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On the Homogenization Analysis of Electromagnetic
Properties for Irregular Honeycombs

Lianhua Ma1 and Qingsheng Yang2

Abstract: Honeycombs are widely used in aerospace structures due to their low
density and high specific strength. In this paper, effective electromagnetic prop-
erties of irregular honeycombs are investigated, by using the three dimensional
homogenization theory and corresponding computational procedure. This homog-
enization method, being the extension of two-scale asymptotic approach, is em-
ployed to determine the expressions of the effective dielectric permittivity, mag-
netic permeability and electrical conductivity. To verify and validate the proposed
model and procedure, effective permittivities of a typical irregular honeycomb are
studied and compared with those of semi-empirical formulae. Moreover, the effect
of geometry of honeycomb’s unit cell on effective permittivities is also examined.
Compared to semi-empirical estimations, the two-scale asymptotic homogenization
method can be used to achieve more accurate results of effective electromagnetic
properties for honeycombs in the scope of numerical modeling, and it can be also
extended for estimation of effective electromagnetic tensors for various periodic
composites.

Keywords: Honeycombs, homogenization theory, effective electromagnetic prop-
erties, finite element method.

1 Introduction

As a kind of lightweight materials, honeycombs have a wide range of application-
s in aircraft and aerospace structures which require structural and electromagnetic
characteristics. For instance, due to good dielectric characteristics in the microwave
range, honeycombs are suitable for transmitting and receiving aerials, radioparent
covers and other microwave applications [Bettermann and Wentzel (1993); Smith
(1999); Smith, Scarpa and Chambers (2000)]. For these applications and others,
the effective macroscopic electromagnetic properties of the heterogeneous material
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are often needed. There are several approaches to determine the effective properties
in electromagnetism. For example, Hashin and Shtrikman (1962) derived bounds
for the effective magnetic permeability of multiphase materials using a variational
approach, but the anisotropy of effective electromagnetic properties of composites
was not considered. Robinson (1973) demonstrated the difficulties involved in the
derivation of the macroscopic Maxwell equations from the involving microscopic
fundamental fields. Pendry (1996) developed a method for the calculation of effec-
tive material properties using line and surface integrals of field quantities. Smith,
Scarpa and Chambers (2000) investigated the electromagnetic dielectric properties
of honeycombs with a finite difference time domain technique and measured those
with a rectangular wave-guide technique on cast epoxy resin samples manufactures
with a stereolythography technique. Although several widely-used micromechan-
ical models including the effective medium theory [Bottcher (1952)], the Mori-
Tanaka method [Mori and Tanaka (1973)], the self-consistent method [Hill (1965)]
can be extended to predict effective electromagnetic properties of composites in
some occasions, they can only accurately model heterogeneous materials with sim-
ple geometries and low volume fractions of inclusions. For the heterogeneous
composites with periodic microstructures, the finite element method (FEM)-based
asymptotic homogenization model is a popular numerical approach to compute the
overall properties [Bensoussan, Lions and Papanicolau (1978)]. Based on the ho-
mogenization method, Perin (2004) numerically investigated the relationships be-
tween effective electromagnetic properties and volume fraction of inclusions for
periodic electromagnetic medium, and upper and lower bounds were determined
for its effective electromagnetic constants. Ouchetto, Zouhdi, Bossavit, Griso, Mi-
ara and Razek (2007) computed the quasi-static effective electromagnetic param-
eters of periodic materials and metamaterials. It should be noted that, in addition
to the primal FEM, several new numerical models were developed to improve the
computational efficiency of the homogenization. For example, Ghosh and Mallett
(1994) proposed the idea of Voronoi Cell Finite elements (VCFEMs) to reduce the
burden of computation and meshing. Dong and Atluri (2012a, 2012b, 2013) de-
veloped an efficient and highly accurate tool-Treffz Computational Grains (TCGs)
for micromechanical modeling of heterogeneous materials. More recently, Bishay,
Dong and Atluri (2014) presented Multi-Physics Computational Grains (MPCGs)
for modeling porous and composite piezoelectric materials.

This paper is focused on development of a homogenization approach and investi-
gation on effective electromagnetic properties of irregular honeycombs governed
by the geometry of the unit cell. The paper is organized as follows: the two-scale
asymptotic homogenization theory is developed in Sec. 2 to determine effective
electromagnetic properties of periodic honeycombs in micro and macro length s-
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cales. Expressions for the effective conductivity, dielectric permittivity and mag-
netic permeability tensors, and microscopic and macroscopic governing equations
are both derived. For better comparisons, approximate evaluations of effective elec-
tromagnetic properties based on the Smith-Scarpa’s semi-empirical formulations
are recalled in Sec. 3. The detailed information about the finite element analysis
of the unit cell is delivered in Sec. 4. Effects of different geometric parameters
of unit cell on effective permittivities of irregular honeycombs are investigated and
discussed in Sec. 5. For verifications on the proposed finite element analysis, nu-
merical results are compared with those by using Smith-Scarpa’s semi-empirical
formulations Sect. 6 summarizes the inclusions of this study.

2 Two-scale asymptotic homogenization theory and its application on the
honeycomb

The two-scale asymptotic homogenization method was developed in the later 1970s
and early 1980s by applied mathematicians for various heterogeneous materials
[Bensoussan, Lions and Papanicolau (1978)] and it has been successfully applied
to accurately simulate the effective properties of periodic composite and porous
materials [Peng and Cao (2002); Yang and Becker (2004); Kalamkarov, Hassan,
Georgiades and Savi (2009); Ma, Rolfe, Yang and Yang (2011); Ma, Yang, Yan and
Qin (2014)]. The homogenization method assumes that all physical quantities vary
in local and global scales and the quantities are periodic with respect to the local
scale because of the periodicity of the microstructure. As the periodic dimension
approaches zero, the homogenized effective properties can be obtained by FEM

A typical sketch of the honeycomb under investigation is depicted in Fig. 1. The
normalized geometry of a unit cell is defined by α,β and θ , where α = h/l, β = t/l,
l,h, t and θ are respectively the length, height, thickness and internal cell angle be-
tween facets or walls. The unit cell of a conventional honeycomb (α = 1,θ = 30◦)
is constructed from six walls (or facets) of equal length arranged such that all the
internal angles are equal, and the electromagnetic properties are invariant along
the unit cell’s axis geometry. This fact does not give enough freedom to elec-
tromagnetic designers for the material selection. However, the effective electro-
magnetic properties of honeycombs become anisotropic in case the geometry pa-
rameters (h/l, t/l,θ , as shown in Fig. 1) undergo a change. The unit cell of a
honeycomb with different geometries forms an irregular hexagon, which can of-
fer a much greater control on electromagnetic properties by designing geometries
of honeycomb cells. For example, auxetic honeycombs can offer superior electro-
magnetic properties compared to conventional ones [Smith, Scarpa and Chambers
(2000)].

For the periodic honeycombs as shown in Fig. 1, microscopic structures in small
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 Figure 1: Sketch of honeycomb structure and the geometry of a typical honeycomb
unit cell.

 
 

Figure 2: Periodically structural honeycomb structure and associated unit cell.

length scale make the homogenization method become an effective tool for deriving
macroscopic electromagnetic properties. This section is devoted to the derivation
of the effective electromagnetic coefficients for honeycombs, including dielectric
permittivity, magnetic permeability and electrical conductivity tensors, by using the
two-scale asymptotic expansion method in the context of homogenization theory.

The structures of periodic honeycombs and its periodical microstructure–unit cell,
also well-known as the Representative Volume Element (RVE) are illustrated in
Fig. 2. The unit cell in the small length scale is regarded as a heterogeneous
medium made of honeycomb facets and central cavity occupied by air. According
to the Maxwell’s equations in steady state, the electric filed E, the electric potential
φ , the electric flux density D, the magnetic field H, the magnetic potential ϕ , the
magnetic flux density B, the volume density of charge ρ and the electric current J
satisfy the following equations in each phase of the unit cell:

divD = ρ with D = εE (1a)

divB = 0 with B = µH (1b)

divJ = 0 with J = σE (1c)
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E =−∇φ , H =−∇ϕ (2)

where ε , µ and σ denote the relative dielectric permittivity, magnetic permeability
and electrical conductivity, respectively.

It can be found that Eqs. (1a)-(1c) are all of the same structure mathematically. The
left-hand side gives a response to a disturbance and the proportionality constant (ε ,
µ and σ ) is a tensor of rank two. For a system of cubic symmetry, the tensor re-
duces to a single constant. Suppose that we have numerically solved the problem
of determining the homogenized relative dielectric permittivity ε of the honeycomb
in terms of the permittivities of the constituent phases and their geometrical distri-
bution. It means the same mathematical expression can then be used to find the
homogenized magnetic permeability µ and electrical conductivity σ , if we know
µ and σ of the pure phases. It therefore suffices to consider one of the effective
electromagnetic properties in Eqs. (1a)-(1c). We start with Eq. (1a) to show how
to derive the effective dielectric permittivity ε according to the homogenization
theory.

The medium is characterized by two characteristic lengths: a macroscopic one L,
that is the characteristic size of the honeycomb sample; and a microscopic one l,
of the order of the characteristic length of the unit cell, as illustrated in Fig. 2. A
length ratio η = l/L is thus defined and is assumed to be small.

Now we introduce two distinct length scales, i.e., the macroscopic scale x and the
microscopic one y with a relation y = x/η . Referring to Fig. 2, a high level of
heterogeneity in the microstructure causes a rapid variation of evolutionary vari-
ables, e.g., electric field and electric flux density in a small neighborhood of the
macroscopic scale x with a Y-periodicity. This corresponds to a microscopic scale
y and consequently, all variables are assumed to exhibit dependence on the small
parameter η , i.e.

Φ
η = Φ(x,x/η) (3)

Using the differentiation rule such that

∂Φη(x)
∂xi

=
∂Φ(x,y)

∂xi
+

1
η

∂Φ(x,y)
∂yi

(4)

According to the homogenization method, the electric potential can be expressed
as an asymptotic expansion with respect to parameter η , i.e.

φ(x) = φ
0(x,y)+ηφ(x,y)+η

2
φ

2(x,y)+ · · · ,y=x/η (5)

where φ 0 and φ 1 are periodic with respect to variable y. Applying the differentia-
tion rule Eq.(4) to the partial differentials of Eq.(2) and Eq(1a) yields,

Ei=
1
η

E−1
i (x,y)+E0

i (x,y)+ηE1
i (x,y)+ · · · (6)
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where

E−1
i (x,y) =

∂φ 0

∂yi
(7a)

E0
i (x,y)=

∂φ 0

∂xi
+

∂φ 1

∂yi
(7b)

E1
i (x,y) =

∂φ 1

∂xi
+

∂φ 2

∂yi
(7c)

Substituting Eq. (6) into Eq. (1a), the electric flux density is given by:

Di=
1
η

D−1
i (x,y)+D0

i (x,y)+ηD1
i (x,y)+ · · · (8)

where

Dn
i (x,y)=− εijEn

j (x,y) , n =−1,0,1, ... (9)

Substituting Eq. (8) into Eq. (1a), and equating the power of η , we have

∂D−1
i

∂yi
= 0 (10a)

∂D0
i

∂yi
= 0 (10b)

∂D0
i

∂xi
+

∂D1
i

∂yi
= ρi (10c)

The variational form for Eq. (10a) is∫
Ω

∂D−1
i

∂yi
δφ

0dΩ =
∫

Ω

(
−εij

∂φ 0

∂yj

)
,i
δφ

0dΩ = 0 (11)

For a Y-periodic function Ψ(y), we define a mean operator as follows:

lim
η→0+

∫
Ω

Ψ

(
x
η

)
dΩ =

1
|Y|

∫
Ω

∫
Y

Ψ(y)dYdΩ = 0 (12)

where |Y| is the volume of the unit cell.

When η → 0, applying Eq. (12) to Eq. (11) , we have

lim
η→0+

∫
Ω

(
−εij

∂φ 0

∂yj

)
,i
δφ

0dΩ =
1
|Y|

∫
Ω

∫
Y

(
−εij

∂φ 0

∂yj

)
,i
dYdΩ = 0 (13)
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Using the divergence theorem on Eq. (13), we obtain:

1
|Y|

∫
Ω

∫
Y

(
−εij

∂φ 0

∂yj

)
,i
δφ

0dYdΩ =
1
|Y|

∫
Ω

∮
s

(
−εij

∂φ 0

∂yj

)
niδφ

0dsdΩ = 0 (14)

Thus,

∂φ 0

∂yi
= 0 (15)

Note that φ 0 depends on x only, and it can be regarded as the macroscopic electric
potential, while φ 1, φ 2, · · · are the microscopic electric potentials, which represent
the perturbing electric potentials at the micro scale.

From Eq. (7b) and (9), we have

D0
i =−εij

(
∂φ 0

∂xj
+

∂φ 1

∂yj

)
(16)

Substituting Eq. (16) into the variational form of Eq. (10b) yields:∫
Ω

−εij

(
∂φ 0

∂xj
+

∂φ 1

∂yj

)
,i
δφ

1dΩ = 0 (17)

As η tends to zero,

lim
η→0+

∫
Ω

−εij

(
∂φ 0

∂xj
+

∂φ 1

∂yj

)
,i
δφ

1dΩ =
1
|Y|

∫
Ω

∫
Y
−εij

(
∂φ 0

∂xj
+

∂φ 1

∂yj

)
,i
δφ

1dYdΩ = 0

(18)

Integrating by parts, and nothing that δφ 1 = 0 at the boundary of Y , and φ 0 is a
function of x only, we obtain:∫

Ω

∫
Y

εij
∂φ 1

∂yj

∂δφ 1

∂yi
+
∫

Ω

∂φ 0

∂xj

(∫
Y

εij
∂δφ 1

∂yi
dY
)

dΩ = 0 (19)

Defining a function χ which satisfies∫
Y

εip
∂ χ j

∂yp

∂δφ 1

∂yi
dY =

∫
Y

εij
∂δφ 1

∂yi
dY (20)

Introducing Eq.(20) into (19) yields∫
Ω

∫
Y

εij
∂φ 1

∂yj

∂δφ 1

∂yi
+
∫

Ω

∂φ 0

∂xj

∫
Y

εip
∂ χ j

∂yp

∂δφ 1

∂yi
dYdΩ = 0 (21)
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Applying the divergence theorem leads to∫
Ω

∮
s

εipφ
1np

∂δφ 1

∂yi
dsdΩ+

∫
Ω

∮
s

εipχ
jnp

∂φ 0

∂xj

∂δφ 1

∂yi
dsdΩ = 0 (22)

Hence we can obtain

φ
1 =−χ

j ∂φ 0

∂xj
(23)

Substituting Eq. (22) into Eq. (16) yields:

D0
i (x,y) =−

(
εij− εip

∂ χ j

∂yp

)
∂φ 0

∂xj
(24)

For the homogenized electromagnetic body, the constitutive relations can be ex-
pressed as

D̄0
i =−ε

H
ij

∂φ 0

∂xj
(25)

where

D̄0
i =

1
|Y|

∫
Y

D0
ij (x,y)dY (26)

ε
H
ij =

∫
Y

(
εij− εip

∂ χ j

∂yp

)
dY (27)

where εH
i j denotes the homogenized dielectric permittivity and χ j is the period-

ic characteristic function with respect to y coordinate system, which needs to be
determined through a numerical scheme, such as a finite element procedure.

Hence, electric potential characteristic function χ j can be completely determined
from governing equation (20), with specific boundary conditions and initial macro-
scopic electric potential gradients. Once the characteristic function χ j is solved,
we can compute the effective permittivity tensor by Eq. (25).

Due to the similarity of equation (1), the process of deriving homogenized effective
permeability and conductivity tensors are analogous to those of effective permittiv-
ity tensors presented above. Only the final formulations of homogenized effective
permeability and conductivity tensors are given as follows,

µ
H
ij =

∫
Y

(
µij−µip

∂ξ j

∂yp

)
dY, σ

H
ij =

∫
Y

(
σij−σip

∂ζ j

∂yp

)
dY (28)

where ξ j, ζ j are corresponding characteristic functions which have the periodicity
with respect to y coordinate system.
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3 Approximations of effective electromagnetic properties for irregular hon-
eycombs

For the effective dielectric permittivity εe of honeycombs, in particular, the Hashin-
Shtrikman upper bound [Hashin and Shtrikman (1962)] on the effective permittivity
is given by

εe

εs
≤ υ

2−υ
(29)

where εs is the relative dielectric permittivity of solid facet, and υ denotes the vol-
ume fraction of solid facet. Eq. (29) implies that the cellular solid is statistically
isotropic in the space and it cannot capture the anisotropic properties. In reali-
ty, an irregular honeycomb is basically anisotropic. Smith, Scarpa and Burriesci
(2002) formulated a semi-empirical formulation of in-plane permittivities based on
the Hashin-Shtrikman upper bound and the FD-TD homogenization in a nonlinear
least square sense, which can be used to make an initial prediction on the in-plane
permittivity for an irregular-shaped honeycomb:

ε j

εs
=

(
υ

2−υ

)a

Lb
12,

{
a = 0.5201,b = 0.0658 j = x;
a = 0.5851,b = 0.1022 j = y

(30)

The coefficient L12 is a measure of the anisotropy of the honeycomb, and it is given
by the ratio of the in-plane Young’s modulus E1 and E2, which can be expressed by

L12 =
cos4 θ

[
1+β 2

(
2.4+1.5vs + tan2 θ +2α/cos2 θ

)]
sin2

θ (α + sinθ)2 [1+β 2 (2.4+1.5vs + cot2 θ)]
(31)

Note that for a hexagonal honeycomb (α = 1,θ = 30◦), the coefficient is close
to 1 and in this situation, Eq. (31) degenerates for the case of in-plane isotropic
permittivity.

For the commercial double-thickness honeycombs, based on Voigt estimate [Nemat-
Nasser and Hori (1993)], the out-of-plane permittivity can be easily given by

εz = (1−υ)εc +υεs (32)

where εc is the relative dielectric permittivity of cavity, and the volume fraction of
solid facet υ can be written as,

υ = β
1+α

cosθ (α + sinθ)
(33)
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4 Finite element model of the unit cell and its boundary conditions

As discussed above, the characteristic function χ j in Eq.(25) can be obtained by
FEM together with the periodic boundary conditions of φ 1. Fig. 3 depicts a se-
ries of structures and associated FE meshes of 3D unit cell by selecting different
geometry parameters.
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Figure 3: Geometric structures and associated FE models of unit cell.

For the 3D unit cell of honeycombs, y1,y2 and y3 are the Cartesian coordinates
corresponding to axes parallel to the RVE edges and origin at one corner of the
RVE, as shown in Fig. 3(a). According to the homogenization method, we have
the following boundary conditions of unit cell

φ 1 (a1,y2,y3)−φ 1 (0,y2,y3) = 0, 0≤ y2 ≤ a2,0≤ y3 ≤ a3
φ 1 (y1,a2,y3)−φ 1 (y1,0,y3) = 0, 0≤ y1 ≤ a1,0≤ y3 ≤ a3
φ 1 (y1,y2,a3)−φ 1 (y1,y2,0) = 0, 0≤ y1 ≤ a1,0≤ y2 ≤ a2

(34)

where a1,a2 and a3 are the edge lengths of RVE along y1,y2 and y3 directions,
respectively.

With the application of the proposed solution approach and boundary conditions,
we can perform finite element analysis to compute the effective electromagnetic
properties of honeycombs. The boundary conditions in Eq.(34) were implement-
ed as constraint equations After the characteristic function χ j was numerically
solved by FEM, the homogenized electromagnetic properties of irregular honey-
combs could be further calculated in the wide range of volume fractions
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5 Effective dielectric permittivities of irregular honeycombs

As one aspect of effective electromagnetic properties, the homogenized dielec-
tric permittiveities of irregular honeycombs were calculated by the homogeniza-
tion model in the wide range of geometric parameters of unit cell. In this exam-
ple, the relative dielectric permittivities of the solid facet (glass fiber reinforced
epoxy resin) and the cavity in the honeycombs are 4.0 and 1.0, respectively, i.e.
εs = 4.0,εc = 1.0

5.1 Effects of geometric structures of honeycombs on in-plane effective permit-
tivities

Based on the results of asymptotic homogenization, the finite element analysis pro-
vides all the local fields needed and then the effective properties are determined.
Figs. 4(a)-(e) show the contours of local lateral electric flux density D11several
typical unit cells subject to initial lateral unit electric field under specifically peri-
odic boundary conditions.
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Figure 4: Contours of lateral electric flux density D11 of several designed unit cells
under initial unit electric field.

As seen from Fig. 4, the distribution of electric flux density is not uniform due
to the heterogeneous microstructure of honeycomb material. It is noted that the
other local field variables including electric flux densities D22,D33and electric fields
E11,E22,E33can be similarly determined by this two-scale homogenization method.
It is easy to understand the homogenized field variable is dependent on the designed
structure of honeycomb unit cell. Based on the numerical results of different field
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variables, we can calculate the corresponding effective electromagnetic tensors by
Eqs(25) and (28).

Using the present two-scale homogenization method, Smith-Scarpa’s semi-empirical
formulation Eq(30) and Eq(32), the effective dielectric permittivities εe

x/εs, εe
y/εs

and εe
z /εs are calculated by varying geometric parameters. Figs 5 and 6 show the

numerical and semi-empirical results related in-plane effective relative permittivi-
ties when the geometric parameters of the unit cell are varied.

It is found that the effective in-plane permittivities critically depend on geomet-
ric parameters α,β and θ in a general honeycomb. The effective in-plane per-
mittivities obtained from the two-scale homogenization method are lower than
those Smith-Scarpa’s semi-empirical solutions when the honeycombs are nearly re-
entrant (θ < 0). When increasing the value of θ , the calculated permittivities by the
present model are higher than the semi-empirical results. Also in these four groups
of results, larger discrepancies between homogenization results and semi-empirical
solutions are clearly visible at some points. However, the trends of the variations
of both two in-plane effective dielectric permittivities are still similar with varying
geometries of honeycombs, which are all going from up to down. Comparatively,
the parameter α (see Figs. 5a, 6a) shows a bit different manner on in-plane permit-
tivities compared to β (see Figs. 5b, 6b). If the parameter β is fixed, the increases
of cell angle θ always lead to a convergence of εe

x/εs(ε
e
y/εs) when θ increases to

a certain extent. In this case, the honeycomb configurations show less sensitivi-
ty versus the effective permittivities, with the increases of θ and α . On the other
hand, when the parameter α is fixed, the effective in-plane permittivities εe

x/εs and
εe

y/εs have the similar situations relying on the variations of β and θ (see Figs. 5b,
6b). Whatever the variations of θ , the increasing geometric parameters β can def-
initely strengthen the overall dielectric properties. As mentioned above, apparent
discrepancies between homogenization-based results and semi-empirical solutions
are observed for high internal cell angles θ , both in the positive and negative an-
gle ranges. In fact, we found that the Smith-Scarpa’s approximate formulation was
actually conducted by least-square fitting with a limited number of sampling data
and thus it was naturally less rigorous than the present method in a homogenization
sense. In the light of this, we suggest the Smith-Scarpa’s approximate formula-
tion cannot be directly used for a wide range of applications, especially on the
prediction of in-plane anisotropic properties for irregular honeycombs. Since the
homogenization method has a rigorous mathematical background, it is particularly
useful for microstructures with complex and irregular configurations. Because of
these features, the results of effective permittivities of honeycombs from asymptot-
ic homogenization are more reliable, compared to Smith-Scarpa’s semi-empirical
results.
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 Figure 5: Relations between effective permittivity εe
x/εs and geometric parameters.
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y/εs and geometric parameters.
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5.2 Effects of geometric structures of honeycombs on out-of-plane effective per-
mittivities

With the use of two-scale homogenization method and Eq(32), the out-of-plane
effective dielectric permittivities εe

z /εs were plotted against geometric parameters
of unit cell in Fig 7.

In comparison with εe
y/εs, the out-of-plane effective permittivity εe

z /εs has the sim-
ilar variation manner depending on unit cell geometry. The increases of θ also
provides a convergence of εe

z /εs when θ increases to 70◦. From Fig. 7(a), the ef-
fective permittivity εe

z /εs of auxetic honeycomb (θ < 0◦) is sensitively dependent
on geometric parameters, which can give enough space to structural and electro-
magnetic design engineer for honeycomb material selection. We can also find from
Fig. 7, that predictions of out-of-plane effective permittivities εe

z /εs form Eq.(32),
are in substantial agreement with homogenization-based results, and the estima-
tions from Eq.(32) are higher than the numerical results, especially in the case of
large magnitudes of θ and β which lead to large volume fraction of solid facet. De-
spite Eq.(32) overestimates the out-of-plane effective permittivity εe

z /εs, it is more
acceptable than Smith-Scarpa’s semi-empirical equations Eq.(30) used for the esti-
mations of in-plane effective permittivities εe

x/εs, εe
y/εs.

For the general honeycombs investigated in this study, the convenient choice of
geometric parameters of unit cell facilitates appropriate effective electromagnetic
properties expected and it also provides more flexibility on optimization design
of honeycomb components with the applications of irregular cells. Compared to
semi-empirical estimations, the proposed two-scale homogenization method offers
a useful tool to compute accurately the effective dielectric properties of irregular
honeycombs.

It can be observed from Eq.(28) that expressions of the electrical conductivity and
magnetic permeability coefficients are analogous to that of dielectric permittivi-
ty. Despite the fact effective dielectric permittivity was only investigated, the oth-
er two electromagnetic parameters, effective magnetic permeability and electrical
conductivity can be determined by the same approach. For reasons of mathematical
analogy, the effects of the unit cell geometry on dielectric properties of honeycomb
material are also valid for effective magnetic permeability and electrical conductiv-
ity of such ferromagnetic and conductive materials.

6 Conclusions

Electromagnetic honeycombs were analyzed by using a two-scale homogenization
model and finite element analysis from the electromagnetic point of view. The ex-
pressions of effective electromagnetic coefficients are deduced from the two-scale
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homogenization theory. A solution method based on a unit cell approach was de-
veloped to calculate accurately effective electromagnetic properties. In examples,
numerical results of homogenized permittivities were compared with the previous
semi-empirical solutions, and it proved that the proposed homogenization method
and numerical modeling is valid and efficient. Whatever the geometry of hon-
eycomb materials, the two-scale homogenization method gives the variations of
the electric and magnetic fields at the level of the microstructure, and furnishes
a rigorous deductive procedure for deriving effective electromagnetic tensors and
macro-micro governing equations, while the semi-empirical formulations fail to
accurately predict the effective permittivity, especially for the in-plane properties
of anisotropic honeycombs with distinct variations of geometric structures. Further
by using the present method, the effect of geometry of honeycomb’s unit cell on
effective permittivity was investigated, which shows that the effective electromag-
netic properties are dramatically dependent on the geometric characterization of
such honeycomb composites.

In summary, our calculations confirm that the two-scale homogenization approach
leads to accurate effective electromagnetic constants of honeycombs. Moreover,
this method can be easily applied to determine the effective electromagnetic prop-
erties for other periodic composite materials and structures.
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