response to any external excitation can be modeled via the
point-dipole approximation [Collin (1991)]. Specifically, each scatterer of the array
may be substituted by an electric dipole moment, p, and a magnetic dipole momen-
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t, m, which are placed on its geometrical center. According to this approximation,
these dipole moments can be related to the local field acting at the center of every
scatterer1 as in [Tretyakov (2003)][

p
c−1

0 m

]
=

[
¯̄αee ¯̄αem

¯̄αme ¯̄αmm

]
·

[
ε0Eloc

c−1
0 Hloc

]
or µµµ = [α]f loc, (1)

where c0 = 1/
√

µ0ε0 the speed of light in vacuum, ¯̄αee, ¯̄αem, ¯̄αme, and ¯̄αmm are
the electric-electric, electric-magnetic, magnetic-electric, and magnetic-magnetic
second-rank dipole polarizability tensors of the particle, correspondingly, [α] is the
total dipole2 polarizability matrix, and

µµµ =
[
px, py, pz,c−1

0 mx,c−1
0 my,c−1

0 mz
]T

, (2a)

f loc =
[
ε0E loc

x ,ε0E loc
y ,ε0E loc

z ,c−1
0 H loc

x ,c−1
0 H loc

y ,c−1
0 H loc

z
]T

, (2b)

are the normalized dipole moments and local fields six-vectors, respectively.

Note that, even in this first-order approximation, the complete description of a spe-
cific scatterer requires the knowledge of 36 complex polarizabilities in (1). Howev-
er, for the vast majority of particles, most of these parameters are negligibly small.
Furthermore, the reciprocity theorem enforces several limitations to the polariz-
ability tensors, since the following symmetries and anti-symmetries must apply
[Serdyukov, Semchenko, Tretyakov and Sihvola (2001)]

¯̄αee = ¯̄αT
ee, ¯̄αmm = ¯̄αT

mm, ¯̄αem =− ¯̄αT
me. (3)

These formulas are known in the literature as the Onsager-Casimir principle and
can be easily derived from the corresponding symmetries of the dyadic Green func-
tions [Seršić, Tuambilangana, Kampfrath and Koenderink (2011)]. As a result, the
total number of independent polarizability terms may be reduced from 36 to 21
complex parameters, in the more general case. For lossless particles as well as for
specific geometries, like the planar metallic particles, further simplifications of the
polarizability matrix are possible.

2.2 Quasistatic and dynamic polarizabilities

We should, now, distinguish between two different types of polarizabilities that we
will encounter. The first category includes the polarizabilities which are developed

1 This local field is the superposition of the external excitation and the sum of the scattered fields
microscopically produced by every single scatterer of the array.

2 Henceforth, the prefix “dipole” will be implied and omitted in front of the term “polarizability”.
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via the use of equivalent circuit models, like the RLC equivalent circuits of diverse
split-ring resonators [Marqués, Martín and Sorolla (2008)]. Despite the fact that
these models can predict the location of the first particle resonance with decent ac-
curacy, they are limited by the assumption c0 = ∞ (or, equally k0 = 0) of lumped
circuit models. This leads to inaccurate results when retardation effects signifi-
cantly influence the performance of the structure, as is usually the case in various
metamaterial devices. For this reason, these polarizabilities are not the most ade-
quate choice for the study of the electrodynamic behavior of metafilms. In the rest
of our work, we will refer to such polarizabilities as quasistatic, a term coined in
[Seršić, Tuambilangana, Kampfrath and Koenderink (2011)].

Conversely, to study metafilms where the retardation effects should be properly
taken into account, a set of dynamic polarizabilities is required. These parameter-
s should − by definition − match some important criteria: (1) involve the speed
of light (or, equivalently, the wavenumber, k0) as a parameter, (2) satisfy the reci-
procity theorem, in the form of the Onsager-Casimir principle, and (3) satisfy the
energy conservation theorem. In the case of a lossless particle and to comply with
(3), the polarizability tensors should be related to each other through the so-called
Sipe-Kranendonk conditions [Belov, Maslovski, Simovski and Tretyakov (2003)]

Im
{(

¯̄αee− ¯̄αem ¯̄α−1
mm

¯̄αme
)−1
}
=

k3
0

6π

¯̄I, (4a)

Im
{(

¯̄αmm− ¯̄αme ¯̄α−1
ee

¯̄αem
)−1
}
=

k3
0

6π

¯̄I, (4b)

Re
{(

¯̄αee− ¯̄αem ¯̄α−1
mm

¯̄αme
)−1 ¯̄αem ¯̄α−1

mm

}
= ¯̄0. (4c)

In the special case of non-bianisotropic scatterers, when ¯̄αem = ¯̄αme =
¯̄0, these ex-

pressions are simplified to

Im
{

¯̄α−1
ee
}
=

k3
0

6π

¯̄I and Im
{

¯̄α−1
mm
}
=

k3
0

6π

¯̄I. (5)

It should be stressed that the quasistatic polarizabilities of a particle do not satisfy
these criteria, since, in this case, the polarizability tensors are either purely real
( ¯̄αee, ¯̄αmm) or purely imaginary ( ¯̄αem, ¯̄αme) [Marqués, Martín and Sorolla (2008)].
The Onsager-Casimir principle applies, of course, to both types of polarizabilities,
as it arises from the reciprocity principle.

Finally, we should mention two important techniques that will be systematically
employed in the rest of the paper. The first one, proposed in [Seršić, Tuambilan-
gana, Kampfrath and Koenderink (2011)], concerns the transformation of the qua-
sistatic polarizabilities of a lossless scatterer into the corresponding dynamic ones.
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This can be done by properly adding the radiation damping term to the quasistatic
polarizability matrix, which can be mathematically described as

[α]−1
dyn = [α]−1

stat + j
k3

0
6π

¯̄I. (6)

Such a procedure is applicable in any case, provided that the polarizability matrix
can be inverted. Since, for many realistic scatterers, most of the 36 elements of
[α] are zero, the latter frequently reduces to a square matrix of lower order (for
example 4×4 or 3×3). In these cases, the reduced matrix needs to be invertible,
as the full 6×6 one is obviously singular and cannot be inverted.

The second technique, introduced in [Yatsenko, Maslovski, Tretyakov, Prosvirnin
and Zouhdi (2003)], refers to the inverse procedure, namely the determination of
the quasistatic polarizabilites of a lossless particle, given its dynamic polarizability
matrix. Nevertheless, contrary to the previous case, this technique can only be
applied in some special cases, as it requires the solution of a system of equations,
which is not always invertible.

3 Effective surface susceptibility models

Let us, now, consider the actual problem of an infinite periodic metafilm in free
space, which is assumed to coincide with the z = 0 plane, as in Fig. 1. The most ef-
ficient way of modeling such structures is in terms of effective surface parameters,
that relate the field components at their two sides through a generalized bound-
ary condition. To reach such conditions, we start from the classical discontinuity
boundary conditions for a thin slab of homogeneous material, located between the
z =−d/2 and z = d/2 planes. If this slab is excited from an arbitrary electromag-
netic field, the field components on the z = d/2 face (similarly for the z = −d/2
face) will satisfy the relations [Collin (1991)]

ẑ×
(
H|z=d/2+−H|z=d/2−

)
= Js, (7a)

ẑ×
(
E|z=d/2+−E|z=d/2−

)
=−Ks, (7b)

with Js and Ks the electric and magnetic surface currents, respectively, induced on
the boundary surface. For a metafilm under the dipole approximation, followed
herein, these surface currents can be related to the (electric) surface polarization,
Ps, and magnetization, Ms, vectors induced on its surface. Thus, letting also d→ 0,
(7) can be written as [Idemen (1988)]

ẑ× (H|z=0+−H|z=0−) = jωPst − ẑ×∇tMsz, (8a)

ẑ× (E|z=0+−E|z=0−) =− jωµ0Mst − ẑ×∇t(Psz/ε0), (8b)
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Figure 1: Geometry of an arbitrary periodic metafilm located on the z = 0 plane.

where the index t refers to the tangential components of the surface polarization-
s/magnetizations or differential operators.

Next, if we define the effective surface susceptibilities as

Ps = ε0 ¯̄χee ·E, ¯̄χee = diag{χxx
ee ,χ

yy
ee ,χ

zz
ee} , (9a)

Ms = ¯̄χmm ·H, ¯̄χmm = diag{χxx
mm,χ

yy
mm,χ

zz
mm} , (9b)

with E and H denoting the average electric and magnetic fields at the two faces of
the metafilm, (8) become [Kuester, Mohamed, Piket-May and Holloway (2003)]

ẑ×H|0+z=0− = jωε0 ( ¯̄χee)t ·Et − ẑ×∇t
(
χ

zz
mmHz

)
, (10a)

ẑ×E|0+z=0− =− jωµ0 ( ¯̄χmm)t ·Ht − ẑ×∇t(χ
zz
eeEz). (10b)

However, note that (9) are valid only for metafilms comprising biaxially anisotropic
meta-atoms. For the more general case of bianisotropic metafilms, 4 surface sus-
ceptibility tensors are required, which can be defined from [Dimitriadis, Sounas,
Kantartzis, Caloz and Tsiboukis (2012)][

Ps

c−1
0 Ms

]
=

[
¯̄χee ¯̄χem

¯̄χme ¯̄χmm

]
·

[
ε0E

c−1
0 H

]
or µµµs = [χ]f (11)

where

µµµs = [Psx,Psy,Psz,c−1
0 Msx,c−1

0 Msy,c−1
0 Msz]

T , (12a)

f =
[
ε0Ex,ε0Ey,ε0Ez,c−1

0 Hx,c−1
0 Hy,c−1

0 Hz
]T

, (12b)
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are the normalized surface polarization/magnetization and average field six-vectors,
respectively. Plugging the prior expressions into (8), we finally obtain [Koledintse-
va, Huang, Drewniak, DuBroff and Archambeault (2012)]

ẑ×H|0+z=0− = jω
[(

χχχ
x
e · f
)

x̂+
(
χχχ

y
e · f
)

ŷ
]
− ẑ×c0∇t

(
χχχ

z
m · f
)
, (13a)

ẑ×E|0+z=0− =− jωη0
[(

χχχ
x
m · f
)

x̂+
(
χχχ

y
m · f
)

ŷ
]
− ẑ× ε

−1
0 ∇t

(
χχχ

z
e · f
)
, (13b)

with χχχ
j
i =

[
χ

jx
ie χ

jy
ie χ

jz
ie χ

jx
im χ

jy
im χ

jz
im

]T
, for i = {e,m} and j = {x,y,z}, the rows

of [χ] in (11) and η0 =
√

µ0/ε0. These are the more general boundary condi-
tions within the dipole approximation technique and suffice for the solution of any
metafilm scattering problem, provided that [χ] can be determined. Subsequently,
we present the most common methods for the derivation of [χ].

3.1 Quasistatic interaction model

Consider a metafilm, formed by the periodic repetition of biaxially anisotropic
meta-atoms which are described by the polarizability matrix

[α] = diag{αxx
ee ,α

yy
ee ,α

zz
ee,α

xx
mm,α

yy
mm,α

zz
mm} . (14)

Following an analytical procedure for the calculation of the local field, acting on
a single scatterer of the lattice, the authors of [Kuester, Mohamed, Piket-May and
Holloway (2003)] have proven that the elements of the surface susceptibility matrix
[χ] that describes the metafilm may be computed via

χ
xx
ii =

Nαxx
ii

1− Nαxx
ii

4R

, χ
yy
ii =

Nα
yy
ii

1− Nα
yy
ii

4R

, χ
zz
ii =

Nα
zz
ii

1+ Nα
zz
ii

2R

, (15)

where i = (e,m), N = (ab)−1 is the number of scatterers per unit surface, and R the
radius of a circular disk, whose center is located on the scatterer where the local
field is calculated. This radius depends on the periodicities of the structure and, for
the special case of a square lattice (a = b), it takes the value R = 0.6956a [Collin
(1991)]. It is worth mentioning that, for the derivation of (15), the quasistatic ap-
proximation k0R� 1 has been made, thus justifying the name usually attributed to
this technique. Moreover, the analogy of (15) to the well-known Clausius-Mossotti
mixing rule [Sihvola (1999)] is evident, as the only difference lies on the values
of the depolarization tensor of the circular disk ( ¯̄L = diag{1/4R,1/4R,−1/2R}),
compared to the depolarization tensor of the sphere.

The extension of the above technique to the more general case of bianisotropic
scatterers has been performed in [Belokopytov, Zhuravlev and Terekhov (2011)].
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Selecting a similar methodology, its authors reached the matrix formula of

[χ] = [β ]−1N[α], (16)

with the elements of [β ] matrix defined as

β
i j
ee = δi j +Nα

ik
ee ·Lk j, (17a)

β
i j
em = Nα

ik
em ·Lk j, (17b)

β
i j
me = Nα

ik
me ·Lk j, (17c)

β
i j
mm = δi j +Nα

ik
mm ·Lk j, (17d)

for (i, j)= (x,y,z), where δi j is the Kronecker delta and the notation α ik
ee ·Lk j implies

the dot product of the i-th row of ¯̄αee with the j-th column of the depolarization
tensor of the circular disk, ¯̄L (likewise for the other polarizability tensors).

Observe that, for the computation of surface susceptibility matrix [χ] through this
quasistatic approach, it is necessary to know the quasistatic polarizability matrix
[α]′ of the constituting meta-atom and the lattice parameters of the metafilm. It
should be stressed that, in the case of lossless metafilms, if the dynamic polariz-
ability matrix [α] of the scatterer is utilized instead of its quasistatic counterpart,
the parameters derived from (15) and (16) do not satisfy the energy conservation
law, and lead to an incorrect modeling of the structure. When this pitfall is avoided,
the resulting parameters of the model should comply with the locality conditions
and may be treated as characteristic parameters of the metafilm, since they are in-
dependent on its excitation [Simovski and Tretyakov (2007)]. In what follows, this
technique will be referred to as the “K-B method”, from the initial letters of the
first authors in the aforementioned publications.

3.2 S-parameter retrieval algorithm

Another approach for the calculation of the surface susceptibility matrix [χ] of a
metafilm, that contains biaxially anisotropic scatterers, has been proposed in [Hol-
loway, Dienstfrey, Kuester, O’Hara, Azad and Taylor (2009)]. Essentially, it is
based on the inversion of the analytical expressions for the reflection and transmis-
sion coefficients. The latter can be obtained by inserting the field expressions for
the incident, reflected, and transmitted waves into the boundary conditions (10),
as explained in [Holloway, Mohamed, Kuester and Dienstfrey (2005)]. Then, by
solving the resulting systems of equations for the perpendicular (Fig. 2(a)) and the
parallel (Fig. 2(b)) polarization, we obtain

R⊥(θ) =
− j k0

2cosθ

(
χxx

ee −χ
yy
mm cos2θ +χzz

mm sin2θ
)

1−
(

k0
2

)2
χ

yy
mm (χxx

ee +χ
zz
mm sin2θ)+ j k0

2cosθ

(
χxx

ee +χ
yy
mm cos2θ +χ

zz
mm sin2θ

) , (18a)
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Figure 2: Incident, reflected, and transmitted waves for an arbitrary periodic
metafilm. (a) Perpendicular and (b) parallel polarization.

T⊥(θ) =
1+
(

k0
2

)2
χ

yy
mm
(
χxx

ee +χzz
mm sin2θ

)
1−
(

k0
2

)2
χ

yy
mm (χxx

ee +χ
zz
mm sin2θ)+ j k0

2cosθ

(
χxx

ee +χ
yy
mm cos2θ +χ

zz
mm sin2θ

) , (18b)

R‖(θ) =
− j k0

2cosθ

(
χxx

mm−χ
yy
ee cos2θ +χzz

ee sin2θ
)

1−
(

k0
2

)2
χ

yy
ee (χxx

mm +χ
zz
ee sin2θ)+ j k0

2cosθ

(
χxx

mm +χ
yy
ee cos2θ +χ

zz
ee sin2θ

) , (19a)

T‖(θ) =
1+
(

k0
2

)2
χ

yy
ee
(
χxx

mm +χzz
ee sin2θ

)
1−
(

k0
2

)2
χ

yy
ee (χxx

mm +χ
zz
ee sin2θ)+ j k0

2cosθ

(
χxx

mm +χ
yy
ee cos2θ +χ

zz
ee sin2θ

) , (19b)

where θ is the incidence angle on the yz-plane. If these coefficients are determined
for a normal incidence (θ = 0◦) and for another arbitrary angle of incidence θ , (18)
and (19) can be inverted, and the surface susceptibilities read

χ
xx
ee =

2 j
k0

R⊥(0)+T⊥(0)−1
R⊥(0)+T⊥(0)+1

, χ
xx
mm =

2 j
k0

R‖(0)−T‖(0)+1
R‖(0)−T‖(0)−1

, (20a)

χ
yy
ee =

2 j
k0

R‖(0)+T‖(0)−1
R‖(0)+T‖(0)+1

, χ
yy
mm =

2 j
k0

R⊥(0)−T⊥(0)+1
R⊥(0)−T⊥(0)−1

, (20b)

χ
zz
ee =−

χxx
mm

sin2θ
− 2 j cosθ

k0 sin2θ

R‖(θ)−T‖(θ)+1
R‖(θ)−T‖(θ)−1

, (20c)

χ
zz
mm =− χxx

ee

sin2θ
+

2 j cosθ

k0 sin2θ

R⊥(θ)+T⊥(θ)−1
R⊥(θ)+T⊥(θ)+1

. (20d)
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It is mentioned that, for the computation of [χ] tangential components, only the s-
cattering coefficients of normally incident waves are required, while for the normal
components it is necessary to use the coefficients of an obliquely incident wave
(θ 6= 0), as well. These parameters are, also, local and are − in theory − indepen-
dent on the selection of θ . However, in practice, the values of normal components
χzz

ee and χzz
mm are different for various θ , and they are additionally proven very sen-

sitive to the numerical noise of the scattering coefficients, as later discussed.

Finally, the authors of [Morits and Simovski (2010)] have successfully applied
this method in the electromagnetic characterization of a bi-layered metafilm, i.e.
a structure comprising two closely-spaced arrays of magneto-dielectric spheres.
Nonetheless, to the best of our knowledge, this approach has not yet been applied
to metafilms with bianisotropic scatterers, since the corresponding analytical ex-
pressions for the reflection and transmission coefficients are too complicated to
be inverted. In what follows, we will use the abbreviation “H-M method”, when
referring to the technique described in this subsection.

3.3 Dynamic non-local approach

Recently, we have developed an efficient algorithm for the electromagnetic char-
acterization of metafilms consisting of biaxially anisotropic [Dimitriadis, Sounas,
Kantartzis, Caloz and Tsiboukis (2012)] and planar bianisotropic [Dimitriadis, Kan-
tartzis and Tsiboukis (2013)] scatterers. This method is based on the combination
of an analytical microscopic modeling approach, which accurately accounts for the
dynamic dipolar interactions between the meta-atoms in the lattice, with a rigorous
macroscopic averaging procedure, in order to obtain the desired surface suscepti-
bility matrix. However, the analysis in these works has been performed only for
TE-polarized incident waves and for some special cases of constituting particles,
thus limiting the general applicability of the overall formulation. Here, we settle
this issue by presenting generalized expressions, valid for any periodic metafilm
and plane wave excitation of arbitrary polarization.

To this objective, the surface susceptibility matrix is evaluated from

[χ] =
{
(ab)[α]−1− (ab)[C]+ [D]

}−1
, (21)



Effective Surface Susceptibility Models 243

where [α] is the dynamic polarizability matrix, [D] is the jump condition matrix

[D] =



− jk2
0

2kz
0 0 0 0 jk0ky

2kz

0 − jkz
2 0 0 0 0

0 0 − jk2
y

2kz

− jk0ky
2kz

0 0

0 0 − jk0ky
2kz

− jk2
0

2kz
0 0

0 0 0 0 − jkz
2 0

jk0ky
2kz

0 0 0 0 − jk2
y

2kz


, (22)

and [C] is the intraplanar interaction coefficient matrix, defined as

[C] =

[
¯̄Cee

¯̄Cem
¯̄Cme

¯̄Cmm

]
= ∑

(m,n)6=(0,0)

[
¯̄G(1)(Rmn)

¯̄G(2)(Rmn)

− ¯̄G(2)(Rmn)
¯̄G(1)(Rmn)

]
e− jkynb. (23)

In this formula, ¯̄G(1)(Rmn) and ¯̄G(2)(Rmn) represent the dyadic Green functions

¯̄G(1)(Rmn) =
(

k2
0

¯̄I +∇∇

)
g0(Rmn), (24a)

¯̄G(2)(Rmn) =− jk0∇g0(Rmn)× ¯̄I, (24b)

and g0(Rmn) corresponds to the scalar Green function of free space

g0(Rmn) =
e− jk0|Rmn|

4π|Rmn|
, (25)

where Rmn is the vector pointing from (m,n) to (0,0). From the above expressions,
it follows that only half of the elements of [C] are non-zero, namely

[C] =



Cxx
ee Cxy

ee 0 0 0 Cxz
em

Cyx
ee Cyy

ee 0 0 0 Cyz
em

0 0 Czz
ee Czx

em Czy
em 0

0 0 Cxz
me Cxx

mm Cyx
mm 0

0 0 Cyz
me Cxy

mm Cyy
mm 0

Czx
me Czy

me 0 0 0 Czz
mm


. (26)

Furthermore, due to the reciprocity principle, dyadic Green functions ¯̄G(1)(Rmn)
and ¯̄G(2)(Rmn) must fulfill the following symmetry conditions[

¯̄G(1)(Rmn)
]T

= ¯̄G(1)(Rmn),
[

¯̄G(2)(Rmn)
]T

=− ¯̄G(2)(Rmn), (27)
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which lead to the corresponding relations between the elements of [C] in (26)

¯̄CT
ee =

¯̄Cee ≡ ¯̄CT
mm = ¯̄Cmm,

¯̄CT
em =− ¯̄Cem ≡ ¯̄Cme,

¯̄CT
me =− ¯̄Cme ≡ ¯̄Cem. (28)

Finally, by taking also into account the rotational symmetries of the dipole inter-
action problem, is has been shown in [Scher (2008)] that only the computation
of 4 independent parameters is required (Cxx

ee , Czz
ee, Cyx

ee , and Czx
me), in order to fully

determine the elements of [C] in (26). Expressions for the calculation of these dy-
namic interaction coefficients, by means of rapidly-convergent series, can be found
in various publications in the literature [Belov and Simovski (2005); Scher (2008);
Dimitriadis, Sounas, Kantartzis, Caloz and Tsiboukis (2012)]. It should be stressed
that both [C] and [D] matrices are always symmetric, irrespective of the specific
microscopic geometry of the structure and the form of its excitation.

Hence, the matrix formula (21) indicates that [χ] can be obtained as the super-
position of three terms with distinct physical meaning: [α], representing the mi-
croscopic properties of every individual scatterer, [C], accounting for the dynam-
ic intraplanar interactions between the meta-atoms, and [D], expressing the field
discontinuities across the metafilm in relation to the surface polarization and mag-
netization six-vector. Note that both [C] and [D] depend on the wavevector of the
incident radiation. Therefore, contrary to the previous methods, the parameters of
this model are non-local and cannot be treated as meaningful physical parameters
of the structure. Nevertheless, they are more flexible and very instructive for the
correct prediction of the reflection and transmission properties of various metafilm-
s.

For the very important practical case of lossless metafilms, it can be proven that [χ]
is an Hermitian matrix3 and (21) can be simplified into

[χ] =

{
ab
(
[α]−1−Re{[C]}− j

k3
0

6π
[I]
)}−1

, (29)

where Re{·} defines the real part of a quantity and [I] is the unitary matrix. If,
additionally, the scatterers of the metafilm are non-bianisotropic ( ¯̄αem = ¯̄αme =

¯̄0),
[χ] becomes also symmetric. This feature, together with the Hermitian property,
leads to a purely real matrix [χ], that can be computed from

[χ] =
(
abRe

{
[α]−1− [C]

})−1
, (30)

as follows from the Sipe-Kranendonk conditions of (5).

3 This property, proven in the appendix of [Dimitriadis, Sounas, Kantartzis, Caloz and Tsiboukis
(2012)], is valid for any surface susceptibility model.
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Lastly, it is interesting to stress that, for metafilms formed by planar scatterers, the
jump condition matrix reduces to the 3×3 form

[D] =


− j(k2

y+k2
z )

2kz
0 jk0ky

2kz

0 − jkz
2 0

jk0ky
2kz

0 − jk2
y

2kz

 , (31)

and, similarly, the general expression for [χ] is written

[χ] =

χxx
ee χ

xy
ee χxz

em

χ
yx
ee χ

yy
ee χ

yz
em

χzx
me χ

zy
me χzz

mm

 . (32)

In the next section, we will verify the validity of this generalized approach (hence-
forth called “proposed” method), in comparison to the aforementioned techniques.

4 Numerical results

In this section, we will extensively compare the aforementioned techniques for
various cases of infinite lossless and lossy metafilms. Their outcomes will also
be compared with the numerical results obtained from the commercial simulation
package [CST MWS™ (2012)], which are considered as the reference solutions. In
all simulations, a single unit-cell of the metafilm under study has been analyzed, by
placing periodic boundary conditions (PBCs) at the x =±a/2 and y =±b/2 planes
(see Fig. 1). This approach, which is fully equivalent to the study of an infinite
periodic metafilm, stems from the Floquet-Bloch theory [Tretyakov (2003)] and is
generally considered as an efficient approximation for the analysis of finite periodic
structures as well, provided that the latter have minimum dimensions of about 2λ

along the axes of the periodicity [Bhattacharyya (2014)].

Furthermore, the appropriate excitation ports have been placed at the z=±`=±3a
planes, also considered as the reference planes for the phase of the reflection and
transmission coefficients. Note, also, that our computational domain is terminated
by applying perfectly-matched layers (PMLs), just after the excitation ports. The
distance `= 3a has been selected, in order to make sure that any evanescent mod-
e, possibly radiated by the structure, is drastically attenuated before reaching the
excitation ports and that the PMLs are properly functioning. Finally, for the imple-
mentation of the H-M method, a θ = 45◦ angle has been chosen, in all cases, for
the derivation of the parameters in (20c) and (20d).
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4.1 Magneto-dielectric spheres

4.1.1 Lossless case

In first place, we investigate a metafilm comprising spherical magneto-dielectric
meta-atoms. These particular scatterers have lately received an increasing scientific
interest, since they can be successfully employed for the implementation of isotrop-
ic DNG materials [Holloway, Kuester, Baker-Jarvis and Kabos (2003); Shore and
Yaghjian (2007)]. Moreover, they usually exhibit lower losses within the resonance
band, compared to most of the − commonly used − metallic scatterers, and may
be fabricated by utilizing ferrimagnetic materials with externally controllable prop-
erties, like the yttrium-iron garnet [Holloway, Kabos, Mohamed, Kuester, Gordon,
Janezic and Baker-Jarvis (2010)]. Moreover, due to their canonical geometrical
shape and the existence of analytical expressions for the calculation of their elec-
tric and magnetic polarizabilities, they constitute a convenient choice for testing the
validity of various effective-medium theories [Alù (2011)].

So, let us presume a doubly-periodic repetition of the unit cell of Fig. 3(a) along
the x and y directions. Initially, we consider a rather sparse distribution of lossless
scatterers, consisting of a material with εr = 13.8 and µr = 11.0, while the filling
ratio of the unit cell is γ = r/a= 0.15, for r the radius of the spheres. The quasistatic
polarizabilities of this particular meta-atom in free-space can be evaluated by the
analytical formulas [Holloway, Mohamed, Kuester and Dienstfrey (2005)]

α
′
ee = 3V

F(ϕ)εp− ε0

εp +2ε0
, (33a)

α
′
mm = 3V

F(ϕ)µp−µ0

µp +2µ0
, (33b)

F(ϕ) =
2(sinϕ−ϕ cosϕ)

(ϕ2−1)sinϕ +ϕ cosϕ
, (33c)

where V = 4πr3/3 is the volume of the sphere, ω is the angular frequency, εp =
εrε0, µp = µrµ0, and ϕ =ωr

√
εpµp. These polarizabilities are depicted in Fig. 3(b)

and can be directly used for the implementation of the K-B method, as explained
in Section 3.1, whereas the respective dynamic polarizabilities may be obtained by
“adding” the radiation damping term via the procedure of [Seršić, Tuambilangana,
Kampfrath and Koenderink (2011)]. The latter, provided in Fig. 3(c), can be uti-
lized for launching the proposed algorithm of Section 3.3. By comparing Figs 3(b)
and 3(c), one may realize the effect of including the radiation losses in the expres-
sions of the dynamic polarizabilities: the corresponding resonances become wider
and less sharp in magnitude, compared to the quasistatic polarizabilities.
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Figure 3: (a) Unit-cell of the metafilm under study with a = 6mm and r = 0.9mm,
(b) quasistatic, and (c) dynamic polarizabilities of a magneto-dielectric sphere
made up of a material with εr = 13.8 and µr = 11.0.

Next, we compare the computed surface susceptibilities of the three models un-
der study. For those of the K-B (Figs 4(a) and 4(b)) and H-M (Figs 4(c) and 4(d))
methods , we observe that χxx

ee = χ
yy
ee and χxx

mm = χ
yy
mm, as expected from the four-fold

rotational symmetry of the unit-cell. Note that, despite the fact that both methods
yield local effective parameters, which can be regarded as characteristic parame-
ters of this specific metafilm, their parameters are not identical. Specifically, for
the K-B method, the tangential components can be satisfactorily approximated vi-
a χ

j j
ii ≈ α ′ii/(ab), where i = (e,m) and j = (x,y). Thus, these parameters can be

understood as a simple surface average of the corresponding polarizability terms,
so justifying the classification of this approach as a quasistatic one. On the other
hand, the H-M technique leads to a slightly shifted set of characteristic parameters.
Moreover, χzz

ee and χzz
mm exhibit resonances in a second frequency region, name-
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Figure 4: Surface susceptibilities for a lossless metafilm with magneto-dielectric
spheres for (a),(b) the K-B method, (c),(d) the H-M method, and (e),(f) the pro-
posed method for θ = 75◦.
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ly in the zones where the parameters χxx
mm and χxx

ee , respectively, become resonant.
These artificial resonances stem from the calculation formulas of these parameters,
which explicitly depend on the respective tangential components. These artifacts
constitute one of the main drawbacks of the H-M method, as we shall soon discuss.

Regarding the proposed method, since [α] has the form of (14), with αxx
ee = α

yy
ee =

αzz
ee, αxx

mm = α
yy
mm = αzz

mm and the metafilm is lossless, the surface susceptibility ma-
trix [χ] can be calculated from the simplified expression (30) and reads

[χ] =



χxx
ee χ

xy
ee 0 0 0 χxz

em

χ
xy
ee χ

yy
ee 0 0 0 χ

yz
em

0 0 χzz
ee χxz

me χ
yz
me 0

0 0 χxz
me χxx

mm χ
xy
mm 0

0 0 χ
yz
me χ

xy
mm χ

yy
mm 0

χxz
em χ

yz
em 0 0 0 χzz

mm


. (34)

We observe that [χ] is symmetric and contains 12 different real parameters, which
depend on the wavevector of the incident wave. For a wave impinging on the
metafilm under an angle θ = 75◦, the corresponding parameters are shown in
Figs 4(e) and 4(f). Contrary to the other techniques, one may detect that χxx

ee 6= χ
yy
ee

and χxx
mm 6= χ

yy
mm in this case. Furthermore, the off-diagonal terms χxz

em and χxz
me are

non-zero and, thus, cannot be excluded from the analysis. In addition, due to the
absence of bianisotropic effects at the microscopic level, these non-zero terms can
be associated with weak spatial dispersion phenomena (lattice dispersion). Simi-
lar phenomena have been reported in the literature for 3-D periodic structures of
non-bianisotropic scatterers [Fietz and Shvets (2010); Alù (2011)].

To highlight the importance of these off-diagonal terms, we will, now, compare the
efficiency of the three aforementioned models in the prediction of the reflection and
transmission coefficients of the metafilm. Therefore, taking into account the form
of [χ] in (34) and inserting it into (13), the reflection and transmission coefficients
for the two possible polarizations are determined by

R⊥ =
− j k0

2cosθ

(
A−χ

yy
mm cos2θ

)
1− k2

0
4 χ

yy
mmA+ j k0

2cosθ

(
A+χ

yy
mm cos2θ

) , (35a)

T⊥ =
1+ k2

0
4 χ

yy
mmA

1− k2
0
4 χ

yy
mmA+ j k0

2cosθ

(
A+χ

yy
mm cos2θ

) , (35b)

R‖ =
j k0

2cosθ

(
B−χ

yy
ee cos2θ

)
1− k2

0
4 χ

yy
ee B+ j k0

2cosθ

(
B+χ

yy
ee cos2θ

) , (36a)
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Figure 5: Comparisons of the scattering coefficients predicted from the various
models. (a),(b) Magnitude and phase of the transmission coefficients T⊥ and (c),(d)
magnitude and phase of the reflection coefficients R‖ for θ = 75◦.

T‖ =
1+ k2

0
4 χ

yy
ee B

1− k2
0
4 χ

yy
ee B+ j k0

2cosθ

(
B+χ

yy
ee cos2θ

) , (36b)

where A=χxx
ee +χzz

mm sin2θ +2χxz
em sinθ and B=χxx

mm +χzz
ee sin2θ −2χxz

me sinθ . Note
that χxz

em and χxz
me are included in the expressions for the perpendicular and the par-

allel polarization, respectively. This observation, together with the susceptibilities
of Fig. 4, will help us to better interpret the predictions of the three models.

Next, by considering a θ = 75◦ incidence and inserting the surface susceptibilities
of Fig. 4 into (35b), we acquire the magnitude (Fig. 5(a)) and phase (Fig. 5(b)) of
the transmission coefficient, T⊥, around the first resonance frequency. We first note
that, due to the rather large electrical length of the unit cell of the metafilm at this
frequency band, the K-B method can approximate only the shape of the simulated
scattering coefficients, as a result of its quasistatic approximations. Moreover, fo-
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cusing on the specific frequency a/λ = 0.357 and the susceptibility terms of (35b),
we promptly detect that both the K-B and H-M models predict non-zero value only
for the χzz

mm parameter. On the other hand, for the proposed approach, χxx
ee , χzz

mm,
and χxz

em are all non-zero at that frequency. Thus, taking into account the relative
magnitudes of these components in Figs 4(e) and 4(f) and their respective weight-
ing coefficients in the expression of A (1, sin2θ , and 2sinθ ), it can be deduced
that χxz

em is at least equally important as χzz
mm. This differentiation of the proposed

approach, compared to the K-B and H-M methods, justifies its superior predictive
performance in this particular frequency band.

For the same angle of incidence, from (36a), one derives the magnitude (Fig. 5(c))
and phase (Fig. 5(d)) of the reflection coefficient, R‖. Contrary to the previous case,
χxz

me is non-zero at the a/λ = 0.355 frequency, yet all methods successfully predict
the performance of the metafilm at this point. Thus it is concluded that, in this
case, χxx

mm is the dominant term in (36a) and the effect of the off-diagonal term is
insignificant. However, the K-B method again departs from the simulation curves
in the rest of the spectrum under study, as explained in the previous paragraph.
Finally, it should be stressed that the divergence of the H-M approach from the
simulation data for a/λ > 0.356 occurs due to the second, non-physical resonance
of χzz

ee, which can be attributed to the sensitivity of its calculation formula (20c) to
the noise of the numerical input data.

4.1.2 Lossy case

Let us now assume that the magneto-dielectric spheres are made up of a materi-
al with constitutive parameters εr = 13.8(1− j0.002) and µr = 11.0(1− j0.002),
while all other geometric parameters of the metafilm remain the same as in the
previous subsection. The presence of material losses is expected to lead to the
occurrence of imaginary parts in the surface susceptibilities for all the models.

In this context, the parameters of the K-B method are shown in Figs 6(a) and 6(b),
while those of the H-M method are presented in Figs 6(c) and 6(d)4. Evidently,
apart from the occurrence of the imaginary parts, the addition of losses leads to
more wide and less sharp resonances of surface susceptibilities, compared to the
lossless case. For the H-M method, normal components χzz

ee and χzz
mm exhibit again

a second, artificial resonance, at the same frequency where the parameters χxx
mm and

χxx
ee , correspondingly, become resonant. Moreover, χzz

ee seems to violate the passiv-
ity condition around the a/λ = 0.356 frequency, since its imaginary part becomes
positive. This implies that the H-M model is not local at this frequency range and
its parameters cannot be treated as characteristic parameters of the structure. On

4 Parameters χ
yy
ee and χ

yy
mm are not included in these figures, since they are again equal to χxx

ee and
χxx

mm, respectively, as in the previous case.
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Figure 6: Surface susceptibilities for a lossy metafilm with magneto-dielectric
spheres for (a),(b) the K-B method and (c),(d) the H-M method.

the contrary, the surface susceptibilities of the proposed method for θ = 45◦ are
illustrated in Figs 7(a)-7(c), where only the real parts of the off-diagonal terms take
positive values, as anticipated from the non-local nature of the extracted parame-
ters. As a consequence, the latter parameters represent more accurately the physics
of the particular problem. Finally, by substituting the surface susceptibilities into
(35a), we obtain the magnitude of the reflection coefficient R⊥ of Fig. 7(d). The
proposed method is in very good agreement with the CST MWS™ outcomes, apart
from a narrow band around a/λ = 0.3555, where a small fluctuation of χxx

ee leads
to a subsequent deviation from the simulation results. This is the region where the
H-M method also loses its accuracy, due to the positive values of Im{χzz

ee}, while
the K-B method deviates from the other approaches around the resonance band.
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Figure 7: (a),(b),(c) Surface susceptibilities for a lossy metafilm with magneto-
dielectric spheres for the proposed method for θ = 45◦, and (d) comparison of the
magnitude of the reflection coefficients R‖ of the various models for θ = 45◦.

4.2 Microstrip Ω-shaped resonator

4.2.1 Lossless case

Planar metallic scatterers are another attractive solution for the design of practical
metafilms, since they can be easily fabricated via standard photolithographic tech-
niques. Here, we will investigate metafilms consisting of the microstrip Ω-shaped
resonator of Fig. 8(a). This specific meta-atom has been utilized in the implementa-
tion of various realistic devices, like reciprocal microwave phase shifters [Saadoun
and Engheta (1994)], DNG materials with low losses [Ran, Huangfu, Chen, Li,
Zhang, Chen and Kong (2004); Lheurette, Houzet, Carbonell, Zhang, Vanbesien
and Lippens (2008)], waveguide power splitters [Di Palma, Bilotti, Toscano and
Vegni (2012)] and antenna radomes [Basiry, Abiri and Yahaghi (2011)]. This par-
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Figure 8: (a) Ω-shaped resonator with dimensions: l = 3.5mm, r = 1.2mm, w =
0.3mm, and g = 0.2mm, (b) real, and (c) imaginary part of the dynamic particle
polarizabilities derived via [Karamanos, Dimitriadis and Kantartzis (2012)].

ticle can be modeled via an electric dipole moment, px, and a magnetic dipole
moment, mz, which are induced when it is excited from an x-directed electric field
and/or a z-directed magnetic field. Furthermore, electric charges can also be accu-
mulated along the y-direction, when a y-directed electric field is externally applied.
However, the latter polarization is not coupled to the previous ones. To sum up, the
polarizability matrix [α] of the Ω particle can be written as

[α] =

αxx
ee 0 αxz

em
0 α

yy
ee 0

αzx
me 0 αzz

mm

 , (37)

where, due to the Onsager-Casimir principle, αxz
em =−αzx

me also holds.

Next, let us concentrate on a metafilm consisting of the doubly periodic repetition of
Ω resonators, with the dimensions provided in the caption of Fig. 8(a). Assuming a
square unit cell with a = b = 7.5mm, the analysis is performed for frequencies 8 <
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Figure 9: (a) Quasistatic susceptibilities of the lossless Ω-resonator with the di-
mensions of Fig. 8(a). Surface susceptibilities of the (b) K-M method, (c) H-M
method, and (d) proposed method for θ = 75◦. (e) Magnitude and (f) phase of the
transmission coefficients T⊥ predicted from the various models for θ = 75◦.
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f < 20GHz, which correspond to the electrical length 0.2 < a/λ < 0.5. In these
microwave frequencies, metals are known to behave as perfect electric conductors
(PEC) and the corresponding dynamic Ω particle polarizabilities need to satisfy the
Sipe-Kranendonk conditions of (4). Hence, the application of a properly developed
retrieval algorithm [Karamanos, Dimitriadis and Kantartzis (2012)], provides the
unkown elements of (37), plotted in Figs 8(b) and 8(c), which comply with the
energy conservation requirements. It can be seen that at a/λ = 0.365 the Re{αxx

ee},
Re{αzz

mm}, and Im{αxz
em} terms become simultaneously resonant, while Re

{
α

yy
ee
}

is practically constant throughout the considered spectrum. Moreover, Im{αxx
ee},

Im{αzz
mm}, and Re{αxz

em} are negative, as required from passivity.

In order to apply the K-B method, it is necessary to determine the quasistatic po-
larizabilities of the scatterer. The latter can be directly obtained via the procedure
described in [Yatsenko, Maslovski, Tretyakov, Prosvirnin and Zouhdi (2003)] and
are given in Fig. 9(a). We detect that by “removing” the radiation losses from the
dynamic polarizabilities, the resonances in the corresponding quasistatic terms be-
come narrower and sharper. Then, the [χ] matrix of the K-B method, which has
a similar form to the [α] matrix of (37), can be calculated. These susceptibilities,
obtained via (16), are shown in Fig. 9(b) and are similar in shape with the corre-
sponding quasistatic polarizability terms. In contrast, the parameters of the H-M,
which are depicted in Fig. 9(c), lead to some very interesting conclusions. Specifi-
cally, since this model includes only diagonal terms of the [χ] matrix, the magneto-
electric coupling of the metafilm is improperly incorporated into χzz

mm, leading to
a second, non-physical resonance of this parameter. However, this inconsistency
is to be expected, since the H-M method has − for the moment − been developed
only for metafilms with non-bianisotropic scatterers. Lastly, for the proposed tech-
nique, [χ] takes the general form of (32) and is an Hermitian matrix, due to the
absence of losses. This means that only 6 of the [χ] matrix parameters are inde-
pendent, due to the symmetries that arise from the Hermitian property χxz

em =
∗
χzx

me,
χ

yz
em =

∗
χ

zy
me, and χ

xy
ee =

∗
χ

yx
ee . Utilizing (29) for θ = 75◦, we derive the susceptibilities

of Fig. 9(d), which look similar in shape to the respective dynamic polarizability
terms, but shifted toward slightly higher frequencies. This shift may be attributed
to the dynamic interactions between the scatterers in the array. However, due to
the presence of strong bianisotropic effects at the particle level, off-diagonal terms,
other than χxz

em and χzx
me, are practically negligible and do not affect the behavior of

the structure.

For a direct comparison of the methods, under study, we insert (32) into (13) and,
similarly to the previous section, closed-form expressions are determined for the
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reflection and transmission coefficients of the two linear eigen-polarizations

R⊥ =
− j k0

2cosθ

(
χxx

ee +χzz
mm sin2θ +χxz

em sinθ +χzx
me sinθ

)
1+ j k0

2cosθ
(χxx

ee +χ
zz
mm sin2θ +χ

xz
em sinθ +χ

zx
me sinθ)

, (38a)

T⊥ =
[
1+ j k0

2cosθ

(
χ

xx
ee +χ

zz
mm sin2

θ +χ
xz
em sinθ +χ

zx
me sinθ

)]−1
, (38b)

R‖ =
− j k0

2 χ
yy
ee cosθ

1+ j k0
2 χ

yy
ee cosθ

, (39a)

T‖ =
[
1+ j k0

2 χ
yy
ee cosθ

]−1
, (39b)

for which the relations 1+R⊥ = T⊥ and 1+R‖ = T‖ hold. Prior to the comparison
of the different models, some general comments can be made regarding the above
expressions. First, for the case of lossless scatterers, the Hermitian property leads
to the following simplification χxz

em sinθ +χzx
me sinθ = 2Re{χxz

em}sinθ . Nevertheless,
since the real part of χxz

em was found to be negligible in Fig. 9(d), the reflection and
transmission properties for the perpendicular polarization, calculated via (38), are
mainly determined by the real parts of the diagonal susceptibility terms. Likewise,
the scattering properties of the metafilm illuminated by a plane wave with parallel
polarization depends solely on the term χ

yy
ee , which was found to be practically

constant in all the models (Figs 9(b)-9(d)).

Proceeding to the explicit comparison of the various techniques for a plane wave
with perpendicular polarization and incidence angle θ = 75◦, from (38b) we obtain
the magnitude and phase of the transmission coefficient, T⊥, which are depicted
in Figs 9(e) and 9(f), respectively. The proposed algorithm appears to be in ex-
cellent agreement with the simulation results throughout the examined frequency
range. The same applies to the outcomes of the H-M method, with the exception
of a narrow interval around a/λ = 0.372, where a small transmission peak arises.
The location of this peak matches perfectly with that of the aforementioned non-
physical resonance of χzz

mm (Fig. 9(c)), which is the result of a numerical defect.
Finally, the K-B method correctly reproduces the simulation results, but only with
a small frequency downshift. This phenomenon is a common occurrence in this
approach, when the electrical length of the unit cell is higher than approximate-
ly a/λ > 0.15. In such cases, the retardation effects from the propagation of the
microscopic scattered fields (namely, the fields which are scattered by each meta-
atom of the array) along the lattice tend to be significant for the performance of the
structure. These effects, which are not taken into account by the K-B method (but
are properly incorporated into the elements of [C] in our approach) are, in fact, the
reason for the appearance of the weak spatial dispersion effects mentioned before.



258 Copyright © 2014 Tech Science Press CMC, vol.39, no.3, pp.231-265, 2014

4.2.2 Lossy case

To examine the performance of a lossy structure with planar metallic scatterers,
we simply downscale the dimensions of the unit cell and the resonators by two
orders of magnitude (i.e. l = 35 µm, r = 12 µm, w = 3 µm, g = 2 µm, and a = b =
75 µm, with reference to Fig. 8(a)). The frequency range of our study is, similarly,
upscaled and becomes 0.8 < f < 2THz, which again corresponds to an electrical
length of the unit cell 0.2 < a/λ < 0.5. At these frequencies, metals cannot be
treated as perfect conductors and they exhibit ohmic losses which are increasing
with frequency, owing to their plasmonic behavior [Maier (2007)].

By repeating the steps of the prior subsection, we initially acquire the polarizabil-
ities of Figs 10(a) and 10(b). The latter are qualitatively similar to those of the
lossless case, yet are several orders of magnitude smaller, since − in principle −
the magnitude of the polarizabilities is comparable to the scatterer volume. Further-
more, due to the presence of losses, the resonances are less accentuated than those
of the lossless case. Then, these polarizabilities are employed for the implemen-
tation of the K-B method, leading to the susceptibilities of Figs 10(c) and 10(d).
These parameters are found to be practically identical to the surface averages of the
polarizabilities, namely χxx

ee = α ′xx
ee /(ab), χ

yy
ee = α

′yy
ee /(ab), χzz

mm = α ′zz
mm/(ab), and

χxz
em = α ′xz

em/(ab). This is an indication that the interactions between the scatterers
are considered to be rather weak, compared to the individual particle resonances.
Conversely, the proposed method for θ = 75◦ leads to the surface parameters of
Figs 10(e) and 10(f). Despite their optical similarity to the K-B susceptibilities,
these parameters are, in fact, totally different, as the dynamic particle interactions
are properly incorporated via the interaction coefficient matrix [C].

At this point, it is particularly instructive to study the extracted surface suscepti-
bilities of the H-M method, presented in Figs 11(a) and 11(b). One observes that,
whereas χxx

ee appears to be in very good agreement with the corresponding parame-
ters of the other models, this does not apply to χzz

mm. Specifically, Re{χzz
mm} exhibits

a distorted resonance, while Im{χzz
mm} takes positive values in the region just above

the resonance, thus violating the passivity condition and breaking the local nature
of the model.

In order to further highlight the fact that χzz
mm is not a characteristic parameter of

the structure at this frequency band, we plot its real (Fig. 11(c)) and imaginary
(Fig. 11(d)) parts, as extracted for different choices of the input parameter θ in
(20d). Both the real and imaginary part are found to strongly depend on angle θ ,
thus verifying that (20d) does not determine a unique characteristic parameter of the
metafilm. Furthermore, by comparing (38) with (18), we can claim that the actual
parameter retrieved from the H-M method is, in this case, the sum χ̂zz

mm = χzz
mm +
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Figure 10: (a) Real and (b) imaginary parts of the dynamic polarizabilities for the
lossy (downscaled) Ω-resonator. Surface susceptibilities of (c),(d) the K-B method
and (e),(f) the proposed method for θ = 75◦.
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Figure 11: Surface susceptibilities of the H-M method derived from (20) (a),(b) for
θ = 45◦ and (c),(d) real and imaginary parts of χzz

mm for various values of angle θ .

(χxz
em +χzx

me)/sinθ and not the local parameter χzz
mm itself. Hence, an appropriate

extension of the H-M algorithm for bianosotropic metafilms is necessary to retrieve
physically-meaningful (characteristic) parameters.

Finally, by utilizing (38b) we acquire the transmission coefficient of the perpendic-
ular polarization, T⊥, for an incident wave with θ = 75◦, as shown in Figs 12(a) and
12(b) (magnitude and phase, respectively). First of all, one may note the perfect
matching of the reference CST MWS™ simulation results with the predictions of
our model, throughout the examined spectrum. However, the H-M method is also
in almost perfect agreement with the these results, since the non-locality of χzz

mm
and the loss of its physical meaning does not deprive the method of its applica-
bility, even in this case. Regarding the K-B algorithm, it is deemed unsatisfactory
around the resonance region as, apart from the expected frequency downshift, it
fails to accurately predict the magnitude and the phase of the transmission coeffi-
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Figure 12: (a) Magnitude, (b) phase of the transmission coefficient T⊥, and (c) total
scattered power |R⊥|2 + |T⊥|2 for θ = 75◦, as predicted from the various models.

cient. This is, also, manifested in the plot of the total scattered power, |R⊥|2+ |T⊥|2,
of Fig. 12(c), where the K-B method is shown to significantly overestimate the res-
onance losses, compared to the other techniques.

5 Conclusions

In this paper, we have comprehensively examined the three main general-purpose
surface susceptiblity models existing in the literature, which have been developed
withing the realm of the dipole approximation technique. Via exhaustive com-
parisons, both for lossless and lossy metafilms of magneto-dielectric spheres and
microstrip Ω-shaped resonator, we have managed to trace the main assets and lim-
itations of these methods. Specifically, it has been found that the K-B method,
based on the assumption of quasistatic particle interactions, is the least accurate
approach. This can be attributed to the size of the typical meta-atoms as well as to
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their dense packing in realistic metafilms. Hence, the interactions between the scat-
terers are usually strong and depend on the excitation method, while the resulting
weak spatial dispersion phenomena, potentially important for the proper prediction
of the metafilm’s scattering properties, are totally ignored from this approach. On
the other hand, the H-M method is proven very reliable and accurate, despite some
defects that frequently occur, due to the sensitivity of its retrieval formulas on the
noise of its input parameters (simulated reflection and transmission coefficients).
However, its extracted parameters may lose their physical meaning in some cases,
even in the absence of bianisotropic effects at the particle level. Finally, the pro-
posed non-local procedure is found to be the most accurate in all cases, but it comes
with a cost of a higher number of surface susceptibilities and, thus, with a higher
implementation complexity. However, this drawback is counterbalanced from the
proper incorporation of the spatial dispersion phenomena of the metafilms.
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