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Effect of Gravitational Field and Temperature Dependent
Properties on Two-Temperature Thermoelastic Medium

with Voids under G-N Theory
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Abstract: This investigation is aimed to study the two dimensional problem of
thermoelastic medium with voids under the effect of the gravity. The modulus of
elasticity is taken as a linear function of the reference temperature and employing
the two-temperature generalized thermoelasticity. The problem is studied in the
context of Green-Naghdi (G-N) theory of types II and III. The normal mode analy-
sis method is used to obtain the exact expressions for the physical quantities which
have been shown graphically by comparison between two types of the (G-N) theory
in the presence and the absence of the gravity, the temperature dependent properties
and the two-temperature effect.
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1 Introduction

The generalized thermoelasticity theories have been developed with the aim of re-
moving the paradox of infinite speed of heat propagation inherent in the classi-
cal coupled dynamical thermoelasticity theory investigated by Biot (1956). In the
generalized theories, the governing equations involve thermal relaxation times and
they are of hyperbolic type. The extended thermoelasticity theory by Lord and
Shulman (1967) which introduces one relaxation time in the thermoelastic process
and the temperature-rate-dependent theory of thermoelasticity by Green and Lind-
say (1972) which takes into account two relaxation times are two well established
generalized theories of thermoelasticity. Recently, Green and Naghdi (1991, 1992
and 1993) developed a generalized theory of thermoelasticity which involves ther-
mal displacement gradient as one of the constitutive variables in contrast to the
classical coupled thermoelasticity which includes temperature gradient as one of
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the constitutive variables. An important feature of this theory is that it does not
accommodate dissipation of thermal energy. On this theory the characterization
of the material response for a thermal phenomenon is based on three types of the
constitutive response functions. The nature of those three types of constitutive re-
sponse functions is such that when the respective theories are linearized, type I is
the same as the classical heat conduction equation (based on Fourier’s law), where-
as type II, the internal rate of production of entropy is taken to be identically zero,
implying no dissipation of thermal energy. This model is known as the theory of
thermoelasticity without energy dissipation. Type III involves the previous two
models as special cases, and admits dissipation of energy in general, in this mod-
el, introducing the temperature gradient and thermal displacement gradient as the
constitutive variables. Chandrasekharaiah (1996a, 1996b) solved some problems
in thermoelasticity without energy dissipation. Sharma and Chauhan (1999) inves-
tigated a problem concerning thermoelastic interactions without energy dissipation
due to body forces and heat sources. Othman and Song (2007) have investigated
a reflection phenomenon of the plane waves from an elastic solid half-space under
hydrostatic initial stress without energy dissipation. Othman et al. (2013a) studied
the temperature dependence and the rotation on generalized thermoelasticity with
voids under (G-N) theory.

Theory of elastic materials with voids is one of the most important generalizations
of the classical theory of elasticity. This theory is concerned with elastic materials
consisting of a distribution of small porous (voids) in which the void volume is
included among the kinematic variables. Practically, this theory is useful for in-
vestigating various types of the geological and the biological materials for which
elastic theory is inadequate. A nonlinear theory of elastic material with voids was
developed by Nunziato and Cowin (1979). Cowin and Nunziato (1983) develope-
d a theory of linear elastic materials with voids. Puri and Cowin (1985) studied
the behavior of the plane waves in a linear elastic material with voids. The do-
main of influence theorem in the linear theory of elastic materials with voids was
discussed by Dhaliwal and Wang (1994). Dhaliwal and Wang (1995) developed a
heat flux dependent theory of thermoelasticity with voids. Ciarletta and Scarpet-
ta (1995) discussed some results on thermoelasticity for dielectric materials with
voids. Marin in (1997a, 1997b) studied uniqueness and domain of influence results
in thermoelastic bodies with voids.

The effect of gravity on the wave propagation in an elastic solid medium was first
considered by Bromwich in (1898), treating the force of gravity as a type of body
force. Sezawa in (1927) studied the dispersion of elastic waves propagated on
curved surfaces. In (1965) Love extended the work of Bromwich which investigat-
ed the influence of gravity on superficial waves and showed that the Rayleigh wave
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velocity is affected by the gravity field. Recently Othman et al. (2013b, 2013c and
2014) and Othman and Lotfy (2013) have studied many problems using the effect
of the gravitational field on thermoelasticity.

Material properties, such as the modulus of elasticity and the thermal conductiv-
ity, may be affected by temperature dependent. The temperature dependence of
the material properties is neglected when the temperature variation from the initial
temperature is low, while the temperature dependence of the material properties is
considered when the temperature changes very high. The reactor vessels, turbine
engines, space vehicles and refractory industries are affected by high temperature
changes. If the temperature dependence of material properties is neglected, this
is due to significant errors as discussed by Noda in (1986). Othman and Song in
(2008) studied the reflection of the magneto-thermoelastic waves with two relax-
ation times under the effect of temperature dependent elastic moduli. In (2011)
Othman discussed the state-space approach to the generalized thermoelastic prob-
lem with the temperature dependent properties and internal heat sources.

The two temperature theory of thermoelasticity proposes that the heat conduction
in deformable media depends upon two distinct temperatures, the conducting tem-
perature θ and the thermodynamic temperature T according to Chen and Gurtin
in (1968) also Chen and Gurtin (1969) and. While under certain conditions, these
two temperatures can be equal, in time independent problems, however, in par-
ticular those involving wave propagation θ and T are generally distinct accord-
ing to Warren and Chen in (1973). Youssef in (2006) studied the theory of the
two-temperature generalized thermoelasticity. The propagation of harmonic plane
waves in the media described by the two-temperature theory of thermoelasticity is
investigated by Puri and Jordan in (2006).

The present article is proposed to determine the components of displacement, the

stresses, the temperature distribution and the volume fraction field in a homoge-
nous, linear, isotropic, thermoelastic solid with voids in the case of absence and
presence of the gravity, the temperature dependent and the two temperature effects.
The model was illustrated in the context of (G-N) theory of types II and III. The
normal mode analysis is used to obtain the exact expressions for physical quantities.
The distributions of considered variables are represented graphically.

2 Formulation of the problem and basic equations

Consider a linear homogeneous isotropic thermoelastic medium with voids and a
half-space (y≥ 0) the rectangular Cartesian coordinate system (x,y,z) having orig-
inated on the surface z = 0. For two dimensional problem we assume the dynamic
displacement vector as u = (u, v, 0). All quantities considered will be a function
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of the time variable t, and of the coordinates x and y, the governing equations in the
displacement and thermal fields in the absence of body forces and heat sources un-
der the two-temperature generalized thermoelasticity theory as Youssef in (2006).

Following Green and Naghdi in (1993), Cowin and Nunziato (1983) the field equa-
tions and constitutive relations for a rotating linear homogenous, isotropic gener-
alized thermoelastic solid with voids without body forces, heat sources and extrin-
sic equilibrated body force under the two-temperature generalized thermoelasticity
theory in the context of (G-N) theory of type III, then the basic governing equations
of a linear thermoelastic medium with voids under influence of gravitational field
and two-temperature will be
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The strain-displacement relations
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), (6)

The thermodynamic temperature, T is related to the conductive temperature, θ as

T = (1−d ∇
2) θ . (7)

Where λ ,µ are the lame’s constants, α,b,ξ1,ω0,m,ψ are the material constants
due to presence of voids, β = (3λ +2µ)αt such that αt is the coefficient of thermal
expansion, ρ is the density, Ce is the specific heat, K is the thermal conductivity,
K∗ is the material constant characteristic of the theory, T0 is the reference temper-
ature chosen so that

∣∣(T −T0)
/

T0
∣∣ << 1, φ is the change in the volume fraction

field, σi j are the components of the stress tensor, δi jis the Kronecker delta, g is the
acceleration due to the gravity, d is the two temperature parameter, When K∗→ 0
then (4) reduces to the heat conduction equation in (G-N) theory (of type II).
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To investigate the effect of the temperature dependent properties on thermoelastic
medium with voids, therefore we assume that

λ = λ0 f (T ), µ = µ0 f (T ), β = β0 f (T ), α = α0 f (T ), ω0 = ω10 f (T ),

ξ1 = ξ10 f (T ), ψ = ψ0 f (T ), m = m0 f (T ), K = K0 f (T ), b = b0 f (T ).
(8)

Where λ0,µ0,β0,α0,ω10,ξ10,ψ0,m0,k0,b0 are constants, f (T ) is a given non-
dimensional function of temperature. In the case of a temperature independent
modulus of elasticity, f (T )= 1, such that f (T )= (1−α∗T0), where α∗ is called the
empirical material constant, in the case of the reference temperature independent
of modulus of elasticity and thermal conductivity α∗ = 0. The governing equation
can be put into a more convenient form by using the following non-dimensional
variables
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In terms of non-dimensional quantities defined in equation (9) the governing equa-
tions (1) - (4) reduce to (dropping the prime for convenience)
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Where ε1,ε2, and ε3 are the coupling constants. Assuming the scalar potential func-
tion ψ1(x,y, t) and the vector potential function ψ2(x,y, t) in dimensionless form
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Using equation (15) in equations (10) - (13) to obtain
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The components of stress tensor are
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3 Normal mode analysis

The solution of the considered physical quantities can be decomposed in terms of
the normal mode as the following form
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2 ,φ
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∗
2 ,φ

∗,θ ∗,T ∗,σ∗i j](y) are the amplitude of the physical quantities, ω is
the angular frequency, i =

√
−1 and a is the wave number in the x- direction.

Using (25) then (16) - (19) take the form
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Eliminating ψ∗2 ,φ ∗ and T ∗ between (26) - (29), we obtain the differential equation
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In a similar manner we arrive at
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Where k2
n (n = 1, 2, 3, 4) are the roots of the characteristic equation of the equation

(31).

The general solution of the equation (32), which are bound at y→ ∞, is given by
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Since Rn(n = 1,2,3,4) are some coefficients.

To obtain the components of the displacement vector, from (33) and (34) in (14)
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v(x,y, t) =
4
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From (38), (39), (35) and (37) into (20)-(23) to obtain the components of the stress-
es
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4
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σyy(x,y, t) =
4

∑
n=1

H6nRn exp(−kny+ω t + iax), (41)

σzz(x,y, t) =
4

∑
n=1

H7nRn exp(−kny+ω t + iax), (42)

σxy(x,y, t) =
4

∑
n=1

H8nRn exp(−kny+ω t + iax). (43)

4 Boundary conditions

Consider the boundary conditions to determine the coefficients Rn(n =
1,2,3,4),and suppress the positive exponentials to avoid the unbounded solutions
at infinity. The coefficients R1,R2,R3,R4 can be defined from the boundary condi-
tions on the surface at y = 0.

(1) The mechanical boundary conditions

σyy =−p1 exp(ω t + i a x), σxy = 0, and ∂φ

∂y = 0. (44)

(2) The thermal boundary condition:

The half-space subjected to thermal shock

T = p2 exp(ω t + i a x). (45)

Where p1 is the magnitude of the applied force in the half-space and p2 is the
applied constant temperature to the boundary.

Substituting the expressions of the considered variables in the above boundary con-
ditions, to obtain the following equations satisfied by the parameters.

4

∑
n=1

H6nRn =−p1, (46)

4

∑
n=1

H8nRn = 0, (47)

4

∑
n=1
−knH2nRn = 0, (48)

4

∑
n=1

H4nRn = p2. (49)
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Invoking boundary conditions (44) and (45) at the surface y = 0 of the plate, then
obtain a system of four equations, (46) - (49). After applying the inverse of matrix
method, one can get the values of the four constants Rn(n = 1,2,3,4).

R1
R2
R3
R4

=


H61 H62 H63 H64

H81 H82 H83 H84
−k1H21 − k2H22 − k3H23 − k4H24

H41 H42 H43 H44


−1

−p1
0
0
p2

 . (50)

Hence obtain the expressions for the displacement components and the other phys-
ical quantities of the plate surface.

5 Numerical results and discussion

In order to illustrate the obtained theoretical results in the preceding section, follow-
ing Dhaliwal and Singh in (1980) the magnesium material was chosen for purposes
of numerical evaluations. The constants of the problem were taken as

λ = 2.17×1010N/m2, µ = 3.278×1010N/m2, K = 1.7×102W/mdeg,

ρ = 1.74×103Kg/m3, β = 2.68 × 106N/m2 deg, Ce = 1.04 × 103J/Kgdeg,

ω
∗
1 = 3.58×1011/s, αt = 1.78×10−5N/m2, T0 = 298 K.

The voids parameters are

ψ = 1.753×10−15m2, α = 3.688×10−5N, ξ1 = 1.475× 1010 N/m2,

b = 1.13849×1010N/m2, m = 2× 106N/m2 deg, ω0 = 0.0787× 10−3N/m2s.

The comparisons were carried out for

p1 = 0.5, p2 = 2, ε2 = 0.5, a = 0.1, ω =−1.5, x = 2, t = 0.2, and 0≤ y≤ 7.

The above numerical values was used for the distribution of the real parts for the
displacement components u and v, the temperature distribution θ , the stress com-
ponents σxx,σxy and the change in the volume fraction field φ with the distance y
for (G-N) theory of types II and III, for these cases

(i) In the presence and the absence of the gravity effect in Figs. 1-6.

[g = 0, 9.8 with α∗ = 0.00051 and d = 0.00015],

(ii) With and without the temperature dependent properties in Figs. 7-12.

[α∗ = 0, 0.00051, g = 9.8 with and d = 0.00015],

(iii) With and without the two temperature effect in Figs. 13-18.
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[d = 0.00015,0 g = 9.8 with and α∗ = 0.00051].

In the graph the solid and dashed lines represent the solutions in the context of the
(G-N) theory of type II and the lines with dot represent the derived solutions using
(G-N) theory of type III.
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Fig. 1. The displacement component u distribution against y with and without gravity. 

 
Fig. 2. The displacement component v distribution against y with and without gravity. 

 
Fig. 3. The distribution of the conductive temperature   against y with and without gravity. 

Figure 1: The displacement component u distribution against y with and without
gravity.
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Fig. 1. The displacement component u distribution against y with and without gravity. 

 
Fig. 2. The displacement component v distribution against y with and without gravity. 

 
Fig. 3. The distribution of the conductive temperature   against y with and without gravity. 

Figure 2: The displacement component v distribution against y with and without
gravity.
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Fig. 1. The displacement component u distribution against y with and without gravity. 

 
Fig. 2. The displacement component v distribution against y with and without gravity. 

 
Fig. 3. The distribution of the conductive temperature   against y with and without gravity. Figure 3: The distribution of the conductive temperature θ against y with and with-

out gravity.
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Fig. 4. The distribution of the stress tensor component xx against y with and without gravity. 

 
Fig. 5. The distribution of the stress tensor component xy against y with and without gravity. 

 
Fig. 6. The distribution of the volume fraction field   against y with and without gravity. 

Figure 4: The distribution of the stress tensor component σxx against y with and
without gravity.
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Fig. 4. The distribution of the stress tensor component xx against y with and without gravity. 

 
Fig. 5. The distribution of the stress tensor component xy against y with and without gravity. 

 
Fig. 6. The distribution of the volume fraction field   against y with and without gravity. 

Figure 5: The distribution of the stress tensor component σxy against y with and
without gravity.
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Fig. 4. The distribution of the stress tensor component xx against y with and without gravity. 

 
Fig. 5. The distribution of the stress tensor component xy against y with and without gravity. 

 
Fig. 6. The distribution of the volume fraction field   against y with and without gravity. Figure 6: The distribution of the volume fraction field φ against y with and without

gravity.
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Fig. 7. The displacement component u distribution against y with and without temperature dependent 

 

Fig. 8. The displacement component v distribution against y with and without temperature dependent 

 

Fig. 9. The distribution of the conductive temperature   against y with and 

 without temperature dependent. 

Figure 7: The displacement component u distribution against y with and without
temperature dependent.
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Fig. 7. The displacement component u distribution against y with and without temperature dependent 

 

Fig. 8. The displacement component v distribution against y with and without temperature dependent 

 

Fig. 9. The distribution of the conductive temperature   against y with and 

 without temperature dependent. 

Figure 8: The displacement component v distribution against y with and without
temperature dependent.
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Fig. 7. The displacement component u distribution against y with and without temperature dependent 

 

Fig. 8. The displacement component v distribution against y with and without temperature dependent 

 

Fig. 9. The distribution of the conductive temperature   against y with and 

 without temperature dependent. 

Figure 9: The distribution of the conductive temperature θ against y with and with-
out temperature dependent.
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Fig. 10. The distribution of the stress tensor xx against y  with and without temperature dependent. 

 
Fig. 11. The distribution of the stress tensor xy against y with and without temperature dependent. 

 
Fig. 12. The distribution of the volume fraction field  against y with and without temperature dependent. 

Figure 10: The distribution of the stress tensor σxx against y with and without
temperature dependent.
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Fig. 10. The distribution of the stress tensor xx against y  with and without temperature dependent. 

 
Fig. 11. The distribution of the stress tensor xy against y with and without temperature dependent. 

 
Fig. 12. The distribution of the volume fraction field  against y with and without temperature dependent. 

Figure 11: The distribution of the stress tensor σxy against y with and without
temperature dependent.
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Fig. 10. The distribution of the stress tensor xx against y  with and without temperature dependent. 

 
Fig. 11. The distribution of the stress tensor xy against y with and without temperature dependent. 

 
Fig. 12. The distribution of the volume fraction field  against y with and without temperature dependent. Figure 12: The distribution of the volume fraction field φ against y with and without

temperature dependent.

Fig. 1 shows the distribution of the displacement component u in the case of g= 9.8
and g = 0, in the context of both types II and III of (G-N) theory; it noticed that the
distribution of u increased with the increase of the gravity for y > 0, the distribution
of u is directly proportional to the gravity. Fig. 2 depicts the distribution of the
displacement component v in the case of g = 9.8 and g = 0, in the context of both
types II and III of (G-N) theory; it noticed that the distribution of v increased in
0 ≤ y ≤ 1.3, then decreased in 1.3 ≤ y ≤ 7 with the increase of the gravity value
for both types II and III of (G-N) theory. Fig. 3 clarifies the distribution of the
temperature θ in the case of g = 0.9, 0 in the context of both types II and III of
(G-N) theory; it noticed the distribution of θ decreased with the increase of the
value of the gravity in 0≤ y≤ 7 for both types II and III of (G-N) theory.

Fig. 4 depicts the distribution of the stress components σxx in the case of g = 9.8, 0
in the context of both types II and III of (G-N) theory; it noticed the distribution
of σxx decreased in 0 ≤ y ≤ 0.2 then increased in 0.2 ≤ y ≤ 7 with the increase of
the value of the gravity for both types II and III of (G-N) theory. Fig. 5 shows the
distribution of the stress components σxy in the case of g = 9.8, 0 in the context of
both types II and III of (G-N) theory; it noticed the distribution of σxyincreased in
0 ≤ y ≤ 7 with the increase of the value of the gravity for both types II and III of
(G-N) theory.

Fig. 6 expresses the distribution of change in the volume fraction field φ in the
context of both types II and III of (G-N) theory in the case of g = 9.8, 0, it noticed
the distribution of φ increased in 0 ≤ y ≤ 7 for type III of (G-N) theory, while
for type II of (G-N) theory the distribution of φ decreased in 0 ≤ y ≤ 0.05 then
increased in 0.05 ≤ y ≤ 7. It explained that all the curves converges to zero, and
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the gravity has an effective role in the distribution of all physical quantities in this
physical problem for both types II and III of (G-N) theory.

Fig. 7 depicts the distribution of the displacement component u in the case of
α∗=0.00051 and α∗= 0 in the context of both types II and III of (G-N) theory; it
noticed that the distribution of u increased in 0≤ y≤ 1 then decreased in 1≤ y≤ 7
with the increase of α∗ for both types II and III of (G-N) theory. Fig. 8 shows
the distribution of the displacement component v in the case of α∗= 0.00051 and
α∗=0 in the context of both types II and III of (G-N) theory; it noticed that the
distribution of v decreased in 0 ≤ y ≤ 0.9 then increased in 0.9 ≤ y ≤ 7 with the
increase of α∗ for both types II and III of (G-N) theory.

Fig. 9 clarifies the distribution of the temperature θ in the case of α∗=0.00051,0 in
the context of both types II and III of (G-N) theory; it noticed the distribution of θ

increased with the increase of the value of α∗ in 0≤ y≤ 7 for both types II and III
of (G-N) theory.

Fig. 10 depicts the distribution of the stress components σxx in the case of
α∗=0.00051, 0 in the context of both types II and III of (G-N) theory; it noticed
the distribution of σxx decreased in 0 ≤ y ≤ 7 with the increase of the value of α∗

for both types II and III of (G-N) theory. Fig. 11 shows the distribution of the stress
components σxy in the case of α∗= 0.00051, 0 in the context of both types II and
III of (G-N) theory; it noticed the distribution of σxydecreased in 0 ≤ y ≤ 2.3 then
increased in 2.3 ≤ y ≤ 7 with the increase of the value of α∗for both types II and
III of (G-N) theory.

Fig. 12 expresses the distribution of change in the volume fraction field φ in the
context of both types II and III of (G-N) theory in the case of α∗= 0.00051, 0, it
noticed the distribution of φ decreased in 0 ≤ y ≤ 7 with the increase of the value
of α∗ for both types II and III of (G-N) theory. It explained that all the curves
converges to zero, and the temperature dependent properties have an effective role
in the distribution of all physical quantities in this problem for both types II and III
of (G-N) theory.

Fig. 13 depicts the distribution of the displacement component u in the case of
d = 0.00015 and d = 0 in the context of both types II and III of (G-N) theory; it
noticed that the distribution of u increased in 0 ≤ y ≤ 7 for (G-N) theory of both
types II and III with the increase of the two-temperature parameter d.

Fig. 14 shows the distribution of the displacement component v in the case of
d = 0.00015 and d = 0 in the context of both types II and III of (G-N) theory; it
noticed that the distribution of v increased in 0 ≤ y ≤ 7 for (G-N) theory of both
types II and III with the increase of the two-temperature parameter d.

Fig.15 clarifies the distribution of the temperature θ in the case of d= 0.00015, 0
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in the context of both types II and III of (G-N) theory; it noticed the distribution of
θ decreased with the increase of the value of d in 0 ≤ y ≤ 7 for type II of (G-N)
theory, while the distribution of θ increased with the increase of the value of d in
0≤ y≤ 7 for (G-N) theory of type III.

Fig. 16 depicts the distribution of the stress components σxx in the case of
d= 0.00015, 0 in the context of both types II and III of (G-N) theory; it noticed
the distribution of σxx decreased in 0≤ y≤ 7 with the increase of the value of d for
type III of (G-N) theory, but the distribution of σxxincreased in 0 ≤ y ≤ 7 with the
increase of the value of d for (G-N) theory of type II.

Fig. 17 shows the distribution of the stress components σxy in the case of
d= 0.00015, 0 in the context of both types II and III of (G-N) theory; it noticed the
distribution of σxy for (G-N) theory of both types II and III decreased in 0≤ y≤ 7
with the increase of the value of d.

Fig. 18 expresses the distribution of change in the volume fraction field φ in the
context of both types II and III of (G-N) theory in the case of d= 0.00015, 0 it
noticed the distribution of φ increased in 0 ≤ y ≤ 7 with the increase of the value
of d for type II of (G-N) theory, while the distribution of φ for type III of (G-N)
theory increased in 0 ≤ y ≤ 0.05 then decreased in 0.05 ≤ y ≤ 7 with the increase
of the value of d. It explained that all the curves converges to zero, and the two-
temperature effect has an effective role in the distribution of all physical quantities
in this problem for both types II and III of (G-N) theory.
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Fig. 13. The displacement component u distribution against y with and without two temperature. 

 
Fig. 14. The displacement component v distribution against y with and without two temperature. 

 
Fig. 15. The distribution of the conductive temperature   against y with and without two temperature. 

Figure 13: The displacement component u distribution against y with and without
two temperature.
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Fig. 13. The displacement component u distribution against y with and without two temperature. 

 
Fig. 14. The displacement component v distribution against y with and without two temperature. 

 
Fig. 15. The distribution of the conductive temperature   against y with and without two temperature. 

Figure 14: The displacement component v distribution against y with and without
two temperature.
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Fig. 13. The displacement component u distribution against y with and without two temperature. 

 
Fig. 14. The displacement component v distribution against y with and without two temperature. 

 
Fig. 15. The distribution of the conductive temperature   against y with and without two temperature. Figure 15: The distribution of the conductive temperature θ against y with and

without two temperature.
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Fig. 16. The distribution of the stress tensor component xx against y with and without two temperature. 

 
Fig. 17. The distribution of the stress tensor component xy against y with and without two temperature. 

 
Fig. 18. The distribution of the volume fraction field   against y with and without two temperature.  

Figure 16: The distribution of the stress tensor component σxx against y with and
without two temperature.
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Fig. 16. The distribution of the stress tensor component xx against y with and without two temperature. 

 
Fig. 17. The distribution of the stress tensor component xy against y with and without two temperature. 

 
Fig. 18. The distribution of the volume fraction field   against y with and without two temperature.  

Figure 17: The distribution of the stress tensor component σxy against y with and
without two temperature.
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Fig. 16. The distribution of the stress tensor component xx against y with and without two temperature. 

 
Fig. 17. The distribution of the stress tensor component xy against y with and without two temperature. 

 
Fig. 18. The distribution of the volume fraction field   against y with and without two temperature.  Figure 18: The distribution of the volume fraction field φ against y with and without

two temperature.

6 Conclusion

In this article, we have studied the effect of the gravitational field and tempera-
ture dependent properties due to two-temperature for thermoelastic medium with
voids. The analysis of the components of displacement, the stresses, the tempera-
ture distributions and the change in the volume fraction field due to the gravity, the
temperature dependent properties, and the two-temperature effect for thermoelastic
medium with voids is an interesting problem of thermo-mechanical. The gravi-
tational influence, the temperature dependent properties and the two-temperature
effect are significant in the current model since the amplitudes of these quantities
are varying (increasing or decreasing) under the effect of the used fields. The nor-
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mal mode analysis technique has been used which is applicable to a wide range
of problems in thermoelasticity. The value of all physical quantities converges to
zero with an increase in the distance yand all functions are continuous. Finally it
deduced that the deformation of a body depends on the nature of the applied forces
and thermal effects as well as the type of boundary conditions.
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