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A Multiscale Progressive Failure Modeling Methodology
for Composites That Includes Fiber Strength Stochastics
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Abstract: A multiscale modeling methodology was developed for continuous
fiber composites that incorporates a statistical distribution of fiber strengths into
coupled multiscale micromechanics/ finite element (FE) analyses. A modified two-
parameter Weibull cumulative distribution function, which accounts for the effect
of fiber length on the probability of failure, was used to characterize the statisti-
cal distribution of fiber strengths. A parametric study using the NASA Microme-
chanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was
performed to assess the effect of variable fiber strengths on local composite failure
within a repeating unit cell (RUC) and subsequent global failure. The NASA code
FEAMAC and the ABAQUS finite element solver were used to analyze the pro-
gressive failure of a unidirectional SCS-6/ TIMETAL 21S metal matrix composite
tensile dogbone specimen at 650˚C. Multiscale progressive failure analyses were
performed to quantify the effect of spatially varying fiber strengths on the RUC-
averaged and global stress-strain responses and failure. The ultimate composite
strengths and distribution of failure locations (predominately within the gage sec-
tion) reasonably matched the experimentally observed failure behavior. The pre-
dicted composite failure behavior suggests that use of macroscale models that ex-
ploit global geometric symmetries are inappropriate for cases where the actual
distribution of local fiber strengths displays no such symmetries. This issue has
not received much attention in the literature. Moreover, the model discretization
at a specific length scale can have a profound effect on the computational costs
associated with multiscale simulations.
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1 Introduction

As a result of recent increases in computational capabilities, numerous models have
been developed to simulate material behavior across multiple length scales [Sulli-
van and Arnold (2011)]. While most material models are deterministic in char-
acter, real materials exhibit statistical variations in properties and features over a
range of different length scales. When performing multiscale analyses, a number
of challenges arise when accounting for statistically varying material character-
istics [Graham-Brady, Arwade, Corr, Gutierrez, Breysse, Grigoriu, and Zabaras
(2006); Sriramula and Chryssanthopoulos (2009)]. For instance, how does statisti-
cal variability at one length scale affect the predicted material response over a hier-
archy of scales including the macroscale [Graham-Brady, Arwade, Corr, Gutierrez,
Breysse, Grigoriu, and Zabaras (2006)]? To answer this question, multiscale mod-
eling strategies have been developed to account for variations in properties and
morphologies at different scales (cf., [Sriramula and Chryssanthopoulos (2009)]
for a summary of different multiscale methods for fiber-reinforced polymer matrix
composites).

Many researchers have recognized the need to include a distribution of fiber seg-
ment strengths in analytical/ numerical models rather than using a single determin-
istic value in order to better estimate the composite strength and characterize the
failure behavior. Early models of unidirectional composites developed by Rosen
(1964) and Zweben (1968) first considered a distribution of flaws along the fiber
length. The Equal (or Global) Load Sharing model of Rosen (1964) assumes that
upon the failure of an individual fiber, the load is equally distributed to intact fibers.
In contrast, the Local Load Sharing model developed by Zweben (1968) assumes
that a greater fraction of the load is redistributed to intact fibers near the fiber break.
Various other models have since been developed to predict the strength of unidirec-
tional composites based upon a distribution of fiber strengths [Harlow and Phoenix
(1978); Oh (1979); Curtin (1991), (1993); Foster, Ibnabdeljalil, and Curtin (1998);
Curtin (2000); Landis, Beyerlein, and McMeeking (2000); Bednarcyk and Arnold
(2001); Okabe, Takeda, Kamoshida, Shimizu, and Curtin (2001); Okabe and Take-
da (2002); Lekou and Philippidis (2008)]. For example, Bednarcyk and Arnold
(2001) developed the Evolving Compliant Interface model. This model was incor-
porated into the Micromechanics Analysis Code with Generalized Method of Cells
(MAC/GMC) [Bednarcyk and Arnold (2002)] where the interface between fiber
subcells in adjacent mating triply periodic repeating unit cells (RUCs) was given
a fiber tensile strength consistent with fiber vendor data. This method was used
to simulate the longitudinal failure of a unidirectional metal matrix composite at
the microscale (i.e., RUC behavior) and compared with the Curtin fiber breakage
model [Curtin (1991), (1993)] that combined a statistical probability of fiber failure
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based upon a shear lag approach. However, these models have not been generally
applied within a multiscale analysis framework.

Various techniques have been proposed in order to characterize the effects of mi-
croscale material uncertainty on the macroscale response. The Multiscale Stochas-
tic Finite Element Method (MSFEM) was developed to simulate random hetero-
geneous materials from the micro- to meso- to macroscales [Xu, Chen, and Shen
(2009); Shen and Xu (2010)]. Uncertainties can be introduced in the form of ran-
dom coefficients in partial differential equations (e.g., moduli) or boundary condi-
tions (e.g., load, displacement). A homogenization technique can be implemented
at the microscale to account for different material phases [Shen and Xu (2010)].
This method has yet to be extended to simulate the multiscale progressive failure
of composite materials. A multilevel finite element (FE) method (i.e., FE2) [Feyel
and Chaboche (2000); Feyel (2003)] was also developed in which a combination
of localization and homogenization techniques is employed between two or more
length scales through a series of FE calculations. For example, macroscale inte-
gration point strains from a global FE model (e.g., a coupon specimen or structure)
can be mapped onto a microscale FE model containing representations of individu-
al constituents. The ensuing microscale stress field can be used to predict evolution
of structure within the RUC and homogenized. The RUC-averaged response can
then be used to update the macroscale integration point stresses. A similar approach
was adopted by Blassiau, Thionnet, and Bunsell (2006a), (2006b), (2008). Multiple
FE models of individual RUCs were developed to characterize the interaction of a
single broken fiber with varying numbers of unbroken fibers [Blassiau, Thionnet,
and Bunsell (2006a), (2006b)]. Multiscale FE simulations, which accounted for
statistical variation in fiber strengths, were performed to predict the effect of local
fiber breakage, stress redistribution in the vicinity of broken fibers, and interfacial
debonding around fiber breaks on bulk damage accumulation and failure for unidi-
rectional and filament wound carbon fiber composites with elastic or viscoelastic
epoxy matrices [Blassiau, Thionnet, and Bunsell (2008)].

An alternative multiscale method has been implemented by Bednarcyk and Arnold
(2007) where the reformulated generalized method of cells (GMC) [Pindera and
Bednarcyk (1999)] was used to perform microscale calculations; the homogenized
microscale material response was integrated into macroscale calculations performed
using a hybrid FE approach. The reformulated GMC as implemented within the
ABAQUS Standard or Explicit FE solver (2013) is referred to herein as FEAMAC
(cf., Fig. 1). Since the RUC-averaged response obtained using the GMC is more
computationally efficient than traditional FE approaches [Pindera and Bednarcyk
(1999)], this multiscale approach is considered to be more computationally efficien-
t than FE2. Bednarcyk and Arnold (2007), (2011) demonstrated the feasibility of
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using FEAMAC to simulate the progressive multiscale failure of composite mate-
rials. A traditional maximum stress failure criterion for fiber failure and the Curtin
fiber breakage model were each implemented within RUCs at the microscale and
used to simulate progressive failure of a metal matrix composite (MMC) tensile
dogbone specimen at the macroscale using global-to-local-to-global analyses. In
the current study, MAC/GMC and FEAMAC are used to investigate the effect of
statistical variations in fiber strengths on failure progression within RUCs at the
microscale and subsequent macroscale failure. Future work will investigate the ef-
fects of statistical variations in constituent moduli, strengths, volume fractions, and
orientations on local and global composite failures.

Figure 1: Schematic showing the coupling of MAC/GMC with ABAQUS via FEA-
MAC.

When performing multiscale analyses involving damage and failure of fibrous com-
posites, the stochastic variations in fiber strengths are commonly characterized us-
ing a Weibull cumulative distribution function (CDF) [Weibull (1951)], although
other distribution functions (e.g., sigmoidal functions [Baxevanakis, Jeulin, and
Valentin (1993)]) may also be used. The classic two-parameter Weibull CDF,
however, does not account for the effect of fiber segment length on the measured
strengths and, as a consequence, has been shown to yield inaccurate strength pre-
dictions [Curtin (2000)]. Early modifications to the classic two-parameter Weibull
CDF to incorporate the effect of fiber segment lengths also led to inaccurate pre-
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dictions in the strength distribution of fiber segment strengths particularly at short-
er segment lengths (cf., [Hitchon and Phillips (1979)]). Accordingly, a modified
two-parameter Weibull CDF was proposed by Watson and Smith (1985) to better
account for the effect of fiber segment length on the probability of failure, i.e.,

Pf (σ) = 1− exp

[
−
(

L
L0

)α(
σ

σ0

)β
]

(1)

where Pf represents the cumulative probability of failure at a given axial stress, σ .
The Weibull scale (σ0) and shape (β ) parameters may be determined from mea-
sured fiber strength data. L0 represents the reference fiber length (i.e., the length at
which σ0 and β were determined) and L represents the characteristic fiber length
of interest. The unitless fiber strength parameter α can be determined from experi-
mental strength data in which the tested fiber lengths are varied (e.g., 0 ≤ α ≤ 1).
For example, Beyerlein and Phoenix (1996) determined this value to be equal to
0.6 for an AS4 carbon fiber. If α = 0, then it is easily seen that Eq. 1 reduces
to the classic two-parameter Weibull CDF. A number of researchers have used the
modified two-parameter Weibull CDF (Eq. 1) to characterize the effect of fiber
segment length on failure for a wide variety of composites with silicon carbide
monofilaments as well as carbon, glass, and flax fibers [Padgett, Durham, and Ma-
son (1995); Beyerlein and Phoenix (1996); Foster, Ibnabdeljalil, and Curtin (1998);
Curtin (2000); Landis, Beyerlein, and McMeeking (2000); Andersons, Joffe, Ho-
jo, and Ochiai (2002); Okabe and Takeda (2002); Andersons, Spamins, Joffe, and
Wallstrom (2005); Naito, Yang, Tanaka, and Kagawa (2012)]. As will be shown in
this study, accounting for the effect of fiber lengths on the probability of failure is
of critical importance in multiscale progressive failure analyses of continuous fiber-
reinforced composites. In order to simulate progressive failure within RUCs at the
microscale, the modified two-parameter Weibull CDF (Eq. 1) was implemented
within the framework of MAC/GMC [Bednarcyk and Arnold (2002)].

MAC/GMC provides a computationally efficient means of modeling composites
based on Aboudi’s method of cells micromechanics theories [Aboudi (1991); Pa-
ley and Aboudi (1992); Aboudi (1995), (1996); Pindera and Bednarcyk (1999);
Aboudi (2004); Aboudi, Arnold, and Bednarcyk (2012)]. Using the method of
cells, a doubly or triply periodic RUC is discretized into an arbitrary number of
subcells. Each subcell is then assigned material properties and a constitutive law
to describe the local material behavior. Continuity of displacements and tractions
are then enforced along the subcell boundaries in an average sense, and all field
quantities are evaluated at the subcell centroids. An illustration of this scheme for
a unidirectional composite is shown in Fig. 2. Using this model, a doubly-periodic
RUC may be defined in the x2−x3 plane and is discretized into an arbitrary number
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of subcells along the x2-direction (height) and the x3-direction (width), respective-
ly, while the fibers extend in the x1-direction (length). If a triply periodic RUC is
selected, the RUC can be discretized along the x1-direction as well.

Figure 2: a) Representation of a unidirectional composite with fibers aligned in
the x1-direction and b) RUC representation of the unidirectional composite. Figure
from Aboudi, Arnold, and Bednarcyk (2012).

When performing global analyses using FEs, geometric symmetries (e.g., one-half,
one-quarter, one-eighth symmetry) are often exploited to reduce the number of
model degrees-of-freedom and decrease the computational time. In fact, such sym-
metry assumptions were employed by Bednarcyk and Arnold (2007), (2011) and
Blassiau, Thionnet, and Bunsell (2008). However, it will be shown that use of geo-
metric symmetries is inappropriate in global (structural) progressive failure analy-
ses when the actual spatial distribution of fiber strengths displays no such symme-
tries. This issue has not received much attention in the literature. One central goal
of this work is to present a method for systematically assigning an experimentally
determined spatial distribution of fiber strengths to individual fibers within RUCs.
These RUCs can then be analyzed separately or implemented within a multiscale
framework (e.g., FEAMAC).

The first part of this study analyzes the effect that a stochastic distribution of
fiber strengths has on the RUC-averaged stress-strain response and failure using
MAC/GMC. While this initial micromechanics-based study provides insight into
local pointwise material behavior, the true stochastic nature of the problem is only
revealed when integrated multiscale micromechanical/ FE analyses are performed.
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This is demonstrated herein using an MMC dogbone specimen as the representative
structure.

2 Material System

The effect of a statistical variation in fiber strengths on the failure behavior of a 25%
fiber volume fraction SCS-6/ TIMETAL 21S MMC at 650˚C was analyzed in this
study. The SCS-6 fiber is a high-stiffness, high-strength silicon carbide monofila-
ment with a diameter of approximately 142 µm. In a previous work [Bednarcyk and
Arnold (2011)], a two-parameter Weibull probability density function (PDF) was fit
to room temperature fiber strength data (σ0 = 4198.9 MPa, β = 10). These Weibull
parameters were determined based on monofilament tensile tests at a fiber length of
L0 = 25.4 mm [Bednarcyk and Arnold (2011)]. Additionally, the Weibull scale fac-
tor (σ0) was reduced by 5.3% for simulations performed at 650˚C to account for the
fiber strength dependence on temperature [Mall, Fecke, and Foringer (1998); Bed-
narcyk and Arnold (2007), (2011)]. In the current study, the SCS-6 fiber was as-
sumed to be linearly elastic and isotropic. TIMETAL 21S is a metastable beta strip
titanium alloy possessing a high strength and good creep and oxidation resistance.
The titanium matrix was considered to be viscoplastic and was simulated using the
Generalized Viscoplasticity with Potential Structures (GVIPS) constitutive model
[Arnold and Saleeb (1994); Arnold, Saleeb, and Castelli (1996)]. Table 1 contains
a summary of the thermoelastic material properties for both the SCS-6 fiber and
the TIMETAL 21S matrix [Bednarcyk and Arnold (2011)]. The viscoplastic mate-
rial properties employed in this study can be found in Arnold, Saleeb, and Castelli
(1996) and Bednarcyk and Arnold (2011).

3 RUC Analyses

A parametric study was performed using MAC/GMC to assess the effect of vari-
able fiber strengths on microscale composite failure at 650˚C. Such information is
crucial for predicting progressive composite failure at the macroscale (structural
level). Five different doubly-periodic RUCs were analyzed in this study: single-,
four-, nine-, 25-, and 49-fiber RUCs. These RUCs are comprised of 2x2, 4x4, 6x6,
10x10, and 14x14 subcells, respectively, while maintaining a constant fiber vol-
ume fraction of 25%. Figure 3 shows the single-fiber and 25-fiber doubly-periodic
RUCs considered in this study. Note that a 25-fiber RUC can be subdivided in-
to 25 individual single-fiber RUCs. The MMC material system considered in this
work was specifically fabricated to provide uniform fiber volume fractions through-
out the composite and a square arrangement of fibers [Bowman (1999)]. Hence,
these RUC architectures are representative of the as-fabricated material. For each
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Table 1: Material properties for SCS-6 and TIMETAL 21S.

Figure 3: Microstructural representation of a unidirectional SiC/Ti composite for
a) a single-fiber RUC and b) a 25-fiber RUC.
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individual fiber subcell in the RUC, a fiber tensile strength value obtained from
an experimentally determined Weibull CDF was assigned. Essentially, a random
number was generated (i.e., [0-1]) and used to solve Eq. 1 for the fiber strength,
σ . These strength values were then assigned to the individual fibers contained
within the RUCs in the microscale analyses. To assess the effect of fiber length
on the predicted RUC response, MAC/GMC analyses were performed where the
fiber length-dependent strength was obtained from Eq. 1. For example, for the
single-fiber RUC, an individual fiber tensile strength was selected using the modi-
fied Weibull CDF (Eq. 1) and assigned to the fiber. Similarly, four, nine, 25, and 49
fiber tensile strengths were selected using the CDF and assigned to the four-, nine-,
25-, and 49-fiber RUCs, respectively.

In these MAC/GMC analyses, the modified Weibull parameters α = 1, L = 0.64 mm,
and L0 = 25.4 mm (L/L0 = 0.025) were chosen. This value of L corresponds to one-
half of a key macroscale fiber segment length as will be discussed later. Simulations
were also performed where α = 0 in order to bound the effect of fiber length on the
fiber strength distribution. Figure 4 contains plots of the associated PDFs and CDFs
for Eq. 1 for the case where 0 ≤ α ≤ 1. Since the fiber segment length is much
smaller than the reference length (i.e., L/L0 = 0.025), the length-dependent strength
distribution is shifted to higher stresses as α increases. The modified Weibull CDF
(Eq. 1) is based on “weakest link” theory; a distribution of shorter fibers will
typically have higher strengths than an analogous distribution of longer fibers due
to the decreased likelihood of severe flaws. Additionally, for L/L0 ≤ 1, the mean
fiber strength increases and there is more scatter in the strength distribution as α

is increased (cf., Fig. 4). This underscores the importance of accounting for fiber
lengths in an appropriate manner.

Similar to the work in Bednarcyk and Arnold (2011), residual stresses in the fiber
and matrix were accounted for by simulating a 16 hour stress-free cooldown from
the heat treatment temperature to room temperature, followed by a stress-free tem-
perature rise to 650˚C over five minutes. A uniform axial strain in the x1-direction
(cf., Fig. 2) was then applied at a rate of 1x10−4/s. The maximum stress failure
criterion was used to dictate axial fiber failures within an RUC where individual
fiber strength values were obtained for each fiber in the RUC by generating a ran-
dom number to represent a probability of fiber failure, which correlates to a given
strength value via Eq. 1. While the matrix was permitted to yield in accordance
with the GVIPS model, ultimate failure (fracture) of the matrix was not considered
in the analyses. Five hundred microscale simulations (i.e., using MAC/GMC) were
performed for each of the five RUC architectures to estimate the RUC-averaged
mean tensile strengths associated with the stochastic distribution of fiber strengths.
As previously mentioned, two possible values of α in Eq. 1 were considered (i.e., 0,
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Figure 4: Modified Weibull a) PDF and b) CDF as a function of the fiber strength
parameter α .

1) in order to bound the effect of fiber segment length on the RUC-averaged tensile
strength. This resulted in a total of 5000 distinct microscale simulations performed
in this study. Unbiased estimates for the mean and variance of the RUC-averaged
tensile strengths were calculated based on a random sampling methodology [M-
cKay and Beckman (1979)]. An estimate of the standard deviation was obtained
by taking the square root of the variance estimate for a given response. Future s-
tudies will investigate the use of more complex sampling techniques (e.g., Latin
Hypercube [Helton and Davis (2003)]), particularly if additional material parame-
ters (e.g., fiber volume fraction, fiber/matrix moduli) are allowed to vary.

Figure 5 shows a plot of the RUC-averaged composite tensile strengths resulting
from a statistical distribution of individual fiber strengths in RUCs with one, four,
nine, 25, and 49 simulated fibers, respectively, where two different fiber length-
dependent strength distributions were employed in the microscale simulations (i.e.,
α = 0; α = 1, L/L0 = 0.025). As would be expected, the simulations that ac-
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count for the effect of fiber length on composite strength (α = 1) yield a higher
mean RUC-averaged strength and more variation in the calculated strengths than
simulations where α = 0 (i.e., no fiber length dependence). For both cases, when
a single-fiber RUC was simulated, a higher mean RUC-averaged strength results.
As the number of simulated fibers contained in an RUC was increased, however,
the composite strength decreased. Similarly, the variability in the RUC-averaged
strength decreased as the number of fibers within the RUC was increased. For
the single-fiber RUC, the RUC-averaged strength became highly dependent on the
selected fiber strength. This resulted in a higher mean strength value and more
variation among the individual RUC-averaged strengths. As the number of simu-
lated fibers was increased, the RUC-averaged strengths became less dependent on
the individual fiber strengths. Essentially, the load carried by one fiber at failure
was redistributed to the remaining fibers. As the number of simulated fibers was
increased, the likelihood of encountering a weaker fiber increased leading to a de-
crease in the mean RUC-averaged strength. Additionally, if the number of fibers is
large, the distributions of fiber strengths within given RUCs become more similar,
resulting in less variation in predicted ultimate strengths. For fiber strength distri-
butions where α = 0 and α = 1, as the number of simulated fibers exceeded 25, the
mean value and variation in the RUC-averaged strength asymptotically approached
those of the representative volume element (RVE) averaged response. While the
use of a 25-fiber RUC led to approximately the same RUC-averaged strength as for
a 49-fiber RUC, roughly one-half the computational time was needed. This savings
in computational time becomes crucial when performing global-to-local-to-global
multiscale simulations. In order to assess the effect of the number of simulations on
the calculated mean RUC-averaged strength, an additional 5000 progressive failure
simulations were performed for a single-fiber RUC with α = 1. The estimated mean
fiber strength and associated standard deviation differed by less than 1% from the
values obtained using 500 simulations. Hence, a relatively small number of sim-
ulations (i.e., 500 per RUC architecture) was sufficient in providing a reasonable
approximation of the mean and variance for each RUC. Of course, if additional
material parameters (e.g., fiber volume fraction, fiber/matrix moduli) are varied, a
larger number of simulations would be needed as well as a more efficient sampling
methodology; this will be the topic of future studies.

Figures 6a-e contain ten typical (out of 500) RUC-averaged uniaxial stress-strain
curves in the x1-(fiber) direction for the single-fiber, four-fiber, nine-fiber, 25-fiber,
and 49-fiber RUCs, respectively. Similar results were obtained for simulations that
accounted for the effect of fiber length on composite strength (α = 1). For all of the
RUC architectures, the RUC-averaged stress-strain response increased monotoni-
cally up until the onset of fiber failure. For RUCs containing only one fiber, once
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Figure 5: Mean RUC-averaged ultimate strength compared against the number
of fibers (at a constant fiber volume fraction) after 500 simulation runs per RUC
where the error bars correspond to ± one standard deviation from the mean ulti-
mate strength. Eq. 1 was used to generate the fiber strength values for α=0 and
α=1 (L/L0=0.025).

the fiber failed, the RUC-averaged axial stress-strain response displayed a discrete
sudden load drop and the remaining stress was carried by the matrix (cf., Fig. 6a).
The strain at failure, of course, was a strong function of the assumed fiber strength.
A comparison of Fig. 6a-e suggests that as the number of fibers is increased, a grad-
ual softening behavior is observed. Furthermore, the difference in the global strain
between the first and last fiber failures for a given analysis increased as the number
of simulated fibers increased. This makes sense because an increase in the number
of fibers raises the probability of encountering both weaker and stronger fibers. Ad-
ditionally, the variation in the RUC-averaged stress-strain response diminished as
the number of fibers increased since the local RUC fiber strength distribution better
approximated that for the actual Weibull distribution. By adding more simulated
fibers, a more gradual, continuum-like local stress-strain response was observed
as each fiber failure occurred over a smaller fraction of the RUC volume. Clear-
ly, understanding the progressive failure behavior associated with a statistical fiber
strength distribution at the microscale is crucial to establishing and accurately cap-
turing length scale effects in a robust, computationally efficient multiscale mod-
eling methodology. Because of the computational efficiency of the MAC/GMC
code, parametric studies can be performed quickly to assess the influence of RUC
architecture and variations in material parameters on the RUC-averaged response.
These results can then be used to guide the implementation of such lower length
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Figure 6: A random sampling of ten stress-strain curves from a batch of 500 simu-
lations for a) single-fiber b) four-fiber c) nine-fiber d) 25-fiber and e) 49-fiber RUCs
using Eq. 1 for the α = 0 case.
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scale calculations within a multiscale analysis framework.

4 Coupled FE/ Micromechanics Analyses

While the preceding parametric study investigated the effect of RUC architecture
and fiber strength distributions on the RUC-averaged local failure, the ultimate goal
of this work is to use RUC deformation and damage evolution at a given integra-
tion point within an FE analysis (i.e., FEAMAC/ ABAQUS) to perform global
progressive failure analyses of a 25% fiber volume fraction SCS-6/ TIMETAL 21S
dogbone specimen under a monotonic tensile load at 650˚C. Figure 7 contains a
schematic of the NASA GRC dogbone specimen [Worthem (1994)]. Such speci-
mens were specifically designed to reduce the magnitude of the stress concentration
associated with a reduction in cross-sectional area commonly observed in dogbone
tensile test specimens. Two FE models were constructed using relatively coarse
(2400 elements) or fine (19,200 elements) meshes comprised of eight-noded lin-
ear isoparametric brick elements with eight integration points per element. Initial
analyses showed that the use of higher-order quadratic elements had a negligible
impact on the predicted stress-strain response and failure for this problem. Since
FEAMAC assigns an RUC to each FE, MAC/GMC is called over 150,000 times per
time step for the fine FE mesh. Hence, the computational efficiency of the GMC
[Pindera and Bednarcyk (1999)] is a crucial element in the multiscale FE analyses
performed here and is essential to the analysis of more complex structures.

Although an RUC can be used to approximate the RVE-averaged response, an RUC
alone is not necessarily an RVE. An individual RUC with distinct constituent mor-
phologies and properties can be regarded as an RVE subvolume (sub-RVE). This
notion is similar to that developed by Lacy, McDowell, and Talreja (1999), who re-
lated the homogenized response over distinct RVE-subvolumes of varying sizes to
the RVE-averaged (continuum) material behavior. In the current study, the homog-
enized material responses at multiple adjacent FE integration points (i.e., RUCs)
can be used to replicate the RVE-averaged behavior.

Similar to the previous local RUC analyses using MAC/GMC, thermal residual
stresses in the tensile dogbone specimen were determined from FEAMAC/ABAQUS
analyses involving a 16 hour assumed stress-free cooldown from the heat treatment
temperature to room temperature. This was followed by a stress-free temperature
rise to 650˚C over five minutes. Multiscale progressive failure analyses of the dog-
bone specimen (cf. Fig. 7) were then performed with a constant temperature distri-
bution at 650˚C. The surface nodes corresponding to the machine grips were fixed
at one end of the specimen while the surface nodes in the grip region at the opposite
end of the specimen were given a longitudinal tensile displacement consistent with
an initial elastic strain rate of 1x10−4/s in the gage section.
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Figure 7: NASA GRC MMC tensile dogbone specimen: a) Specimen geometry
with top and side views of the b) coarse 2400 FE mesh and c) fine 19,200 FE mesh.

The coarse (2400 element) FE mesh was initially used to study the effect of RUC
architecture and fiber strength parameter (α) on the global composite stress-strain
response and failure behavior. In each simulation, RUCs containing single-fiber
or four-fiber RUCs were generated (i.e., only one RUC geometry per simulation).
As an aside, special care should be taken to ensure that the actual material volume
associated with an RUC does not exceed that of the FEs used in the analysis, i.e.,
the RUC-averaged continuum response would occur over a domain larger than the
typical element size. Recall in the previous local MAC/GMC analyses, large vari-
ations in the RUC-averaged composite strength were observed for both the single-
and four-fiber RUCs. Such variability in local properties will manifest itself at the
macroscale in multiscale progressive failure analyses. One crucial consideration is
to retain a sufficient level of model discretization at each simulation scale to provide
accurate results without excessive computational costs. Ninety-six distinct RUCs,
each with a different set of individual fiber strength values based upon the modified
Weibull CDF (Eq. 1), were randomly assigned in equal numbers to individual FEs
throughout the coarse FE mesh. In the absence of experimental data to determine α

for this material system, the fiber strength parameter was varied between 0≤ α ≤ 1
in increments of 0.25. The characteristic length L = 0.64 mm (L/L0 = 0.025) cor-
responded to one-half of the typical FE length in the axial direction for the coarse
mesh. Since two FE integration points are present in the length direction, the ele-
ment half-length (L) was chosen as a length scaling parameter in order to validate
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the methodology for different FE meshes. Essentially, the length of the simulated
fiber segment used to define the continuum-averaged FE properties should not ex-
ceed the associated FE dimensions. Figure 8 contains an overview schematic of the
methodology used in assigning local fiber properties to individual RUCs and then
distributing RUCs throughout the FE mesh. This process was performed ten times
for each RUC resulting in a total of 100 multiscale FE simulations using the coarse
mesh.

Figure 8: Fiber strength distribution scheme for multiscale analyses. First, the input
parameters for the strength distribution and the number/ architecture of the RUC
are determined. Then the fiber strengths are generated by using a random number
generator and solving Eq. 1 for the stress, σ . These strengths are then assigned to
individual fiber subcells within an RUC, and the process is repeated until all RUCs
have been defined. Finally, the RUCs are randomly assigned in equal numbers to
FEs within the ABAQUS model.
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In order to assess the effect of macroscale FE model symmetry on the global com-
posite stress-strain response and failure behavior, a 300 element one-eighth sym-
metry FE mesh was generated that maintains the same mesh density as the 2400
FE coarse mesh. Twelve distinct four-fiber RUCs (i.e., the same FE to RUC ratio
as the coarse FE mesh) were distributed throughout this model in the same manner
as previously described. The fiber strength parameter, α , was similarly allowed to
vary between 0 and 1 in increments of 0.25, and ten simulations were performed
for each value of α resulting in a total of 50 additional simulations. The individu-
al strength predictions from each group of ten analyses were averaged together to
obtain the macroscale composite strength.

Figure 9 shows the average macroscale composite ultimate strength as a function
of the fiber strength parameter for multiscale analyses performed using single-fiber
and four-fiber RUCs within the coarse FE mesh and four-fiber RUCs within the
one-eighth symmetry FE mesh. As α was increased, the predicted ultimate strength
increased proportionally (cf., Fig. 9). This was due to the increasingly pronounced
effect of fiber length on strength as α →1 (cf., Fig. 4a). In contrast to the local
MAC/GMC calculations (cf., Fig. 5), the use of a four-fiber RUC within the coarse
global FE mesh led to higher ultimate strengths than for a single-fiber RUC for
all values of α . In the multiscale failure analyses without global symmetry, as the
far-field global strain was increased, local fiber failures initiated in a distributed
fashion throughout the specimen in lower length scale RUCs surrounding FE inte-
gration points. This process led to failure localization within individual RUCs as
well as throughout the global FE mesh, culminating in ultimate specimen failure. If
single-fiber RUCs are employed in multiscale analyses, some load shedding within
an element and between elements is possible once initial fiber failure occurs. How-
ever, after the single fiber fails, the load is rapidly shed to neighboring elements,
increasing the likelihood of global damage localization which leads to a reduc-
tion in the predicted composite ultimate strength. While the calculated variation
in strength values was less than 5% regardless of α , the variation in the compos-
ite strengths was less for multiscale calculations performed using a four-fiber RUC
than those for the single-fiber RUC. The experimental ultimate strength for this
specimen is 973 MPa [Bowman (1999)]; this suggests that the actual fiber strength
parameter is likely less than unity (α < 1). Of course, further testing is required to
fully establish an appropriate α value.

When performing multiscale progressive failure analyses, the use of global sym-
metry boundary conditions can profoundly impact the calculated global composite
stress-strain response and failure behavior. The use of such boundary conditions
is questionable when the distribution of constituent morphologies and properties
display no such symmetries. To illustrate this point, the use of a one-eighth sym-
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Figure 9: Average macroscale composite ultimate strength as a function of fiber
strength parameter (0 ≤ α ≤ 1) over ten ABAQUS/ FEAMAC simulations using
single-fiber and four-fiber RUCs with the coarse FE mesh and four-fiber RUCs
with a one-eighth symmetry coarse mesh. The error bars denote ± one standard
deviation from the mean. Note that the experimental ultimate strength was 973MPa
[Bowman (1999)].

metry coarse FE model led to higher calculated mean ultimate strengths than those
obtained using the same FE mesh density where the entire dogbone specimen was
simulated (cf., Fig. 9). This increase in mean strength was also somewhat indepen-
dent of the number of fibers in the RUC. Simulations performed using one-eighth
symmetry boundary conditions led to fiber failures that occurred in a symmetric
fashion across all symmetry planes. Hence, local bending due to an asymmetric
distribution of fiber failures was not permitted. Such eccentric deformation can
lead to an elevated local stress state. This serves to lower the ultimate composite
strength, which explains why the one-eighth symmetry model yields higher ulti-
mate strengths than the model that does not employ geometric symmetries. Addi-
tionally, more variability in the calculated ultimate strengths was observed for the
one-eighth symmetry model. Hence, global FE symmetry models can lead to er-
roneous strength predictions in multiscale progressive failure analyses and should
only be used with much caution. For these reasons, use of symmetry boundary
conditions in combination with stochastic variations in material properties is not
recommended. In the following discussion, only results obtained from full geome-
try models are presented.

The variability in predicted macroscale composite strength can also be seen in the
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global FE stress-strain responses. For example, Figs. 10a and 10b contain plots of
the predicted gage section stress-strain curves for α = 0.5 from multiscale analy-
ses of the full dogbone specimen performed using both single-fiber and four-fiber
RUCs, respectively. Here, the macroscale (continuum-averaged) response was de-
termined from the family of elements comprising the gage section of the specimen.
The measured response from Bowman (1999) is also included in the figure. Both
sets of calculations reasonably matched the observed specimen behavior, but the
variability in predicted strengths was lower for simulations performed using a four-
fiber RUC (cf., Fig. 10b) than for a single-fiber RUC (cf., Fig. 10a). As the total
number of simulated fibers within a RUC increased, the homogenized composite
strength was less dependent on the strengths of individual fibers. The variability in
predicted strengths, therefore, decreased with increasing numbers of fibers within
the RUC (cf., Figs. 9, 10).

Figure 10: Gage section stress-strain response of a longitudinally reinforced SCS-
6/ TIMETAL 21S MMC for simulations using a) single-fiber RUC and b) four-
fiber RUC. The coarse FE mesh was used and RUC fiber subcell strengths were
assigned using α = 0.5. Results are compared against gage section experimental
data obtained from Bowman (1999).
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Accounting for the distribution of constituent morphologies and properties across
relevant length scales is crucial for predicting progressive damage accumulation
and failure behavior of composite materials using multiscale analyses. For exam-
ple, Fig. 11 shows the distribution of failed elements after damage localization has
occurred for a series of multiscale FE simulations with different microscale dis-
tributions of fiber strengths (including one using one-eighth symmetry boundary
conditions). Images of three fractured test specimens are also shown in Fig. 11e.
A progressive failure analysis was performed where a Bowman (1999) constant
fiber strength value was used in each single-fiber RUC throughout the full dogbone
specimen mesh (Fig. 11a). For this case, although no a priori geometric sym-
metries were imposed, a symmetric distribution of local failures occurred. These
failures emanated from regions with a slight stress concentration due to a decrease
in specimen cross-section. These results were consistent with those obtained by
Bednarcyk and Arnold (2007), (2011). Multiscale analyses were also performed
using a one-eighth symmetry model, where a statistical distribution of microscale
fiber strengths was employed within four-fiber RUCs. Multiple failures initiated at
points of local material weakness that varied from simulation to simulation. Dam-
age progression consisted of a series of distributed fiber failures that were mirrored
about the eight planes of model symmetry; failed elements from three representa-
tive analyses are shown in Figure 11b. In contrast, Figs. 11c-d show the distribution
of failed elements for each of three multiscale analyses of the full dogbone spec-
imen employing single-fiber and four-fiber RUCs, respectively, where a statistical
distribution of fiber strengths was employed. Here, fiber failure localization was
distributed throughout the gage section (cf., Figs. 11c and 11d) consistent with the
experimentally observed fracture behavior (cf., Fig. 11e). Note that damage/ fail-
ure was much more widespread for the four-fiber RUC simulations (cf., Fig. 11d)
than for the single-fiber RUC simulations (cf., Fig. 11c). Using a single-fiber RUC,
the rapid onset of localized failures also led to fewer total fiber failures across the
model compared to simulations using four-fiber RUCs. These results demonstrate
that the use of global symmetry boundary conditions is inappropriate for progres-
sive failure analyses when the actual spatial distribution of fiber strengths display
no such symmetries. Such global symmetry models can lead to higher strength
predictions as well as unrealistic failure patterns. How this result impacts findings
of Blassiau, Thionnet, and Bunsell (2008) is unclear.

For illustration purposes, ten additional multiscale progressive failure analyses us-
ing a coarse FE mesh were performed in which a distribution of fiber strength-
s (α = 0.5) were employed within 25-fiber RUCs. This RUC was used since it
led to RUC-averaged ultimate strengths that were somewhat independent of the
number of simulated fibers (cf., Fig. 5). Predictions of the macroscale compos-
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Figure 11: Distribution of fiber failures obtained using a coarse FE model (α =
0.5) a) Full dogbone specimen employing a single-fiber RUC with a constant fiber
strength. b) One-eighth symmetry dogbone specimens employing four-fiber RUCs
with a distribution of fiber strengths. c) Full dogbone specimens employing single-
fiber RUCs with a distribution of fiber strengths. d) Full dogbone specimens em-
ploying four-fiber RUCs with a distribution of fiber strengths; blue represents no
failure and red indicates complete fiber subcell failure for a given element. e) Ex-
perimentally observed failure behavior.

ite stress-strain response and ultimate strength from these analyses were compared
to a similar analysis where the local fiber strength was held constant throughout
the mesh (cf., Fig. 11a). In the constant strength analysis, a fiber strength corre-
sponding to the mean value from the Weibull fiber strength distribution was used.
The predicted macroscale composite strength obtained using a constant local fiber
strength was markedly different from those from analyses where a spatial distribu-
tion of local fiber strengths was simulated. Figure 12 contains the predicted uniaxial
stress-strain responses obtained using a constant local fiber strength and statistically
varying local fiber strength models. As can be seen from the figure, use of a con-
stant local fiber strength led to a roughly 25.5% higher estimate of the macroscale
composite strength than the mean strength from the locally varying fiber strength
simulations. Moreover, the constant local fiber strength simulation resulted in a
series of element failures emanating from mild stress concentrations in the transi-
tion region between the grips and gage section (cf., Fig. 11a). These results were
inconsistent with experimental observations where the actual specimens tended to
fail within the gage section (cf., Fig. 11e). In contrast, the predicted failure loca-
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tions obtained using spatially varying local fiber strengths predominately occurred
within the gage section. These results underscore the importance of accounting for
spatial variations in the distributions of fiber strengths when performing multiscale
analyses.

 
Figure 12: Gage section stress-strain response of a longitudinally reinforced SCS-
6/ TIMETAL 21S MMC for simulations using 25-fiber RUCs with the coarse FE
mesh and α= 0.5.

5 Local/ Global Discretization Considerations

The preceding multiscale calculations investigated the effect of variations in the
local distribution of fiber strengths on global MMC composite failure based upon a
fixed level of macroscale discretization, i.e., a relatively coarse FE mesh was used
to simulate the global response. One key element in the development of robust,
computationally-efficient multiscale materials models is to assess the appropriate
level of model discretization at each relevant length scale that leads to tractable yet
accurate macroscale solutions. To illustrate this point, consider an arbitrary SCS-
6/ TIMETAL 21S MMC subvolume containing 16 uniformly distributed aligned
fibers. The continuum-level material response of this subvolume may be deter-
mined from multiscale models that employ different levels of discretization at the
macroscale and microscale, respectively. For example, using eight-noded linear
isoparametric elements (each with eight integration points), the 16-fiber subvolume
could be idealized using one FE to simulate the global response and a four-fiber
RUC at each integration point to simulate the local axial response using MAC/GMC
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(cf., Fig. 13). Alternatively, the material subvolume could be idealized using eight
FEs at the macroscale and a single-fiber RUC surrounding each FE integration point
(cf., Fig. 13). Of course, the latter multiscale discretization results in an eight-fold
increase in the number of FEs, and a corresponding increase in model degrees-of-
freedom at the macroscale. Both multiscale discretizations were used to perform
multiscale progressive failure analyses of the NASA SCS-6/ TIMETAL 21S dog-
bone specimen, where relatively coarse (2400 element) and fine (19,200 element)
global FE models (cf., Fig. 7) were used in conjunction with four- and single-fiber
RUCs, respectively. The FE to RUC ratio was held constant for each of these sim-
ulations; 96 RUCs were used for the coarse FE mesh while 768 RUCs were used
for the fine FE mesh.

Figure 13: Comparison of mesh discretization at different scales where a constant
simulation volume is maintained. The first case combines a coarse (2400 FE) mesh
with a four-fiber RUC while the second case combines a fine (19,200 FE) mesh
(i.e., double the mesh density) with a single-fiber RUC.

Analyses were performed using each discretization where the local fiber strengths
were assigned to individual subcells in the same manner as before using the mod-
ified Weibull CDF (Eq. 1) with the fiber strength parameter α = 0.5. The charac-
teristic fiber length (L) in Eq. 1 corresponded to half of the average FE dimension



122 Copyright © 2014 Tech Science Press CMC, vol.40, no.2, pp.99-129, 2014

in the axial direction for the coarse (L = 0.64 mm) and fine (L = 0.32 mm) meshes,
respectively. Note that as the characteristic length (L) was reduced for the fine FE
mesh, and the mean fiber strength and variation in the associated distribution of
fiber strengths increased slightly (cf., Fig. 14). Ten multiscale simulations were
performed for each multiscale discretization/ local fiber strength parameter combi-
nation, and the average macroscale ultimate composite strength was determined for
each case.

Figure 14: Modified Weibull PDFs that illustrate the effect of the length scale
(L/L0) for both the coarse and fine FE meshes. Note that for the α = 0 case, the
fiber strength distribution no longer depends on length, but when α = 0.5 and 1, the
length scale has a noticeable effect on the strength distribution.

Figure 15 contains plots of the macroscale stress-strain responses from each of
ten representative multiscale analyses performed using the coarse mesh/ four-fiber
RUC and fine mesh/ single-fiber RUC discretizations. The analyses performed us-
ing the fine mesh/ single-fiber RUC yielded an average ultimate composite strength
of 1059.9 MPa (standard deviation, 5.3 MPa). The coarse mesh/ four-fiber RUC
analyses produced an average ultimate composite strength of 1022.3 MPa (stan-
dard deviation, 8.0 MPa).

Figure 16 shows the distribution of FEs with failed fibers from three separate anal-
yses obtained using the fine mesh/ single-fiber RUC discretization for α = 0.5. The
distribution of failure locations is similar to that found using a coarse mesh/ four-
fiber RUC discretization (cf., Fig. 11d). These results suggest that both multiscale
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Figure 15: Gage section stress-strain response of a longitudinally reinforced SCS-
6/ TIMETAL 21S MMC for multiscale simulations (α = 0.5) using the coarse FE
mesh with a four-fiber RUC and the fine FE mesh with a single-fiber RUC.

Figure 16: Distribution of fiber failures within the fine mesh after the onset of
localization for three single-fiber RUC distributed fiber strength simulations (α =
0.5) where blue represents no failure and red indicates complete fiber subcell failure
for a given element. Each illustration denotes the outer layer of elements in a
separate simulation.
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discretizations lead to similar estimates of the macroscale composite material be-
havior. The solution time for the fine mesh/ single-fiber RUC analyses, however,
was roughly nine times greater than for the coarse mesh/ four-fiber RUC analyses
without a significant difference in calculated results.

Clearly, the model discretization at a specific length scale can have a profound
effect on the computational costs associated with multiscale simulations. Since the
solution algorithm implemented in the GMC is substantially more efficient than that
for traditional FE analyses [Pindera and Bednarcyk (1999)], use of a more highly
refined microscale model in combination with a coarser global FE mesh led to more
computationally effective solutions for this problem. For similar reasons, coupled
MAC/GMC-FE multiscale analyses may be much more computationally efficient
for a given problem than analogous multiscale analyses that are purely FE based
(i.e., FE2 [Feyel and Chaboche (2000); Feyel (2003)]). In general, the optimal
discretization at each relevant length scale is likely to be problem dependent. For
instance, problems with a global stress gradient (e.g., open-hole composites or full
scale structures), may require a different discretization than that used here. These
sorts of issues must be addressed in order to fully exploit the benefits of multiscale
analyses.

6 Summary and Conclusions

A parametric study investigating the effect of a statistical fiber strength distribu-
tion and repeating unit cell (RUC) architecture on the predicted composite ultimate
strength was performed using the computationally efficient code MAC/GMC for a
SCS-6/ TIMETAL 21S material system. Progressive failure at an elevated temper-
ature of 650˚C was simulated at the microscale by assigning strengths to individual
fibers within an RUC based upon a modified Weibull cumulative distribution func-
tion (CDF), which accounts for the effect of fiber length on the probability of fail-
ure. By increasing the number of fibers in the RUC, a more gradual, continuum-like
stress-strain behavior was observed.

Global multiscale progressive failure analyses of a 25% fiber volume fraction SCS-
6/ TIMETAL 21S tensile dogbone specimen at 650˚C were performed by imple-
menting a modified Weibull CDF of fiber strengths within FEAMAC/ ABAQUS.
Fiber strengths were appropriately assigned to individual fibers within RUCs cor-
responding to specific finite elements (FEs) in order to assess the effect of a spatial
distribution of local fiber strengths on the predicted macroscale composite stress-
strain response and failure. The composite ultimate strengths and distribution of
failure locations (predominately within the gage section) reasonably matched the
experimentally observed failure behavior. Moreover, these analyses suggest that
the use of models that exploit global geometric symmetries biases the character-
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istics of failure and are thus inappropriate for cases where the actual distribution
of local fiber strengths displays no such symmetries. This issue has not received
much attention in the literature. Additionally, the discretization at a specific length
scale can have a profound effect on the computational costs associated with mul-
tiscale simulations. Multiscale analyses were performed using coarse FE mesh/
four-fiber RUC and fine FE mesh/ single-fiber RUC discretizations. Both multi-
scale discretizations led to similar estimates of the macroscale composite material
behavior and failure. The solution time for the fine mesh/ single-fiber RUC anal-
yses, however, was roughly nine times greater than for the coarse mesh/ four-fiber
RUC analyses. Clearly, the model discretization at a specific length scale can have
a profound effect on the computational costs associated with multiscale simula-
tions. Understanding these issues is crucial to the development of robust multiscale
material models that yield accurate yet tractable results.
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