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Exact Solutions for the Stability and Free Vibration of
Multilayered Functionally Graded Material Hollow

Cylinders under Axial Compression
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Abstract: Exact three-dimensional stability and free vibration analyses of
simply-supported, multilayered functionally graded material (FGM) circular hol-
low cylinders and laminated composite ones under axial compression are presented.
The material properties of each FGM layer are assumed to obey a power-law dis-
tribution of the volume fractions of constituents through the thickness coordinate.
The Pagano method, which is based on the principle of virtual displacement and is
conventionally used for the analysis of laminated composite structures, is modified
to be feasible for the study of multilayered FGM cylinders, in which Reissner’s
mixed variational theorem, the successive approximation and transfer matrix meth-
ods, and the transformed real-valued solutions of the system equations are used.
The present modified Pagano solutions for laminated composite cylinders are in
excellent agreement with the exact 3D ones available in the literature, and those
for sandwich FGM cylinders may be used as the benchmark solutions to assess the
ones obtained using various two-dimensional theories and numerical models. The
influence of some effects on the lowest critical load parameters of multilayered
FGM cylinders and laminated composite ones is investigated, such as the deriva-
tion between using von Karman nonlinearity and full kinematic one, and the dif-
ference between using the uniform stress assumption and the uniform strain one.
In addition, a parametric study with regard to some effects on the lowest frequency
parameters of axially loaded, multilayered FGM cylinders is carried out, such as
the magnitude of the applied compressive loads, the radius-to-thickness, length-to-
radius and orthotropic ratios, and the material-property gradient index.
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1 Introduction

It is well-known that the laminated fiber-reinforced composite material (FRCM)
structures have a mismatch of material properties across the interfaces between
adjacent layers, and this may result in some drawbacks, such as delamination, ma-
trix cracking, and local buckling occurring at these locations, especially when they
operate in high temperature environments. To overcome these disadvantages, an
emerging class of functionally graded material (FGM) structures, the material prop-
erties of which are heterogeneous and gradually and continuously vary through the
thickness coordinate, has been developed. The feature of continuous distributions
of material properties through the thickness coordinate of FGM structures, how-
ever, also increases the complexity and difficulty of analyzing such structures.

The conventional two-dimensional (2D) first- and higher-order shear deformation
theories (FSDT and HSDT) have been successfully extended to the related stability
and free vibration analyses of functionally grade (FG) elastic/piezoelectric plates
and shells. Based on the classical plate theory (CPT), FSDT and HSDT, Chen et
al. (2008), Chen (2005), Chen et al. (2006, 2009) investigated the stability and
free vibration of functionally graded plates, in which the corresponding governing
equations for the FGM plates subjected to a general state of non-uniform initial
stress were derived, the material properties of the FGM plates were assumed to
obey a simple power law of volume fractions of constituents varying through the
thickness direction, and the effects of various parameters and initial stresses on
the lowest critical load and frequency parameters of the FGM plates were exam-
ined. Najafov et al. (2013) presented the torsional vibration and stability of FGM
cylindrical shells on elastic foundations using the classical shell theory. Matsunaga
(2007, 2008, 2009) developed a 2D HSDT to examine the stability and free vi-
bration problems of FGM circular cylindrical shells, in which a set of governing
equations accounting for the effects of transverse shear and normal deformations
were derived using Hamilton’s principle, and the material properties were assumed
to vary according to a power law distribution in terms of the volume fractions of
the constituents. Based on the FSDT, Sheng and Wang (2008, 2010) analyzed the
thermoelastic vibration and buckling problems of functionally graded piezoelectric
(or elastic) cylindrical shells embedded and not embedded in an elastic medium, in
which the effects of the material-property gradient index and shell geometry param-
eters on the critical loads, temperature increments, and voltages were presented.

Some advanced finite element methods (FEMs) have been developed for the anal-
ysis of FGM structures. Dong and Atluri (2011) presented a simple procedure to
formulate efficient and stable hybrid/mixed elements for various engineering ap-
plications in macro- and micro-mechanics. Implementations of these FEMs, it is
demonstrated that they are numerically stable, and are more efficient than tradi-
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tional hybrid/mixed elements. Subsequently, following the procedure, Dong et al.
(2014) developed a simple four-node locking-alleviated mixed FEM for the anal-
ysis of FGM composite beams, in which there are no needs to assume the higher-
order or layerwise zig-zag displacement variations through the thickness coordinate
in advance, which were commonly used for the displacement-based FEMs in the
literature.

Wu et al. (2008) classified the exact three-dimensional (3D) analytical approaches
for multilayered FRCM plates and shells into four different ones, namely the
Pagano (1969, 1970), state space, series expansion, and perturbation ones, in which
the pioneering studies that initiated the development of various approaches and
their relevant applications were summarized, comparisons among the results ob-
tained using various approaches were carried out, and applications of these to as-
sorted 3D analyses of laminated FRCM structures were collected and tabulated.
Among these, it is apparent that the Pagano method, based on the principle of vir-
tual displacement (PVD), is both simple and the most widely applied for laminated
FRCM structures, while it is not feasible for their FGM counterparts without fur-
ther modifications even though other approaches have been successfully applied to
the analysis of FGM structures, such as the use of the state space approach (Chen
and Ding, 2002; Chen and Wang, 2002; Chen et al., 2004; Wu and Liu, 2007) and
perturbation one (Wu and Tsai, 2004, 2009, 2010; Wu and Syu, 2007).

In order to achieve the above-mentioned purpose, Wu et al. (2010) and Wu and Lu
(2009) developed a modified Pagano method for the exact 3D static and free vi-
bration analyses of simply supported, functionally graded magneto-electro-elastic
plates, and it was further extended to the bending and thermo-elastic analyses of
functionally graded piezoelectric sandwich cylinders by Wu and Tsai (2011) and
Wu and Jiang (2011). The modifications to the original Pagano method are as
follows: (a) The Reissner mixed variational theorem- (RMVT)-based formulation
(Reissner, 1984, 1986), rather than the PVD-based one, is used so that both the lat-
eral boundary conditions on the outer surfaces and the continuity conditions at the
interface between adjacent layers can be directly applied. (b) The sets of complex-
valued solutions for system equations are transferred to the corresponding sets of
real-valued solutions by means of Euler’s formula for the purpose of computational
efficiency. (c) A successive approximation (SA) method is adopted, in which the
functionally graded plate or shell considered is artificially divided into a certain
number of individual layers with an equal and small thickness, as compared to the
in-plane dimensions of the plate or the mid-surface radius of the shell for each
layer. Using this refinement, one may reasonably approximate the variable ma-
terial coefficients of each layer to the constant material coefficients in an average
thickness sense so that the system of thickness-varying differential equations for
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each individual layer can be reduced to a system of thickness-invariant differential
ones. (d) A transfer matrix method is developed, so that the general solutions of
system equations can be obtained layer-by-layer and the related computation is not
time-consuming.

The stability and free vibration problems of isotropic, FRCM and FGM circular
hollow cylinders have attracted much attention for several decades because stabil-
ity is the dominant failure occurring in these structures, and free vibration is the
basic characteristic required for the design work, while relatively few 3D stability
and free vibration analyses of axially loaded, multilayered FGM cylinders can be
found in the open literature in comparison with 2D and 3D analyses of laminated
FRCM structures, and the 2D analysis of FGM ones. Due to the benefits of the
modified Pagano method, as noted above, it is extensively applied in this article to
the exact 3D stability and free vibration analyses of simply-supported, multilayered
FGM/FRCM circular hollow cylinders under axial compression, in which the mate-
rial properties of each FGM layer are assumed to obey a power-law distribution of
the volume fractions of the constituents varying through the thickness coordinate,
and the magnitude of the applied compressive load is less than the lowest critical
load of the cylinder, which is obtained using 3D linear buckling theory with an
assumed 3D displacement field for the pre-buckling state of the cylinder. Because
the FGM cylinder is transformed into a multilayered homogeneous elastic one in
this formulation using the SA method, the analysis of multilayered (or sandwiched)
FRCM cylinders can thus be included as a special case, and be undertaken using
the present formulation. A parametric study is thus carried out of the influence
of the radius-to-thickness, length-to-radius, orthotropic ratios, and the material-
property gradient index on the lowest critical load and frequency parameters of
simply-supported, laminated FGM/FRCM cylinders under axial compression.

2 Prebuckling state in a multilayered FGM cylinder

We consider a simply supported, multilayered functionally graded orthotropic cir-
cular hollow cylinder under an axial compressive load with the magnitude Px, as
shown in Fig. 1(a). A global cylindrical coordinate system (x, θ and r coordi-
nates) is adopted and located at the center of the cylinder, and a global thickness
coordinate (ζ ) and a set of local thickness coordinates (zm , m = 1, 2, · · · , Nl)
are located at the middle surfaces of the cylinder and each individual layer, re-
spectively, as shown in Fig. 1(b), where Nl denotes the total number of layers
constituting the cylinder. The thicknesses of each individual layer and the cylinder

are hm (m = 1, 2, · · · , Nl) and H, respectively, while
Nl

∑
m=1

hm = H, and R and L de-

note the mid-surface radius and length of the cylinder. The relationship between
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the radial coordinate and the global thickness coordinate is r = R+ζ , and that be-
tween the global and local thickness coordinates in the mth-layer is ζ = ζ̄m + zm, in
which ζ̄m = (ζm +ζm−1)/2, and ζm and ζm−1 are the global thickness coordinates
measured from the middle surface of the cylinder to the top and bottom surfaces of
the mth-layer, respectively.
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Figure 1: (a) The configuration and dimensions of an FGM sandwich cylinder or a
laminated composite one, (b) the local and global coordinates of the cylinder.

According to the assumptions of linear stability theory, a set of normal stresses
exists in the cylinder just before instability occurs when the cylinder is subjected
to an axial compressive load, in which the displacement components of the mth-
layer at the initial position are expected in the following form, which are given by
slightly modifying the ones in Ye and Soldatos (1995) and Soldatos and Ye (1994),

ū(m)
x = A0 x, m = 1, 2, · · · , Nl (1a)

ū(m)
θ

= 0, m = 1, 2, · · · , Nl (1b)

ū(m)
r = A0 W̄ (m)

0 (ζ ) m = 1, 2, · · · , Nl, (1c)

where A0 denotes a uniform normal strain produced in the axial direction, which is
an arbitrary constant and can be determined later in this work by means of satisfying
the force equilibrium equation in the axial direction at the edges.
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According to the initial displacement model given in Eq. (1), it is assumed that in
the pre-buckling state the cylinder is free of initial shear stresses (i.e., τ̄

(m)
xr = τ̄

(m)
θ r =

τ̄
(m)
xθ

= 0, m = 1, 2, · · · , Nl), and the initial normal stresses in the mth-layer can be
expressed as

σ̄
(m)
x (ζ ) = A0 σ̄

(m)
x0 (ζ ) , m = 1, 2, · · · , Nl (2a)

σ̄
(m)
θ

(ζ ) = A0 σ̄
(m)
θ 0 (ζ ) , m = 1, 2, · · · , Nl (2b)

σ̄
(m)
r (ζ ) = A0 σ̄

(m)
r 0 (ζ ) , m = 1, 2, · · · , Nl (2c)

where σ̄
(m)
x0 = Q(m)

11 +
(

Q(m)
12 /r

)
W̄ (m)

0 +Q(m)
13 σ̄

(m)
r 0 ,

σ̄
(m)
θ 0 = Q(m)

12 +
(

Q(m)
22 /r

)
W̄ (m)

0 +Q(m)
23 σ̄

(m)
r 0 ,

σ̄
(m)
r 0 = c(m)

13 +
(

c(m)
23 /r

)
W̄ (m)

0 + c(m)
33

(
W̄ (m)

0 ,ζ

)
,

Q(m)
i j = c(m)

i j −
(

c(m)
i3 c(m)

j 3 /c(m)
33

)
(i, j = 1, 2 and 6),

Q(m)
k 3 = c(m)

k 3 /c(m)
33 (k = 1 and 2),

and c(m)
i j denotes the material elastic coefficients of the mth-layer, which is a con-

stant for the multilayered composite cylinder and a function of the thickness coor-
dinate for the multilayered FGM one, and the comma denotes partial differentiation
with respect to the suffix variable.

According to the initial displacement model given in Eq. (1), the stress equilibrium
equations in the axial and circumferential directions are automatically satisfied, and
the one in the radial (or thickness) direction is given as follows:

σ̄
(m)
r 0 ,ζ =

[(
Q(m)

23 −1
)
/r
]

σ̄
(m)
r 0 +

(
Q(m)

22 /r2
)

W̄ (m)
0 +

(
Q(m)

12 /r
)
. (3)

Using Eqs. (2c) and (3), we can write the state space equations of the pre-buckling
state of the cylinder in the following form

d F̄(m)

d ζ
= K̄(m) F̄(m)+ K̄(m)

p , (4)

where

F̄(m) =

{
W̄ (m)

0 (ζ )

σ̄
(m)
r 0 (ζ )

}
, K̄(m) =

[
k̄(m)

11 k̄(m)
12

k̄(m)
21 k̄(m)

22

]
, K̄(m)

p =

{
−Q(m)

13(
Q(m)

12 /r
) } ,
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k̄(m)
11 =−Q(m)

23 /r, k̄(m)
12 =

(
1/c(m)

33

)
, k̄(m)

21 =
(

Q(m)
22 /r2

)
and k̄(m)

22 =
(

Q(m)
23 −1

)
/r.

By means of the traction conditions imposed on the lateral surfaces of the cylinder,
we can readily solve Eq. (4) using the transfer matrix method combined with an SA
method, the solution procedure of which is described in Wu and Jiang (2007) and
not repeated here, and then the initial normal stresses can be subsequently obtained.

In the cases of pure axial compression, the traction conditions on the lateral surfaces
are

σ̄
(Nl)
r (ζ = H/2) = 0 and σ̄

(1)
r (ζ =−H/2) = 0. (5)

As mentioned above, the functions of W̄ (m)
0 (ζ ) and σ̄

(m)
r 0 (ζ ) can be determined

using the transfer matrix method combined with the SA one.

Taking a free body diagram at each edge, we can express the force equilibrium
equation in the axial direction as follows:∫ 2π

0

∫
ζNl

ζ0

σ̄x (ζ ) r dζ dθ =−Px. (6)

By satisfying Eq. (6), we subsequently obtain the expression of A0, as follows:

A0 =−Sx Px, (7)

in which

Sx =

{
2π R

Nl

∑
m=1

∫
ζm

ζm−1

[
Q(m)

11 +
(

Q(m)
12 /r

)
W̄ (m)

0 +Q(m)
13 σ̄

(m)
r 0

]
[1+(ζ/R)] dζ

}−1

.

As a result, the initial normal stresses can be obtained:

σ̄
(m)
x (ζ ) =− f (m)

x (ζ ) Px, σ̄
(m)
θ

(ζ ) =− f (m)
θ

(ζ ) Px, and σ̄
(m)
r (ζ ) =− f (m)

r (ζ ) Px,

(8)

in which f (m)
x , f (m)

θ
and f (m)

r denote the influence functions of the initial
normal stresses for the mth-layer of the cylinder in the cases of pure ax-
ial compression, and f (m)

x = Sx

[
Q(m)

11 +
(

Q(m)
12 /r

)
W̄ (m)

0 +Q(m)
13 σ̄

(m)
r 0

]
, f (m)

θ
=

Sx

[
Q(m)

12 +
(

Q(m)
22 /r

)
W̄ (m)

0 +Q(m)
23 σ̄

(m)
r 0

]
, and f (m)

r = Sx σ̄
(m)
r0 , while their dimen-

sionless counterparts are f̂ (m)
k = f (m)

k (2π RH), (k = x, θ , r).
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3 RMVT-based Hamilton principle

3.1 RMVT-based Lagrangian functional

As above-mentioned, a set of initial state of normal stresses given in Eq. (8) exists
in the cylinder just before instability occurs, and is introduced in the RMVT-based
Lagrangian functional (LR) of an initially stressed, multilayered FGM cylinder later
in this work.

The stress-strain relations valid for the nature of the symmetry class of elastic ma-
terials are given by

σ
(m)
x

σ
(m)
θ

σ
(m)
r

τ
(m)
θ r

τ
(m)
xr

τ
(m)
xθ


=



c(m)
11 c(m)

12 c(m)
13 0 0 0

c(m)
12 c(m)

22 c(m)
23 0 0 0

c(m)
13 c(m)

23 c(m)
33 0 0 0

0 0 0 c(m)
44 0 0

0 0 0 0 c(m)
55 0

0 0 0 0 0 c(m)
66





ε
(m)
x

ε
(m)
θ

ε
(m)
r

γ
(m)
θ r

γ
(m)
xr

γ
(m)
xθ


, (9)

where σ
(m)
x , σ

(m)
θ

, · · · , τ
(m)
xθ

and ε
(m)
x , ε

(m)
θ

, · · · , γ
(m)
xθ

are the stress and strain
components of a certain material point in the mth-layer, respectively; c(m)

i j (i, j=1_6)
are the elastic coefficients which are constants through the thickness coordinate in
the homogeneous elastic layers, and are variable through the thickness coordinate
in the FGM layers (i.e., c(m)

i j (ζ ) or c(m)
i j (zm)).

The kinematic relations between the strainsand displacements are given by

ε
(m)
x

ε
(m)
θ

ε
(m)
r

γ
(m)
θ r

γ
(m)
xr

γ
(m)
xθ


=



∂x 0 0
0 (1/r) ∂θ (1/r)
0 0 ∂r

0 (−1/r)+∂r (1/r) ∂θ

∂r 0 ∂x

(1/r) ∂θ ∂x 0




u(m)
x

u(m)
θ

u(m)
r

 , (10)

where u(m)
x , u(m)

θ
and u(m)

r denote the elastic displacement components, ∂k =
∂/∂k (k = x, θ and r).

The RMVT-based Lagrangian functional of the FGM cylinder under axial com-
pression is written in the form of

LR = TR−ΠR, (11)
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in which TR and ΠR denote the kinetic and RMVT-based potential energy functions,
and are given as

TR=(1/2)
Nl

∑
m=1

∫ hm/2

−hm/2

∫
Ω

ρ
(m)

[(
∂ u(m)

x /∂ t
)2

+
(

∂ u(m)
θ
/∂ t
)2

+
(

∂ u(m)
r /∂ t

)2
]
rdxdθdzm,

(12)

ΠR=
Nl

∑
m=1

∫ hm/2

−hm/2

∫
Ω

[
σ
(m)
x ε

(m)
x +σ

(m)
θ

ε
(m)
θ
+σ

(m)
r ε

(m)
r +τ

(m)
xr γ

(m)
xr +τ

(m)
θ r γ

(m)
θ r+τ

(m)
xθ

γ
(m)
xθ
−B(σ (m)

i j )
]
rdxdθdzm

+
Nl

∑
m=1

∫ hm/2

−hm/2

∫
Ω

[(
σ̄
(m)
x

) (
ε̂
(m)
x

)
+
(

σ̄
(m)
θ

) (
ε̂
(m)
θ

)
+
(

σ̄
(m)
r

) (
ε̂
(m)
r

)]
r dxdθ dzm

−
Nl

∑
m=1

∫ hm/2

−hm/2

∫
Γσ

T̄ (m)
i u(m)

i dΓdzm−
Nl

∑
m=1

∫ hm/2

−hm/2

∫
Γu

T (m)
i (u(m)

i − ū(m)
i )dΓdzm

,

(13)

in which ρ(m) and t stand for the mass density of the mth-layer and the time variable,
respectively; Ω denotes the cylinder domain on the x−θ surface; Γσ and Γu are the
portions of the edge boundary, where the surface tractions T̄ (m)

i (i= x, θ and r) and
surface displacements ū(m)

i (i = x, θ and r) are prescribed, respectively; B(σ (m)
i j ) is

the complementary energy density function; ε̂
(m)
x , ε̂

(m)
θ

and ε̂
(m)
r denote the second-

order terms of the Green-Lagrange normal strains, and are given by

ε̂
(m)
x = (1/2)

[(
u(m)

x ,x

)2
+
(

u(m)
θ

,x

)2
+
(

u(m)
r ,x

)2
]
, (14a)

ε̂
(m)
θ

=
(
1/2r2) [(u(m)

x ,θ

)2
+
(

u(m)
θ
,θ +ur

)2
+
(

u(m)
r ,θ −uθ

)2
]
, (14b)

ε̂
(m)
r = (1/2)

[(
u(m)

x ,r

)2
+
(

u(m)
θ

,r

)2
+
(

u(m)
r ,r

)2
]
. (14c)

In this RMVT-based formulation, we take the elastic displacement and transverse
stress components as primary variables subject to variation, and the in- and out-of-
surface strain and in-surface stress components are dependent variables, which can
be expressed in terms of primary variables using Eqs. (1)_(2) as follows:

ε
(m)
x = ∂B/∂σ

(m)
x = u(m)

x ,x , (15)

ε
(m)
θ

= ∂B/∂σ
(m)
θ

= (1/r) u(m)
θ

,θ +(1/r) u(m)
r , (16)
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ε
(m)
r = ∂B/∂σ

(m)
r =−Q(m)

13 u(m)
x ,x−

(
Q(m)

23 /r
)

u(m)
θ
,θ−
(

Q(m)
23 /r

)
u(m)

r +
(

1/c(m)
33

)
σ
(m)
r ,

(17)

γ
(m)
xr = ∂B/∂τ

(m)
xr =

(
1/c(m)

55

)
τ
(m)
xr , (18)

γ
(m)
θ r = ∂B/∂τ

(m)
θ r =

(
1/c(m)

44

)
τ
(m)
θ r , (19)

γ
(m)
xθ

= ∂B/∂τ
(m)
xθ

= (1/r) u(m)
x ,θ +u(m)

θ
,x . (20)

σσσ
(m)
p = Q(m)

p B1 u(m)+Q(m)
p B2 u(m)

r +Q(m)
r σ

(m)
r (21)

where

σσσ
(m)
p =

{
σ
(m)
x σ

(m)
θ

τ
(m)
xθ

}T
, u(m) =

{
u(m)

x u(m)
θ

}T
,

Q(m)
p =

 Q(m)
11 Q(m)

12 0
Q(m)

12 Q(m)
22 0

0 0 Q(m)
66

 , B1 =

 ∂x 0
0 r−1∂θ

r−1∂θ ∂x

 ,

B2 =

 0
r−1

0

 , Q(m)
r =

 Q(m)
13

Q(m)
23
0

 ,

Q(m)
i j = c(m)

i j −
(

c(m)
i3 c(m)

j3 /c(m)
33

)
(i, j = 1,2 and 6),

Q(m)
i3 = c(m)

i3 /c(m)
33 (i = 1 and 2) .

3.2 Euler-Lagrange equations

Based on Hamilton’s principle, we substitute Eqs. (15)-(21) into Eq. (11), im-
pose the stationary principle of the RMVT-based Lagrangian energy functional
(i.e., δ

∫ t2
t1 LR dt = 0), and then perform the integration by parts using Green’s theo-

rem, and finally obtain the Euler-Lagrange equations of 3D elasticity related to the
free vibration problem of an axially loaded, multilayered FGM cylinder from the
domain integral terms and the admissible boundary conditions from the boundary
integral terms, which are written as follows:

The Euler-Lagrange equations are
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δ u(m)
x : τ

(m)
xr ,zm =−σ

(m)
x ,x−

(
τ
(m)
xθ

,θ /r
)
−
(

τ
(m)
xr /r

)
−
(

σ̄
(m)
x

)(
u(m)

x ,xx

)
−
(

σ̄
(m)
θ

)(
u(m)

x ,θ θ /r2
)
− (1/r)

(
σ̄
(m)
r ru(m)

x ,r

)
,r +ρ

(m)
(

u(m)
x ,tt

)
(22)

δu(m)
θ

: τ
(m)
θ r ,zm =− τ

(m)
xθ

,x−
(

σ
(m)
θ

,θ /r
)
−2

(
τ
(m)
θ r /r

)
−
(

σ̄
(m)
x

) (
u(m)

θ
,xx

)
−
(

σ̄
(m)
θ

)(
u(m)

θ
,θθ −u(m)

θ
+2u(m)

r ,θ

)
/r2− (1/r)

(
σ̄
(m)
r ru(m)

θ
,r

)
,r

+ρ
(m)
(

u(m)
θ

,tt

)
(23)

δu(m)
r : σ

(m)
r ,zm =− τ

(m)
xr ,x−

(
τ
(m)
θr ,θ /r

)
−
(

σ
(m)
r /r

)
+
(

σ
(m)
θ

/r
)
−
(

σ̄
(m)
x

)(
u(m)

r ,xx

)
−
(

σ̄
(m)
θ

)(
−2u(m)

θ
,θ+u(m)

r ,θθ−u(m)
r

)
/r2−(1/r)

(
σ̄
(m)
r ru(m)

r ,r

)
,r

+ρ
(m)
(

u(m)
r ,tt

)
(24)

δτ
(m)
xr : u(m)

x ,zm =−u(m)
r ,x+

(
c(m)

55

)−1
τ
(m)
xr , (25)

δ τ
(m)
θ r : u(m)

θ
,zm =

(
u(m)

θ
/r
)
−
(

u(m)
r ,θ /r

)
+
(

c(m)
44

)−1
τ
(m)
θ r , (26)

δσ
(m)
r : u(m)

r ,zm =−
(

c(m)
13 /c(m)

33

)
u(m)

x ,x−
(

c(m)
23 /c(m)

33

) (
u(m)

θ
,θ /r

)
−
(

c(m)
23 /c(m)

33

) (
u(m)

r /r
)
+
(

c(m)
33

)−1
σ
(m)
r ,

(27)

where m = 1, 2, · · · , Nl .

The lateral boundary conditions are[
τ
(Nl)
xr τ

(Nl)
θ r σ

(Nl)
r

]
=
[

0 0 0
]

on zNl = hNl/2 (or ζ = H/2) (28a)[
τ
(1)
xr τ

(1)
θ r σ

(1)
r

]
=
[

0 0 0
]

on z1 =−h1/2 (or ζ =−H/2) (28b)

The edge boundary conditions are

σ
(m)
x n1 + τ

(m)
xθ

n2 = T̄ (m)
x or u(m)

x = ū(m)
x (29a)
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τ
(m)
xθ

n1 +σ
(m)
θ

n2 = T̄ (m)
θ

or u(m)
θ

= ū(m)
θ

(29b)

τ
(m)
xr n1 + τ

(m)
θ r n2 = T̄ (m)

r or u(m)
r = ū(m)

r (29c)

where m = 1, 2, · · · , Nl , and n1 and n2 stand for components of the unit normal
vectors on the edges.

Discarding the inertia force terms in the above-mentioned Euler-Lagrange equa-
tions (Eqs. (22)-(27)) (i.e., ρ(m) u(m)

k ,tt = 0, in which k = x,θ and r) and redefining
each variable as its incremental one perturbed from the state of neutral equilibrium,
we may obtain the Euler-Lagrange equations governing the pure stability problems
of the multilayered FGM cylinders. In contrast, while letting the applied compres-
sive load vanish, we may obtain those governing the pure free vibration problems.
The pure stability and free vibration problems of the cylinders can thus be included
as special cases of the present RMVT-based formulation.

The set of Euler-Lagrange equations (Eqs. (22)-(27)) associated with a set of appro-
priate boundary conditions (Eqs. (29a, b, c)) is composed of a well-posed boundary
value problem, which is the so-called strong formulation of this problem. A modi-
fied Pagano method will be developed for the 3D stability and free vibration anal-
yses of a simply supported, multilayered FGM cylinder under axial compression
later in this article on the basis of the strong formulation.

4 The modified Pagano method

4.1 Nondimensionalization

In order to scale all the field variables within a close order of magnitude and prevent
unexpected numerical instabilities in the computation process, we define a set of
dimensionless coordinates and variables, as follows:

x1 =
x√
Rh

, x2 =
θ√
h/R

, x3 =
ζ

h
,

u1 =
ux√
Rh

, u2 =
uθ√
Rh

, u3 =
ur

R
,

σ1 =
σx

Q0
, σ2 =

σθ

Q0
, τxy =

τxθ

Q0
,

τ13 =
τxr

Q0
√

h/R
, τ23 =

τθr

Q0
, σ3 =

σrR
(Q0h)

,

P̄x =
Px

(2πRHQ0)
, τ =

(h
√

Q0)t
(R2
√

P0)
(30a-n)
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where h denotes the one-half total thickness of the cylinder (i.e., h = H/2); Q0
and ρ0 stand for the reference elastic coefficient and mass density, and are taken
as the values of Q(1)

11 and ρ(1) of the bottom layer of an Nl-layered cylinder in the
illustrative examples of this article.

Introducing the set of dimensionless coordinates and variables given in Eq. (30a−
n) in the formulation, and using the method of direct elimination, we obtain one set
of state space equations in terms of the primary field variables, and these are given
as follows:

∂

∂ x3



u(m)
1

u(m)
2

σ
(m)
3

τ
(m)
13

τ
(m)
23

u(m)
3


=



0 0 0 k(m)
14 0 k(m)

16

0 k(m)
22 0 0 k(m)

25 k(m)
26

k(m)
31 k(m)

32 k(m)
33 k(m)

34 k(m)
35 k(m)

36

k(m)
41 k(m)

42 k(m)
43 k(m)

44 0 k(m)
46

k(m)
51 k(m)

52 k(m)
53 0 k(m)

55 k(m)
56

k(m)
61 k(m)

62 k(m)
63 0 0 k(m)

66





u(m)
1

u(m)
2

σ
(m)
3

τ
(m)
13

τ
(m)
23

u(m)
3



− (p̄x)



0 0 0 0 0 0
0 0 0 0 0 0

l(m)
31 l(m)

32 l(m)
33 l(m)

34 l(m)
35 l(m)

36

l(m)
41 l(m)

42 l(m)
43 l(m)

44 0 l(m)
46

l(m)
51 l(m)

52 l(m)
53 0 l(m)

55 l(m)
56

0 0 0 0 0 0





u(m)
1

u(m)
2

σ
(m)
3

τ
(m)
13

τ
(m)
23

u(m)
3



+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ρ

(m)
1 ∂ττ

ρ
(m)
2 ∂ττ 0 0 0 0 0

0 ρ
(m)
2 ∂ττ 0 0 0 0

0 0 0 0 0 0





u(m)
1

u(m)
2

σ
(m)
3

τ
(m)
13

τ
(m)
23

u(m)
3



, (31)

where

k(m)
14 =

(
c̃(m)

55

)−1
(h/R) , k(m)

16 =−∂1, k(m)
22 = (γ2)

−1 (h/R),

k(m)
25 =

(
c̃(m)

44

)−1
(h/R) , k(m)

26 =−(γ2)
−1

∂2, k(m)
31 = c(m)

3 Q̃(m)
12 (γ2)

−1
∂1,

k(m)
32 = c(m)

3 Q̃(m)
22 (γ2)

−2
∂2, k(m)

33 = c(m)
3

(
Q(m)

23 −1
)
(γ2)

−1 (h/R) ,

k(m)
34 =−c(m)

3 ∂1, k(m)
35 =−c(m)

3 (γ2)
−1

∂2, k(m)
36 = c(m)

3 Q̃(m)
22 (γ2)

−2 ,
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k(m)
41 =−c(m)

4

[
Q̃(m)

11 ∂11 + Q̃(m)
66 (γ2)

−2
∂22

]
,

k(m)
42 =−c(m)

4

[(
Q̃(m)

12 + Q̃(m)
66

)
(γ2)

−1
]

∂12, k(m)
43 =−c(m)

4

[
Q(m)

13 (h/R)
]

∂1,

k(m)
44 =−c(m)

4

[
(γ2)

−1 (h/R)
]
, k(m)

46 =−c(m)
4

[
Q̃(m)

12 (γ2)
−1
]

∂1,

k(m)
51 =−c(m)

5

[(
Q̃(m)

12 + Q̃(m)
66

)
(γ2)

−1
]

∂12,

k(m)
52 =−c(m)

5

[
Q̃(m)

66 ∂11 + Q̃(m)
22 (γ2)

−2
∂22

]
,

k(m)
53 =−c(m)

5

[
Q(m)

23 (γ2)
−1 (h/R)

]
∂2, k(m)

55 =−2c(m)
5 (γ2)

−1 (h/R) ,

k(m)
56 =−c(m)

5 Q̃(m)
22 (γ2 )

−2
∂2, k(m)

61 = −Q(m)
13 (h/R) ∂1,

k(m)
62 = −Q(m)

23 (γ2)
−1 (h/R) ∂2, k(m)

63 =
(

c̃(m)
33

)−1
(h/R)2 ,

k(m)
66 =−Q(m)

23 (γ2)
−1 (h/R) ,

l(m)
31 = c(m)

3

[
Q(m)

13

(
f̂ (m)
r ,3

)
(R/h)+Q(m)

13 f̂ (m)
r (γ2)

−1−Q(m)
13 Q(m)

23 f̂ (m)
r (γ2)

−1
]

∂1,

l(m)
32 =c(m)

3 [2 f̂ (m)
θ

(γ2)
−2 +Q(m)

23

(
f̂ (m)

r ,3

)
(γ2)

−1 (R/h)

+Q(m)
23 f̂ (m)

r (γ2)
−2−Q(m)

23 Q(m)
23 f̂ (m)

r (γ2)
−2]∂2

l(m)
33 =c(m)

3 [−
(

c̃(m)
33

)−1(
f̂ (m)
r ,3

)
−
(

c̃(m)
33

)−1
f̂ (m)
r (γ2)

−1 (h/R)

+
(

c̃(m)
33

)−1
Q(m)

23 f̂ (m)
r (γ2)

−1 (h/R)]

l(m)
34 = c(m)

3

[
(c̃55)

−1 Q(m)
13 f̂ (m)

r

]
∂1, l(m)

35 = c(m)
3

[
(c̃44)

−1 Q(m)
23 f̂ (m)

r (γ2)
−1
]

∂2,

l(m)
36 =− c(m)

3

{[
f̂ (m)

x (R/h)+Q(m)
13 f̂ (m)

r (R/h)
]

∂11

+
[

f̂ (m)
θ

(γ2)
−2 (R/h)+Q(m)

23 f̂ (m)
r (γ2)

−2 (R/h)
]

∂22

+
[
− f̂ (m)

θ
(γ2)

−2−Q(m)
23

(
f̂ (m)

r ,3

)
(γ2)

−1(R/h)+Q(m)
23 Q(m)

23 f̂ (m)
r (γ2)

−2
]}

l(m)
41 =−c(m)

4

{(
f̂ (m)

x +Q(m)
13 f̂ (m)

r

)
∂11 +

[
f̂ (m)

θ
(γ2)

−2
]

∂22

}
,

l(m)
42 =−c(m)

4

[
Q(m)

23 f̂ (m)
r (γ2)

−1
]

∂12, l(m)
43 = c(m)

4

[(
c̃(m)

33

)−1
f̂ (m)

r (h/R)
]

∂1,

l(m)
44 =−c(m)

4

[(
c̃(m)

55

)−1(
f̂ (m)

r ,3

)
+
(

c̃(m)
55

)−1
f̂ (m)

r (γ2)
−1 (h/R)

]
,
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l(m)
46 = c(m)

4

[(
f̂ (m)

r ,3

)
(R/h)+ f̂ (m)

r (γ2)
−1−Q(m)

23 f̂ (m)
r (γ2)

−1
]

∂1,

l(m)
51 =−c(m)

5

[
Q(m)

13 f̂ (m)
r (γ2)

−1
]

∂12,

l(m)
52 =c(m)

5

{
− f̂ (m)

x ∂11−
[

f̂ (m)
θ

(γ2)
−2 +Q(m)

23 f̂ (m)
r (γ2)

−2
]

∂22

+
[

f̂ (m)
θ

(γ2)
−2 (h/R)−

(
f̂ (m)

r ,3

)
(γ2)

−1− f̂ (m)
r (γ2)

−2 (h/R)
]},

l(m)
53 = c(m)

5

[(
c̃(m)

33

)−1
f̂ (m)

r (γ2)
−1 (h/R)

]
∂2,

l(m)
55 =−c(m)

5

[(
c̃(m)

44

)−1(
f̂ (m)

r ,3

)
+2

(
c̃(m)

44

)−1
f̂ (m)

r (γ2)
−1 (h/R)

]
,

l(m)
56 = c(m)

5

[
−2 f̂ (m)

θ
(γ2)

−2 +
(

f̂ (m)
r ,3

)
(R/h)+ f̂ (m)

r (γ2)
−2−Q(m)

23 f̂ (m)
r (γ2)

−2
]

∂2,

c(m)
3 = 1/

[
1− p̄x

(
c̃(m)

33

)−1
f̂ (m)

r

]
, c(m)

4 = 1/
[

1− p̄x

(
c̃(m)

55

)−1
f̂ (m)

r

]
,

c(m)
5 = 1/

[
1− p̄x

(
c̃(m)

44

)−1
f̂ (m)

r

]
,

γ2 = 1+(hx3/R) , c̃(m)
i j = c(m)

i j /Q0 (i, j = 1−6),

Q̃(m)
kl = Q(m)

kl /Q0 (k, l = 1,2 and 6),

Q(m)
13 = c(m)

13 /c(m)
33 , Q(m)

23 = c(m)
23 /c(m)

33 ,

ρ
(m)
1 =

(
ρ
(m)h2

)
/
(

ρ
(m)
0 R2

)
, ρ

(m)
2 =

(
ρ
(m)h3

)
/
(

ρ
(m)
0 R3

)
.

The dimensionless forms of the boundary conditions of the problem are specified
as follows:

τ
(m)
13 = τ

(m)
23 = σ

(m)
3 = 0 on x3 =±1. (32)

At the edges, the following quantities are satisfied:

σ
(m)
1 = u(m)

2 = u(m)
3 = 0, at x1 = 0 and x1 = L/

√
Rh. (33)
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4.2 The double Fourier series expansion method

The double Fourier series expansion method is applied to reduce the system of
partial differential equations given in Eq. (31) to a system of ordinary differential
ones, such that by means of satisfying the edge boundary conditions given in Eq.
(33), the primary variables are expressed in the following forms:(

u(m)
1 , τ

(m)
13

)
=

∞

∑
m̂=0

∞

∑
n̂=0

(
u(m)

1m̂n̂(x3), τ
(m)
13m̂n̂(x3)

)
cos m̃x1 cos ñx2 eiωτ τ , (34)

(
u(m)

2 , τ
(m)
23

)
=

∞

∑
m̂=0

∞

∑
n̂=0

(
u(m)

2m̂n̂(x3), τ
(m)
23m̂n̂(x3)

)
sin m̃x1 sin ñx2 eiωτ τ , (35)

(
u(m)

3 , σ
(m)
3

)
=

∞

∑
m̂=0

∞

∑
n̂=0

(
u(m)

3m̂n̂(x3), σ
(m)
3m̂n̂(x3)

)
sin m̃x1 cos ñx2 eiωτ τ , (36)

where ωτ =
(
R2√ρ0

)
ω/
(
h
√

Q0
)
, in which ω and ωτ denote the natural frequency

and its dimensionless form; m̃ = m̂π
√

Rh/L, ñ = n̂
√

h/R, in which m̂ and n̂ are
zeroes or positive integers.

For brevity, the symbols of summation are omitted in the following derivation.
Using the set of dimensionless coordinates and field variables, which are given
in Eq. (30), and substituting Eqs. (34)-(36) in Eq. (31), we have the resulting
equations, as follows:

d F(m)(x3)

d x3
= K̄(m) F(m)(x3), (37)

where F(m) =
{

u(m)
1m̂n̂ u(m)

2m̂n̂ σ
(m)
3m̂n̂ τ

(m)
13m̂n̂ τ

(m)
23m̂n̂ u(m)

3m̂n̂

}T
,

K̄(m)=



0 0 0 k̄(m)
14 0 k̄(m)

16
0 k̄(m)

22 0 0 k̄(m)
25 k̄(m)

26(
k̄(m)

31 −p̄x l̄(m)
31

)
(

1−p̄x l̄(m)
30

)
(

k̄(m)
32 −p̄x l̄(m)

32

)
(

1−p̄x l̄(m)
30

)
(

k̄(m)
33 −p̄x l̄(m)

33

)
(

1−p̄x l̄(m)
30

)
(

k̄(m)
34 −p̄x l̄(m)

34

)
(

1−p̄x l̄(m)
30

)
(

k̄(m)
35 −p̄x l̄(m)

35

)
(

1−p̄x l̄(m)
30

)
(

k̄(m)
36 −p̄x l̄(m)

36 −ρ
(m)
1 ω2

τ

)
(

1−p̄x l̄(m)
30

)(
k̄(m)

41 −p̄x l̄(m)
41 −ρ

(m)
2 ω2

τ

)
(

1−p̄x l̄(m)
40

)
(

k̄(m)
42 −p̄x l̄(m)

42

)
(

1−p̄x l̄(m)
40

)
(

k̄(m)
43 −p̄x l̄(m)

43

)
(

1−p̄x l̄(m)
40

)
(

k̄(m)
44 −p̄x l̄(m)

44

)
(

1−p̄x l̄(m)
40

) 0

(
k̄(m)

46 −p̄x l̄(m)
46

)
(

1−p̄x l̄(m)
40

)(
k̄(m)

51 −p̄x l̄(m)
51

)
(

1−p̄x l̄(m)
50

)
(

k̄(m)
52 −p̄x l̄(m)

52 −ρ
(m)
2 ω2

τ

)
(

1−p̄x l̄(m)
50

)
(

k̄(m)
53 −p̄x l̄(m)

53

)
(

1−p̄x l̄(m)
50

) 0

(
k̄(m)

55 −p̄x l̄(m)
55

)
(

1−p̄x l̄(m)
50

)
(

k̄(m)
56 −p̄x l̄(m)

56

)
(

1−p̄x l̄(m)
50

)
k̄(m)

61 k̄(m)
62 k̄(m)

63 0 0 k̄(m)
66


in which k̄(m)

i j and l̄(m)
i j are given in Appendix A.

Equation (37) can then be used to investigate the free vibration problems of ax-
ially loaded and simply-supported, multilayered FGM/FRCM cylinders when the
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applied axially compressive load is less than the corresponding critical one. As
mentioned above, when the cylinders are unloaded (i.e., p̄x = 0), Eq. (37) will
be reduced to the state space equations of the pure free vibration problems of the
cylinders; while when the inertia force terms are discarded (i.e., ωτ = 0) and each
field variable is redefined as its incremental one perturbed from the state of neutral
equilibrium, Eq. (37) will be reduced to those of the pure stability problems of
the cylinders. The pure free vibration and stability problems can thus be regarded
as special cases of this formulation. In addition, some effects on the lowest critical
load parameters of the cylinders will be examined, such as the initial transverse nor-
mal stress effect, the deviations between using von K’arm’an’s nonlinearity and the
full kinematic one, and the ones between using the uniform initial stress assump-
tion and the uniform initial strain one, and the corresponding system equations of
each special case can be obtained using Eq. (37) with the reduced form of K̄(m),
which are given as follows:

(A) Pure stability problems

(A-1) Without consideration of the effect of the initial transverse normal stress

When the inertia force terms are discarded and the effect of initial transverse nor-
mal stress is neglected in this formulation, which means ωτ = 0 and f̂ (m)

r = 0, the
coefficient matrix K̄(m) given in Eq. (37) can be reduced as follows:

K̄(m) =



0 0 0 k̄(m)
14 0 k̄(m)

16

0 k̄(m)
22 0 0 k̄(m)

25 k̄(m)
26

k̄(m)
31

(
k̄(m)

32 − p̄x l̃(m)
32

)
k̄(m)

33 k̄(m)
34 k̄(m)

35

(
k̄(m)

36 − p̄x l̃(m)
36

)(
k̄(m)

41 − p̄x l̃(m)
41

)
k̄(m)

42 k̄(m)
43 k̄(m)

44 0 k̄(m)
46

k̄(m)
51

(
k̄(m)

52 − p̄x l̃(m)
52

)
k̄(m)

53 0 k̄(m)
55

(
k̄(m)

56 − p̄x l̃(m)
56

)
k̄(m)

61 k̄(m)
62 k̄(m)

63 0 0 k̄(m)
66


,

(38)

in which l̃(m)
i j are given in Appendix A.

(A-2) The use of von K’arm’an’s nonlinearity

When the inertia force terms are discarded and von K’arm’an’s nonlinearity, rather
than the full kinematics one, is considered, this means ωτ = 0 is used and the terms
ε̂
(m)
x , ε̂

(m)
θ

and ε̂
(m)
r in Eqs. (14a-c) are reduced, as in the following forms:

ε̂
(m)
x = (1/2)

(
u(m)

r ,x

)2
,
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ε̂
(m)
θ

=
(
1/2r2) [(ur)

2 +
(

u(m)
r ,θ −uθ

)2
]
,

ε̂
(m)
r = 0. (39a-c)

Using Eq. (39) instead of Eq. (14), we may reduce the coefficient matrix K̄(m)

given in Eq. (37) as follows:

K̄(m) =



0 0 0 k̄(m)
14 0 k̄(m)

16

0 k̄(m)
22 0 0 k̄(m)

25 k̄(m)
26

k̄(m)
31

(
k̄(m)

32 − p̄x
_

l
(m)

32

)
k̄(m)

33 k̄(m)
34 k̄(m)

35

(
k̄(m)

36 − p̄x
_

l
(m)

36

)
k̄(m)

41 k̄(m)
42 k̄(m)

43 k̄(m)
44 0 k̄(m)

46

k̄(m)
51

(
k̄(m)

52 − p̄x
_

l
(m)

52

)
k̄(m)

53 0 k̄(m)
55

(
k̄(m)

56 − p̄x
_

l
(m)

56

)
k̄(m)

61 k̄(m)
62 k̄(m)

63 0 0 k̄(m)
66


, (40)

in which
_

l
(m)

i j are given in Appendix A.

(A-3) The use of a uniform initial stress assumption

When the inertia force terms are discarded and a uniform initial stress assumption,
rather than a uniform strain assumption mentioned above, is taken to determine the
initial state of stress, which means f̂ (m)

x = 1 and f̂ (m)
θ

= f̂ (m)
r = 0, the coefficient

matrix K̄(m) given in Eq. (37) can be reduced as follows:

K̄(m) =



0 0 0 k̄(m)
14 0 k̄(m)

16

0 k̄(m)
22 0 0 k̄(m)

25 k̄(m)
26

k̄(m)
31 k̄(m)

32 k̄(m)
33 k̄(m)

34 k̄(m)
35

(
k̄(m)

36 − p̄x l̂(m)
36

)(
k̄(m)

41 − p̄x l̂(m)
41

)
k̄(m)

42 k̄(m)
43 k̄(m)

44 0 k̄(m)
46

k̄(m)
51

(
k̄(m)

52 − p̄x l̂(m)
52

)
k̄(m)

53 0 k̄(m)
55 k̄(m)

56

k̄(m)
61 k̄(m)

62 k̄(m)
63 0 0 k̄(m)

66


,

(41)

in which l̂(m)
i j are given in Appendix A.

(B) Pure free vibration problems

When the free vibration problems of a multilayered FGM cylinder without the ap-
plied compressive load is considered, which means p̄x = 0, the coefficient matrix
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K̄(m) given in Eq. (37) can be reduced as follows:

K̄(m)=



0 0 0 k̄(m)
14 0 k̄(m)

16

0 k̄(m)
22 0 0 k̄(m)

25 k̄(m)
26

k̄(m)
31 k̄(m)

32 k̄(m)
33 k̄(m)

34 k̄(m)
35

(
k̄(m)

36 −ρ
(m)
1 ω2

τ

)(
k̄(m)

41 −ρ
(m)
2 ω2

τ

)
k̄(m)

42 k̄(m)
43 k̄(m)

44 0 k̄(m)
46

k̄(m)
51

(
k̄(m)

52 −ρ
(m)
2 ω2

τ

)
k̄(m)

53 0 k̄(m)
55 k̄(m)

56

k̄(m)
61 k̄(m)

62 k̄(m)
63 0 0 k̄(m)

66


.

(42)

Implementation of the above-mentioned RMVT-based formulation for each special
case will be presented later in this work,

4.3 Theories of the homogeneous linear systems

Equation (37), which is a system of six simultaneously homogeneous ordinary dif-
ferential equations in terms of six primary variables, represents the state space
equations for the 3D stability and free vibration problems of a simply-supported,
multilayered FGM circular hollow cylinder subjected to axial compression, and the
general solution of this is

F(m) = ΩΩΩ
(m) L(m), (43)

where L(m) is a 6x1 matrix of arbitrary constants; ΩΩΩ
(m) is a fundamental matrix

of Eq. (38), and is formed by six linearly independent solutions in the form of
ΩΩΩ

(m) =
[
ΩΩΩ

(m)
1 ,ΩΩΩ

(m)
2 , · · · ,ΩΩΩ(m)

6

]
, in which ΩΩΩ

(m)
i = ΛΛΛi eλi x3 (i=1,2, . . . , 6), and λi

and ΛΛΛi are the eigenvalues and their corresponding eigenvectors of the coefficient
matrix K̄(m) in Eq. (37), respectively.

If the coefficient matrix K̄(m) has a complex eigenvalue λ1 (i.e., λ1 = Re(λ1) +
iIm(λ1)), then its complex conjugate λ2 (i.e., λ2 = Re(λ1)− iIm(λ1)) is also an
eigenvalue of K̄(m), due to the fact that all of the coefficients of K̄(m) are real. In ad-
dition, ΛΛΛ1,2=Re(ΛΛΛ1)± iIm(ΛΛΛ1) are the corresponding eigenvectors of the complex
conjugate pair, (λ1, λ2). Using Euler’s formula, we replace these complex-valued
solutions with alternative two real-valued solutions to enhance computational effi-
ciency, and these are given by

ΩΩΩ
(m)
1 = eRe(λ1)x3 [Re (ΛΛΛ1) cos (Im(λ1) x3)− Im (ΛΛΛ1) sin (Im (λ1) x3)] , (44a)

ΩΩΩ
(m)
2 = eRe(λ1)x3 [Re (ΛΛΛ1) sin (Im(λ1) x3)+ Im (ΛΛΛ1) cos (Im (λ1) x3)] . (44b)
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On the basis of the previous set of linearly independent real-valued solutions, a
transfer matrix method can be developed for the analysis of multilayered hollow
cylinders, and it can be extended to the analysis of multilayered (or sandwiched)
FGM ones using an SA method, where the FGM cylinder is artificially divided
into a finite number (Nl) of individual layers with equal and small thicknesses for
each layer, compared with the mid-surface radius, as well as with constant material
properties, determined in an average thickness sense. The exact solutions of critical
loads, natural frequencies and the associated field variables induced in the FGM
cylinder can thus be gradually approached by increasing the number of individual
layers.

4.4 The successive approximation method

This article undertakes the 3D stability and free vibration analyses of an axially
loaded, FGM sandwich cylinder, which consists of an FGM core bounded with two
homogeneous face sheets, one of the widely-utilized multilayered FGM cylinders,
in which the thickness of each layer is hi (i = 1, 2 and 3, and is counted from

the bottom layer), h1 = h3 and
3
∑

i=1
hi = H; the material properties (g(m)

i j (ζ ) (m =

1, 2 and 3)) are assumed to be symmetric with respect to the mid-surface of the
sandwich cylinder and continuous at the interfaces between adjacent layers, and
obey a power-law distribution of the volume fractions of the constituents through
the thickness coordinate, as follows:

g(1)i j (ζ ) = g( f )
i j −h≤ ζ ≤−(h2/2) , (45a)

g(2)i j (ζ ) = g(0)i j +
(

g( f )
i j −g(0)i j

)
[|ζ |/(h2/2)]κp − (h2/2)≤ ζ ≤ (h2/2) , (45b)

g(3)i j (ζ ) = g( f )
i j (h2/2)≤ ζ ≤ h, (45c)

where g( f )
i j and g(0)i j denote the material properties of the face sheets and the refer-

ence material properties at the mid-surface of the cylinder, respectively; κp denotes
the material-property gradient index, which represents the degree of the material
gradient along the thickness coordinate, and it is apparent that when κp = 0, this
FGM sandwich cylinder reduces to a single-layered homogeneous one with mate-
rial properties, g( f )

i j ; while when κp = ∞, it reduces to a homogeneous sandwich

cylinder, in which the material properties of the core and face-sheet layers are g(0)i j

and g( f )
i j , respectively.

Because the material properties of the FGM core in an FGM sandwich cylinder
vary along its thickness coordinate, resulting in a variant coefficient matrix in the
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system equation (i.e., Eq. (37)), the conventional Pagano method can not be directly
applied to this study of the FGM sandwich cylinder. An SA method is thus adopted
to make the present approach feasible. In the SA method, the FGM sandwich
cylinder is artificially divided into an Nl-layered cylinder with an equal and small
thickness compared with the mid-surface radius, and with homogeneous material
properties for each layer. For a typical mth-layer in the upper half core layer of the
cylinder, the material properties g(m)

i j are regarded as constants and are determined
in an average thickness sense, as follows:

ḡ(m)
i j =

1
∆ζm

∫
ζm

ζm−1

gi j (ζ ) dζ

= g(0)i j +

(
g( f )

i j −g(0)i j

)
(κp +1) (∆ζm) (h2/2)κp

[
(ζm)

(κp+1)− (ζm−1)
(κp+1)

]
,

(46)

where ∆ζm = ζm−ζm−1.

By means of Eq. (46), the modified Pagano method can be extensively applied to
this analysis of FGM sandwich cylinders. Increasing the number of artificial layers
(Nl), we can approximate the exact solutions for the 3D stability and free vibration
analyses of FGM sandwich cylinders to any desired accuracy.

4.5 The transfer matrix method

As we noted above, the modified Pagano method can be applied to the study of
FGM sandwich cylinders using Eq. (46). The through-thickness distributions of
material properties are modified as layerwise Heaviside functions, and the upper
half of these are given by

gi j (ζ ) =
Nl/2

∑
m=1

ḡ(m)
i j [S (ζ −ζm−1)−S (ζ −ζm)] 0≤ ζ ≤ (h2/2) , (47a)

gi j (ζ ) = g( f )
i j (h2/2)≤ ζ ≤ h, (47b)

where S (ζ ) is the Heaviside step function, and the material properties of the lower
half of the cylinder are symmetric to those of the upper half with respect to the
mid-surface of the cylinder, which were given above and thus not repeated here.

A transfer matrix method for the analysis of the Nl-layered elastic cylinders is then
used to obtain the critical loads and fundamental frequencies of the axially loaded
and simply supported, multilayered FGM cylinders, and a detailed description of
this is given in Appendix B.
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5 Illustrative examples

5.1 Stability of orthotropic laminated cylinders

A benchmark problem with regard to the stability of a simply-supported, or-
thotropic laminated circular hollow cylinder subjected to axial compression is used
here to validate the accuracy and convergence of the modified Pagano method in
Table 1, in which the four- and eight-layered symmetric orthotropic cylinders (i.e.,
[00/900]s and [00/900/00/900]s) are considered. The material properties of each
layer are taken to be EL/ET =5, 10, 20, 30 and 40, GLT/ET = 0.6, GT T/ET = 0.5
and υLT = υT T = 0.25, in which the subscripts L and T denote the directions par-
allel and perpendicular to the fiber direction, and the geometric parameters of the
cylinders are L/R=5 and R/H=5. The dimensionless critical load parameter is de-
fined as (P̄x)cr = (Px)cr /(2π RET H) . It can be seen in Table 1 that the present
solutions of critical load parameters for [00/900]s and [00/900/00/900]s laminated
cylinders converge when the number of divided layers (Nl) is taken to be eight, and
the convergent solutions are in excellent agreement with those obtained using the
layerwise fourth-order mixed model (LM4) developed by D’Ottavio and Carrera
(2010). In Table 1, the 40-layer solutions with the superscripts a, b and c repre-
sent that these were obtained without consideration of the initial transverse normal
stress, using von K’arm’an’s nonlinearity instead of the full kinematic one, and
using a uniform initial stress assumption instead of a uniform initial strain one, re-
spectively. It is shown that even for a thick cylinder (R/H=5), the effect of the initial
transverse normal stress (σ̄ (m)

r ) on the critical load parameters of the axially loaded
cylinders is relatively minor, and the relative error between the 40-layer solutions
with and without consideration of the effect is less than 0.07%. The 40-layer solu-
tions based on a uniform initial strain assumption is slightly less than those based
on a uniform initial stress one, and the deviation between them is less than 0.25%
for a thick cylinder; the 40-layer solutions obtained using full kinematic nonlinear-
ity are about 25% less than those obtained using von K’arm’an’s one, and this is
thus not recommended for the stability analysis of thick cylinders, and this obser-
vation about the effect of von K’arm’an’s nonlinearity was also found by D’Ottavio
and Carrera (2010) using the FSDT. The 40-layer solutions of the critical load pa-
rameters were also compared with those obtained by D’Ottavio and Carrera (2010)
using a variety of refined and advanced 2D shell theories, such as the FSDT, the
global second- and fourth-order displacement models (ED2 and ED4), the global
fourth-order mixed model with a zig-zag function (EMZ4), the layerwise second-
order displacement model (LD2), and LM4. It can be seen that the accuracy among
these theories is LM4 > (LD2, EMZ4) > (ED4) > (ED2) > FSDT, in which “>”
represents more accurate. Moreover, the critical load parameter increases when the
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orthotropic ratio (EL/ET ) becomes larger and ET remains the same, which means
the cylinder becomes stiffer.

Table 2 shows the solutions of the critical load parameters of [00/900]s and
[00/900/00/900]s laminated cylinders, in which the radius-to-thickness ratio (R/H)
is taken to be 5, 10, 20, 50 and 100; EL/ET = 30and L/R=5; the number of divided
layers (Nl) is Nl=4, 8, 16, 32 and 40 for the [00/900]s cylinders, and Nl=8, 16,
32 and 40 for the [00/900/00/900]s ones. Again, it can be seen in Table 2 that
the effect of initial transverse normal stress on the critical load parameters of the
cylinders is relatively minor for both the thick and thin cylinders, that the present
modified Pagano solutions using a uniform initial strain and stress assumptions
closely agree to each other, and that the assumption of von K’arm’an’s nonlinearity
is appropriate for very thin cylinders (R/h=100), in which the relative errors are
about 2%, as compared with the solutions obtained using the full kinematic non-
linearity, while this is unsuitable for the thin and thick cylinders (i.e., R/h=20 and
R/h >10), in which the relative errors are up to about 10% and greater than 25%,
respectively. In addition, it is also shown that the lowest critical load parameters
increase when the cylinders become thicker, and the buckling mode corresponding
to the lowest critical load varies with changing the radius-to-thickness ratio.

Figures 2(a) and (b) show the variations of the present convergent solutions of the
critical load parameter of axially loaded, laminated [00/900]s and [00/900/00/900]s

cylinders, respectively, with the length-to-radius ratio for different values of the
half-wave number m̂, which is set at m̂=1-5, in which EL/ET = 30, R/H=20, L/R=2-
20, and the other material properties and critical load parameter are the same as
those in Tables 1 and 2. Referring to these figures, the magnitude of the lowest
critical load parameter and its corresponding number of half-waves (m̂) for a wide
range of length-to-radius (L/R) ratios are shown using a solid dark line, and can
readily be found for any value of the L/R ratio. It is also shown that the critical
buckling mode in the axial direction varies significantly with the length-to-radius
ratio.

5.2 Stability of FGM sandwich cylinders

The stability of simply-supported, sandwich FGM cylinders consisting of a soft
FGM core layer bounded with two stiff homogeneous face sheets (i.e., [homo-
geneous layer/FGM layer/homogeneous layer] cylinders), subjected to an axial
compressive load, is examined in this section. The dimensionless critical load pa-
rameters are defined as (P̄x)cr = (Px)cr R2/

(
2π RE f H3

)
, in which E f denotes the

Young’s modulus of the face sheets. The thickness ratio of each layer of the sand-

wich cylinder is h1 : h2 : h3, in which h1 = h3 and
3
∑

m=1
hm = H, while the effective
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Table 1: The effect of the orthotropic ratio on the critical load parameters of
orthotropic laminated cylinders under axial compression (L/R=5, R/H =5, and
(P̄x)cr = (Px)cr /(2π RET H)).

Laminates (m̂, n̂) Theories
EL/ET

5 10 20 30 40[
00/900]

s (2, 2) LM4 0.1377 0.1757 0.2275 0.2667 0.2992
LD2 0.1377 0.1759 0.2282 0.2681 0.3014

EMZ4 0.1377 0.1759 0.2281 0.2679 0.3011
ED4 0.1377 0.1758 0.2282 0.2682 0.3016
ED2 0.1385 0.1778 0.2330 0.2767 0.3144

FSDT (nonlinear) 0.1385 0.1770 0.2305 0.2721 0.3075
FSDT 0.1735 0.2211 0.2880 0.3401 0.3844

Present (Nl = 4) 0.1375 0.1754 0.2270 0.2661 0.2985
Present (Nl = 8) 0.1375 0.1754 0.2270 0.2661 0.2986
Present (Nl = 16) 0.1375 0.1754 0.2270 0.2662 0.2986
Present (Nl = 32) 0.1375 0.1754 0.2270 0.2662 0.2986
Present (Nl = 40) 0.1375 0.1754 0.2270 0.2662 0.2986

aPresent (Nl = 40) 0.1374 0.1754 0.2272 0.2664 0.2988
bPresent (Nl = 40) 0.1729 0.2200 0.2848 0.3340 0.3747
cPresent (Nl = 40) 0.1377 0.1757 0.2275 0.2667 0.2992[

00/900/00/900]
s (3, 2)

LM4 0.1581 0.2005 0.2601 0.3042 0.3393
LD2 0.1581 0.2005 0.2601 0.3043 0.3393

EMZ4 0.1581 0.2006 0.2605 0.3049 0.3403
ED4 0.1581 0.2007 0.2607 0.3054 0.3410
ED2 0.1592 0.2033 0.2671 0.3161 0.3561

FSDT (nonlinear) 0.1586 0.2012 0.2614 0.3064 0.3425
FSDT 0.1939 0.2480 0.3245 0.3813 0.4268

Present (Nl = 8) 0.1577 0.2000 0.2596 0.3037 0.3388
Present (Nl = 16) 0.1577 0.2000 0.2596 0.3037 0.3388
Present (Nl = 32) 0.1577 0.2000 0.2596 0.3037 0.3388
Present (Nl = 40) 0.1577 0.2000 0.2596 0.3037 0.3388

aPresent (Nl = 40) 0.1578 0.2002 0.2598 0.3039 0.3390
bPresent (Nl = 40) 0.1934 0.2474 0.3231 0.3788 0.4229
cPresent (Nl = 40) 0.1581 0.2005 0.2601 0.3042 0.3393

aThe present solutions obtained without considerations of the initial transverse normal stress.
bThe present solutions obtained using the von Karman’s nonlinearity.
cThe present solutions obtained using a uniform stress assumption for the state of initial stresses.
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Table 2: The effect of the radius-to-thickness ratio on the critical load parameters
of orthotropic laminated cylinders under axial compression (EL/ET = 30, L/R=5,
and (P̄x)cr = (Px)cr /(2π RET H)).

Laminates Theories
R/H

5 10 20 50 100[
00/900]

s (m̂, n̂) (2, 2) (2, 2) (3, 3) (5, 5) (7, 7)
Present (Nl = 4) 0.2661 0.1563 0.09016 0.03967 0.02053
Present (Nl = 8) 0.2661 0.1563 0.09015 0.03967 0.02052

Present (Nl = 16) 0.2662 0.1563 0.09015 0.03967 0.02052
Present (Nl = 32) 0.2662 0.1563 0.09015 0.03967 0.02052
Present (Nl = 40) 0.2662 0.1563 0.09015 0.03967 0.02052

aPresent (Nl = 40) 0.2664 0.1563 0.09017 0.03967 0.02053
bPresent (Nl = 40) 0.3340 0.1951 0.10020 0.04129 0.02095
cPresent (Nl = 40) 0.2667 0.1564 0.09023 0.03969 0.02053[

00/900/00/900]
s (m̂, n̂) (1, 1) (2, 2) (4, 3) (6, 5) (9, 7)

Present (Nl = 8) 0.2886 0.1692 0.1013 0.04551 0.02348
Present (Nl = 16) 0.2887 0.1692 0.1013 0.04551 0.02348
Present (Nl = 32) 0.2887 0.1692 0.1013 0.04551 0.02348
Present (Nl = 40) 0.2887 0.1692 0.1013 0.04551 0.02348

aPresent (Nl = 40) 0.2879 0.1693 0.1013 0.04551 0.02348
bPresent (Nl = 40) 0.3788 0.2112 0.1124 0.04733 0.02396
cPresent (Nl = 40) 0.2880 0.1693 0.1014 0.04552 0.02348

aThe present solutions obtained without considerations of the initial transverse normal stress.
bThe present solutions obtained using the von Karman’s nonlinearity.
cThe present solutions obtained using a uniform stress assumption for the state of initial stresses.

engineering constants of each layer are written as follows:

E(m) (ζ ) = E0 +(E f −E0) Γ
(m) (ζ ) (m = 1,2 and 3), (48a)

υ
(m) = constant (m = 1,2 and 3), (48b)

where E0 denotes the Young’s modulus of the material at the mid-surface of the
core, for which E0=70 GPa (aluminum) and E f =380 GPa (alumina) are used in this
example; υ(m) (m=1-3) are taken to be 0.3; Γ(m) (m=1-3) are the volume fractions
of the constituents of the cylinder, and are given by

Γ
(1) = 1 when (−H/2)≤ ζ ≤ (−h2/2) , (49a)

Γ
(2) (ζ ) = [ |ζ |/(h2/2) ]κp when (−h2/2)< ζ < (h2/2) , (49b)
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Figure 2: Variations of the critical load parameters of axially loaded, laminated
orthotropic cylinders with the length-to-radius ratio, (a)
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Γ
(3) = 1 when (h2/2)≤ ζ ≤ (H/2) , (49c)

where κp denotes the material-property gradient index.

It is apparent that when κp=0, Γ(2) = 1, this FGM sandwich cylinder reduces to
a single-layered homogeneous cylinder with material properties E f =380 GPa and
υ f =0.3; while when κp = ∞, Γ(2) = 0, this FGM sandwich cylinder reduces to a
homogeneous sandwich cylinder with material properties E(1) = E(3)=380 GPa,
E(2)=70 GPa, and υ(m)=0.3 (m=1-3).

Table 3 shows the solutions of the lowest critical load parameters of axially loaded,
FGM sandwich cylinders with different values of the thickness ratio for each layer
and the material-property gradient index, in which Nl=10, 20, 40 and 80; L/R=5 and
R/H=10; h1 : h2 : h3 = 0.1H : 0.8H : 0.1H, 0.2H : 0.6H : 0.2H, H/3 : H/3 : H/3
and 0.4H : 0.2H : 0.4H; κp= 0, 1, 5, 10, 100 and ∞. It can be seen in Table 3
that the solutions converge rapidly, the relative error between the 20-layer solution
and 80-layer one is less than 0.6%, and it is less than 0.2% between the 40-layer
solution and 80-layer one. The lowest critical load parameter decreases when the
material-property gradient index and core/face sheet thickness ratio become larger,
which means that the cylinder becomes softer. The critical buckling mode of these
cylinders always occur at (m̂, n̂) = (1, 2), which means this will not be affected by
changing the values of the material-property gradient index and the thickness ratio
for each layer for the specific length-to-radius and radius-to-thickness ratios.
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Table 3: The effects of the thickness ratio for each layer and the material-property
gradient index on the critical load parameters of FGM sandwich cylinders under
axial compression (L/R=5, R/H=10, and (P̄x)cr = (Px)cr R2 /

(
2π RE f H3

)
).

h1 : h2 : h3 (m̂, n̂) Theories
κp

0 1 5 10 100 ∞

0.1H:0.8H:0.1H (1, 2) Present (Nl = 10) 3.5856 2.8214 2.148 1.9534 1.7173 1.6859

Present (Nl = 20) 3.5855 2.8296 2.1571 1.9607 1.7173 1.6859

Present (Nl = 40) 3.5854 2.8316 2.1596 1.9634 1.7177 1.6859

Present (Nl = 80) 3.5854 2.8321 2.1603 1.9642 1.7185 1.6859

0.2H:0.6H:0.2H (1, 2) Present (Nl = 10) 3.5856 3.0760 2.6696 2.5686 2.4206 2.3978

Present (Nl = 20) 3.5855 3.0814 2.6658 2.5554 2.4206 2.3978

Present (Nl = 40) 3.5854 3.0826 2.6652 2.5523 2.4201 2.3978

Present (Nl = 80) 3.5854 3.0830 2.6650 2.5516 2.4183 2.3978

H/3:H/3:H/3 (1, 2) Present (Nl = 9) 3.5857 3.3548 3.1842 3.1332 3.0452 3.0344

Present (Nl = 18) 3.5855 3.3365 3.1543 3.1145 3.0455 3.0343

Present (Nl = 39) 3.5854 3.3375 3.1462 3.1002 3.0454 3.0342

Present (Nl = 78) 3.5854 3.3368 3.1445 3.0968 3.0450 3.0342

0.4H:0.2H:0.4H (1, 2) Present (Nl = 10) 3.5856 3.4421 3.3727 3.3301 3.2775 3.2723

Present (Nl = 20) 3.5855 3.4421 3.3478 3.3247 3.2784 3.2722

Present (Nl = 40) 3.5854 3.4417 3.3361 3.3129 3.2785 3.2721

Present (Nl = 80) 3.5854 3.4415 3.3331 3.3074 3.2784 3.2721

Figure 3 shows the variations of the 40-layer solutions of the critical load parameter
((P̄x)cr) of axially loaded, FGM sandwich cylinders with the length-to-radius ratio,
for m̂ = 1− 5, in which R/H=20, κp = 1, 5 and 100, and h1 : h2 : h3 = 0.2H :
0.6H : 0.2H. Again, referring to this figure, the magnitude of the lowest critical
load parameter and its corresponding number of half-waves (m̂) for a wide range of
length-to-radius ratios are shown using a solid dark line and can be readily found.
It can be seen that the lowest critical load decreases as the material-property gra-
dient index (κp) becomes larger, while the corresponding buckling modes are not
affected by changing the values of κp.
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Figure 3: Variations of the critical load parameters of axially loaded, FGM sand-
wich cylinders with the length-to-radius ratio, (a) κp = 1, (b) κp = 5, (c) κp = 100.

5.3 Free vibration of axially loaded, laminated orthotropic cylinders

A benchmark problem with regard to the free vibration of a simply-supported,
laminated orthotropic circular hollow cylinder without any axial compression, is
used here to validate the accuracy and convergence of the modified Pagano method
in Table 4, in which two-layered antisymmetric and four-layered symmetric or-
thotropic cylinders (i.e., [00/900] and [900/00/00/900]) are considered. The mate-
rial properties of each layer are taken to be EL/ET =3, 10 and 40, GLT/ET = 0.6,
GT T/ET = 0.5 and υLT = υT T = 0.25, the geometric parameters of the cylinders
are L/R=1 and R/H=5, and the dimensionless frequency parameter is defined as
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ω̄ = ω (10)
√

ρ H2/ET .

Table 4: Convergence study of the present modified Pagano solutions of the
natural frequency parameters of simply supported, laminated orthotropic cylin-
ders with different values of EL/ET (m̂ = 1, n̂ = 2, L/R=1, R/H=5, Px = 0 and
ω̄ = ω (10)

√
ρ H2/ET ).

Theories
[
00/900]

EL/ET = 3 EL/ET = 10 EL/ET = 40
LM1 2.3217 2.5538 2.9328
LD2 2.315 2.5514 2.9594
LD1 2.3292 2.5626 2.9666
ED2 2.3219 2.5589 2.9822
ED1 2.345 2.5826 3.0367

3D solutions 2.3141 2.5464 2.9262
EFG 2.3141 2.5464 2.9263

Present (Nl = 4 ) 2.3143 2.5464 2.9262
Present (Nl = 8 ) 2.3141 2.5464 2.9263
Present (Nl = 16) 2.3141 2.5464 2.9263
Present (Nl = 32) 2.3141 2.5464 2.9263
Present (Nl = 40) 2.3141 2.5464 2.9263

Theories
[
900/00/00/900]

EL/ET = 3 EL/ET = 10 EL/ET = 40
LM1 2.3153 2.6472 3.1358
LD2 2.3181 2.6589 3.1979
LD1 2.3522 2.6665 3.2087
ED2 2.3266 2.6842 3.3205
ED1 2.3577 2.7066 3.3322

3D solutions 2.3173 2.6542 3.1675
EFG 2.3172 2.6542 3.1676

Present (Nl = 4 ) 2.3175 2.654 3.1669
Present (Nl = 8 ) 2.3174 2.6542 3.1674
Present (Nl = 16) 2.3173 2.6542 3.1676
Present (Nl = 32) 2.3173 2.6542 3.1676
Present (Nl = 40) 2.3173 2.6542 3.1676

Table 4 shows the convergence studies for the solutions of least frequency param-
eters of [00/900] and [900/00/00/900] laminated cylinders, in which the number
of layers (Nl) is Nl=4, 8, 16, 32 and 40, and (m̂, n̂) = (1, 2). It can be seen
in Table 4 that the solutions are accurate and converge rapidly, and when Nl=8,
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these are in excellent agreement with the exact 3D solutions obtained by Noor and
Rarig (1974) and approximate 3D solutions obtained using the RMVT-based ele-
ment free Galerkin (EFG) method by Wu and Yang (2011). The present solutions
are also compared with the available results obtained from the global first-order
displacement model (ED1) and the ED2 model, the layerwise first-order displace-
ment model (LD1) and the LD2 model, and the layerwise first- and second-order
mixed models (LM1 and LM2), which were given by Carrera (2003). It is seen
in Table 4 that the performance among these theories is LM>LD>ED on the ba-
sis of the same orders of field variables. In addition, the fundamental frequency
parameters increase when the ratio of EL/ET of the lamina becomes larger, which
implies the cylinders with a high ratio of EL/ET possess high overall stiffness, thus
increasing their corresponding frequency parameters, and the frequency parameters
of the four-layered symmetric cylinders ([900/00/00/900]) are higher than the two-
layered anti-symmetric ones ([00/900]), which implies that the coupling extension-
bending effect of anti-symmetric cylinders decreases their overall stiffness, thus
decreasing their corresponding frequency parameters.

Table 5 shows the present solutions of the lowest frequency parameters of axi-
ally loaded and simply supported, laminated four- and eight-layered symmetric
orthotropic cylinders (i.e., [00/900]s and [00/900/00/900]s) with different values
of the compressive load, in which the frequency and parameter is defined as those
in Table 4 and (P̄x)cr = (Px)cr R2/(2π RH3 ET ); Nl=4, 8, 16, 32 and 40; R/H=5, 10,
20 and 100, and L/R=5; EL/ET =40, and other material properties are the same as
those in Table 4; Px= 0, 0.2 (Px)cr, 0.5 (Px)cr and 0.8(Px)cr. It can be seen that the
convergent solutions are obtained at Nl=8, and the lowest frequency parameter de-
creases when the magnitude of the compressive load becomes larger and when the
cylinder becomes thinner. The vibration mode associated with the lowest frequency
parameter remains the same with changing the magnitude of the compressive load,
and in most of the cases considered, the half-wave numbers, (m̂, n̂), associated
with the lowest frequency and critical load parameters are usually not identical to
each other.

5.4 Free vibration of axially loaded, FGM sandwich cylinders

The free vibration of axially loaded and simply supported, FGM sandwich circular
hollow cylinders, which consist of two homogeneous face-sheets and an FGM core,
is studied in this section. The dimensionless frequency parameter is defined as
ω̄ = ω (10)

√
ρ f H2/E f , the Young’s modulus (E) and Poisson’s ratio (υ) of face

sheets and core are given in Eq. (48), and the mass densities of these are given as
follows:

ρ
(m) (ζ ) = ρ0 +(ρ f −ρ0) Γ

(m) (ζ ) , (50)
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Table 5: The present modified Pagano solutions of the lowest frequency and criti-
cal load parameters of axially loaded and simply supported, laminated orthotropic
cylinders with different values of the compressive load (L/R=5, EL/ET = 40,
ω̄ = ω (10)

√
ρ H2/ET and (P̄x)cr = (Px)cr R2/

(
2π RET H3

)
).

Laminates R/H Present ω̄

(Px = 0)
ω̄ (Px =

0.2 (Px)cr)

ω̄ (Px =

0.5 (Px)cr)

ω̄ (Px =

0.8 (Px)cr)

(P̄x)cr
(Pure

stability)[
00/900]

s 5 (m̂, n̂) (1, 1) (1, 1) (1, 1) (1, 1) (2, 2)
Nl = 4 0.6912 0.6194 0.4922 0.3177 7.4630
Nl = 8 0.6913 0.6195 0.4923 0.3179 7.4644
Nl = 16 0.6913 0.6195 0.4924 0.3179 7.4648
Nl = 32 0.6913 0.6195 0.4924 0.3179 7.4649
Nl = 40 0.6913 0.6195 0.4924 0.3179 7.4649[

00/900/00/900]
s 5 (m̂, n̂) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

Nl = 8 0.6863 0.6139 0.4854 0.3070 7.4760
Nl = 16 0.6863 0.6139 0.4854 0.3070 7.4768
Nl = 32 0.6863 0.6139 0.4854 0.3070 7.4770
Nl = 40 0.6863 0.6139 0.4854 0.3070 7.4770[

00/900]
s 10 (m̂, n̂) (1, 2) (1, 2) (1, 2) (1, 2) (2, 2)

Nl = 4 0.2737 0.2478 0.2030 0.1448 17.0609
Nl = 8 0.2737 0.2478 0.2030 0.1448 17.0606
Nl = 16 0.2737 0.2478 0.2030 0.1449 17.0606
Nl = 32 0.2737 0.2478 0.2030 0.1449 17.0606
Nl = 40 0.2737 0.2478 0.2030 0.1449 17.0606[

00/900]
s 20 (m̂, n̂) (1, 2) (1, 2) (1, 2) (1, 2) (3, 3)

Nl = 4 0.1079 0.0983 0.0818 0.0609 40.2368
Nl = 8 0.1079 0.0983 0.0818 0.0609 40.2347
Nl = 16 0.1079 0.0983 0.0818 0.0609 40.2342
Nl = 32 0.1079 0.0983 0.0818 0.0609 40.2341
Nl = 40 0.1079 0.0983 0.0818 0.0609 40.2341[

00/900]
s 100 (m̂, n̂) (1, 4) (1, 4) (1, 4) (1, 4) (7, 7)

Nl = 4 0.01300 0.01227 0.01108 0.00976 233.3586
Nl = 8 0.01300 0.01227 0.01108 0.00976 233.3545
Nl = 16 0.01300 0.01227 0.01108 0.00976 233.3534
Nl = 32 0.01300 0.01227 0.01108 0.00976 233.3532
Nl = 40 0.01300 0.01227 0.01108 0.00976 233.3531
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in which Γ(m) (ζ ) (m=1-3) are given in Eq. (49), and ρ0=2702 kg/m3 (aluminum)
and ρ f =3800 kg/m3 (alumina).

Table 6: The present modified Pagano solutions of the lowest frequency and
critical load parameters of axially loaded and simply supported, laminated or-
thotropic cylinders with different values of the compressive load (L/R=5, ω̄ =
ω (10)

√
ρ f H2/E f ) and (P̄x)cr = (Px)cr R2/

(
2πRE f H3

)
.

κp R/H Present ω̄

(Px = 0)
ω̄ (Px =

0.2 (Px)cr)

ω̄ (Px =

0.5 (Px)cr)

ω̄ (Px =

0.8 (Px)cr)

(P̄x)cr (Pure
stability)

0 5 (m̂, n̂) (1, 2) (1, 2) (1, 2) (1, 2) (2, 2)
Nl = 10 0.3824 0.3507 0.2968 0.2307 1.8415
Nl = 20 0.3825 0.3507 0.2968 0.2307 1.8415
Nl = 40 0.3825 0.3507 0.2968 0.2307 1.8415
Nl = 80 0.3825 0.3507 0.2968 0.2307 1.8415

2 5 (m̂, n̂) (1, 1) (1, 1) (1, 1) (1, 1) (2, 2)
Nl = 10 0.3433 0.3132 0.2617 0.1971 1.3897
Nl = 20 0.3440 0.3138 0.2621 0.1974 1.3898
Nl = 40 0.3441 0.3139 0.2623 0.1975 1.3898
Nl = 80 0.3442 0.3140 0.2623 0.1975 1.3898

∞ 5 (m̂, n̂) (1, 1) (1, 1) (1, 1) (1, 1) (2, 2)
Nl = 10 0.3104 0.2817 0.2322 0.1688 1.1093
Nl = 20 0.3104 0.2817 0.2322 0.1688 1.1093
Nl = 40 0.3104 0.2817 0.2322 0.1688 1.1093
Nl = 80 0.3104 0.2817 0.2322 0.1688 1.1093

2 10 (m̂, n̂) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2)
Nl = 10 0.1132 0.1012 0.0800 0.0506 2.8839
Nl = 20 0.1134 0.1015 0.0802 0.0507 2.8859
Nl = 40 0.1135 0.1015 0.0802 0.0508 2.8864
Nl = 80 0.1135 0.1015 0.0803 0.0508 2.8865

2 100 (m̂, n̂) (1, 3) (1, 3) (1, 3) (1, 3) (1, 3)
Nl = 10 0.004236 0.003789 0.002995 0.001895 40.4018
Nl = 20 0.004245 0.003797 0.003002 0.001898 40.4203
Nl = 40 0.004247 0.003799 0.003003 0.001899 40.4254
Nl = 80 0.004248 0.003799 0.003004 0.001900 40.4266

Table 6 shows the solutions of the lowest frequency parameters of axially loaded
and simply supported, FGM sandwich cylinders with different values of the com-
pressive load, in which Nl=10, 20, 40 and 80; R/H=5, 10 and 100, L/R=5, and
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Figure 4: Variations of the lowest frequency parameters of axially loaded, FGM
sandwich cylinders with the half-wave numbers n̂ for m̂=1-4 and κp = 2, (a) Px = 0
, (b) Px = 0.3 (Px)cr, (c) Px = 0.6 (Px)cr.

h1 : h2 : h3 = 0.2H : 0.6H : 0.2H; Px= 0, 0.2 (Px)cr, 0.5 (Px)cr and 0.8(Px)cr, and
(P̄x)cr = (Px)cr R2/(2π RH3 E f ); κp=0, 2 and ∞. It can be seen in Table 6 that the
convergence of the solutions is rapid. For example: in the case of a thick FGM
sandwich cylinder, the relative error between the ten-layer solution and the eighty-
layer one is less than 0.3%, and that between the twenty-layer solution and the
eighty-layer one is less than 0.06%. The lowest frequency parameter decreases
when the magnitude of the compressive load and the material-property gradient
index become larger, which means the overall stiffness of the cylinder becomes
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Figure 5: Variations of the lowest frequency parameters of axially loaded, FGM
sandwich cylinders with the half-wave numbers n̂ for m̂=1-4 and Px = 0.8 (Px)cr,
(a) κp = 1 , (b) κp = 5, (c) κp = 100.

softer. It is also shown that the lowest critical load parameter of the cylinder de-
creases when the material-property gradient index becomes larger, and when the
cylinder becomes thinner.

Figures 4 and 5 show the variations of the lowest frequency parameters of each vi-
bration mode of the cylinders with different values of the applied compressive load
and different material-property gradient indices, respectively, in which m̂ = 1− 4
and n̂ = 1− 10; R/H=10, L/R=5, and h1 : h2 : h3 = 0.2H : 0.6H : 0.2H; Px=0,
0.3 (Px)cr and 0.6 (Px)cr, and κp = 2 in the former; Px = 0.8 (Px)cr, and κp=1, 5
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and 100 in the latter. It is shown that when the value of m̂ is fixed, the frequency
parameter first decreases, and then it monotonically increases for all the cases con-
sidered, and the fundamental frequency parameters always occur at the vibration
mode (m̂, n̂) = (1, 2), which means the fundamental vibration mode will not be
affected by changing values of Px and κp, while the corresponding frequency pa-
rameter is affected, and again it decreases when these become larger.

6 Concluding remarks

In this paper, we have developed a modified Pagano method for the exact 3D free
vibration analyses of simply-supported, FGM sandwich cylinders and laminated
composite ones, subjected to axial compression. The state space equations of this
3D problem were derived using the RMVT-based Hamilton principle, in which a
pre-buckling state of 3D deformations was assumed. A set of initial normal stresses
associated with these deformations was determined using a transfer matrix method
combined with an SA one, and then it was introduced in the RMVT-based formula-
tion. These state space equations can be reduced to the ones of pure free vibration
and stability problems of the cylinders by letting the applied compressive load van-
ish for the former as well as discarding the inertia force terms and replacing all field
variables with their incremental ones perturbed from the neutral equilibrium state
for the latter. The accuracy and convergence of the solutions for the pure stability
and pure free vibration of laminated composite cylinders were evaluated in compar-
ison with the exact and approximate 3D solutions available in the open literature,
with which the solutions were shown to converge rapidly and be in excellent agree-
ment. A parametric study of the influences of the radius-to-thickness and length-
to-radius ratios, thickness ratio for each layer, and material-property gradient index
on the lowest frequency and critical load parameters of the FGM sandwich cylin-
ders was undertaken. The results show that the effect of the initial transverse normal
stress on the critical load parameters of the axially loaded cylinders is relatively mi-
nor, and can be neglected, and that von K’arm’an’s nonlinearity assumption is not
recommended for the stability analysis of thick cylinders. In addition, the solutions
using a uniform initial strain and stress assumptions closely agree to each other; the
fundamental vibration and critical buckling modes of FGM sandwich cylinders will
not be affected with changing values of the material-property gradient index and
core/face sheet thickness ratio, while the corresponding lowest frequency and crit-
ical load parameter decrease when these become larger. Furthermore, the present
solutions may serve as benchmarks for assessing the accuracy and convergence of
various approximate 2D theories of FGM sandwich cylinders, and they can also
provide a reference for making suitable kinetic and kinematic assumptions prior to
developing more advanced 2D theories of FGM cylinders.
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Appendix A

The coefficients k̄(m)
i j and l̄(m)

i j in Eq. (37) are given by

k̄(m)
14 =

(
c̃(m)

55

)−1
(h/R) , k̄(m)

16 =−m̃, k̄(m)
22 = (γ2)

−1 (h/R) ,

k̄(m)
25 =

(
c̃(m)

44

)−1
(h/R) , k̄(m)

26 = ñ (γ2)
−1 , k̄(m)

31 =−m̃ Q̃(m)
12 (γ2)

−1 ,

k̄(m)
32 = ñ Q̃(m)

22 (γ2 )
−2 , k̄(m)

33 =
(

Q(m)
23 −1

)
(γ2)

−1 (h/R) ,

k̄(m)
34 = m̃, k̄(m)

35 =−ñ (γ2)
−1 , k̄(m)

36 = Q̃(m)
22 (γ2 )

−2 ,

k̄(m)
41 = m̃2 Q̃(m)

11 + ñ2 Q̃(m)
66 (γ2)

−2 , k̄(m)
42 =−m̃ ñ

(
Q̃(m)

12 + Q̃(m)
66

)
(γ2)

−1 ,

k̄(m)
43 =−m̃Q(m)

13 (h/R) , k̄(m)
44 =−(γ2)

−1 (h/R) ,

k̄(m)
46 =−m̃ Q̃(m)

12 (γ2)
−1 , k̄(m)

51 =−m̃ ñ
(

Q̃(m)
12 + Q̃(m)

66

)
(γ2)

−1 ,

k̄(m)
52 = m̃2Q̃(m)

66 + ñ2 Q̃(m)
22 (γ2)

−2 , k̄(m)
53 = ñQ(m)

23 (γ2)
−1 (h/R) ,

k̄(m)
55 =−2 (γ2)

−1 (h/R) , k̄(m)
56 = ñ Q̃(m)

22 (γ2)
−2 , k̄(m)

61 = m̃Q(m)
13 (h/R) ,

k̄(m)
62 =−ñQ(m)

23 (γ2)
−1 (h/R) , k̄(m)

63 =
(

c̃(m)
33

)−1
(h/R)2 ,

k̄(m)
66 =−Q(m)

23 (γ2)
−1 (h/R) , l̄(m)

30 =
(

c̃(m)
33

)−1
f̂ (m)

r ,

l̄(m)
31 =−m̃Q(m)

13

(
f̂ (m)

r ,3

)
(R/h)− m̃Q(m)

13 f̂ (m)
r (γ2)

−1 + m̃Q(m)
13 Q(m)

23 f̂ (m)
r (γ2)

−1 ,

l̄(m)
32 =2 ñ f̂ (m)

θ
(γ2)

−2 + ñQ(m)
23

(
f̂ (m)

r ,3

)
(γ2)

−1 (R/h)+ ñQ(m)
23 f̂ (m)

r (γ2)
−2

− ñQ(m)
23 Q(m)

23 f̂ (m)
r (γ2)

−2 ,

l̄(m)
33 =−

(
c̃(m)

33

)−1(
f̂ (m)

r ,3

)
−
(

c̃(m)
33

)−1
f̂ (m)

r (γ2)
−1 (h/R)

+
(

c̃(m)
33

)−1
Q(m)

23 f̂ (m)
r (γ2)

−1 (h/R) ,

l̄(m)
34 =−m̃

(
c̃(m)

55

)−1
Q(m)

13 f̂ (m)
r , l̄(m)

35 = ñ
(

c̃(m)
44

)−1
Q(m)

23 f̂ (m)
r (γ2)

−1 ,
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l̄(m)
36 =(m̃)2

(
f̂ (m)

x +Q(m)
13 f̂ (m)

r

)
(R/h)+(ñ)2

(
f̂ (m)

θ
+Q(m)

23 f̂ (m)
r

)
(γ2)

−2 (R/h)

+ f̂ (m)
θ

(γ2)
−2 +Q(m)

23

(
f̂ (m)

r ,3

)
(γ2)

−1 (R/h)−Q(m)
23 Q(m)

23 f̂ (m)
r (γ2)

−2
,

l̄(m)
40 =

(
c̃(m)

55

)−1
f̂ (m)

r , l̄(m)
41 = m̃2 f̂ (m)

x + ñ2 f̂ (m)
θ

(γ2)
−2 + m̃2Q(m)

13 f̂ (m)
r ,

l̄(m)
42 =−m̃ ñ Q(m)

23 f̂ (m)
r (γ2)

−1 , l̄(m)
43 = m̃

(
c̃(m)

33

)−1
f̂ (m)

r (h/R) ,

l̄(m)
44 =−

(
c̃(m)

55

)−1(
f̂ (m)

r ,3

)
−
(

c̃(m)
55

)−1
f̂ (m)

r (γ2)
−1 (h/R) ,

l̄(m)
46 = m̃

(
f̂ (m)

r ,3

)
(R/h)+ m̃ f̂ (m)

r (γ2)
−1− m̃Q(m)

23 f̂ (m)
r (γ2)

−1 ,

l̄(m)
50 =

(
c̃(m)

44

)−1
f̂ (m)

r , l̄(m)
51 =−m̃ ñQ(m)

13 f̂ (m)
r (γ2)

−1 ,

l̄(m)
52 =m̃2 f̂ (m)

x + ñ2 f̂ (m)
θ

(γ2)
−2 + f̂ (m)

θ
(γ2)

−2 (h/R)

−
(

f̂ (m)
r ,3

)
(γ2)

−1− f̂ (m)
r (γ2)

−2 (h/R)+ ñ2Q(m)
23 f̂ (m)

r (γ2)
−2,

l̄(m)
53 =−ñ

(
c̃(m)

33

)−1
f̂ (m)

r (γ2)
−1 (h/R) ,

l̄(m)
55 =−

(
c̃(m)

44

)−1(
f̂ (m)

r ,3

)
−2

(
c̃(m)

44

)−1
f̂ (m)

r (γ2)
−1 (h/R) ,

l̄(m)
56 = 2 ñ f̂ (m)

θ
(γ2)

−2− ñ
(

f̂ (m)
r ,3

)
(R/h)− ñ f̂ (m)

r (γ2)
−2+ ñQ(m)

23 f̂ (m)
r (γ2)

−2 . (A1)

The coefficients l̃(m)
i j in Eq. (38) are given by

l̃(m)
32 = 2 ñ f̂ (m)

θ
(γ2)

−2 ,

l̃(m)
36 = (m̃)2 f̂ (m)

x (R/h)+(ñ)2 f̂ (m)
θ

(γ2)
−2 (R/h)+ f̂ (m)

θ
(γ2)

−2 ,

l̄(m)
41 = m̃2 f̂ (m)

x + ñ2 f̂ (m)
θ

(γ2)
−2 ,

l̃(m)
52 = m̃2 f̂ (m)

x + ñ2 f̂ (m)
θ

(γ2)
−2 + f̂ (m)

θ
(γ2)

−2 (h/R),

l̃(m)
56 = 2 ñ f̂ (m)

θ
(γ2)

−2 . (A2)

The coefficients
_

l
(m)

i j in Eq. (40) are given by

_

l
(m)

32 = ñ f̂ (m)
θ

(γ2)
−2 ,
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_

l
(m)

36 = (m̃)2 f̂ (m)
x (R/h)+(ñ)2 f̂ (m)

θ
(γ2)

−2 (R/h)+ f̂ (m)
θ

(γ2)
−2 ,

_

l
(m)

52 = f̂ (m)
θ

(γ2)
−2 (h/R),

_

l
(m)

56 = ñ f̂ (m)
θ

(γ2)
−2 . (A3)

The coefficients l̂(m)
i j in Eq. (41) are given by

l̂(m)
36 = (m̃)2 (R/h) ,

l̂(m)
41 = m̃2 ,

l̂(m)
52 = m̃2. (A4)

Appendix B

The solution process of the transfer matrix method is described as follows:

According to Eq. (44), we obtain the general solution for the system equations of
the mth-layer (m = 1, 2, · · · , Nl) in the form of

F(m) (x3) = Ω
(m) (x3) L(m). (B1)

When x3 = x3(m−1), in which x3(m−1) = ζm−1/h, according to Eq. (B1) we obtain

L(m) =
[
Ω

(m)
(
x3(m−1)

)]−1
F(m−1), (B2)

where x3(m−1) is the dimensionless thickness coordinate measured from the middle
surface to the bottom surface of mth-layer, F(m−1) denotes the vector of primary
field variables at the interface between the (m-1)th- and mth-layers, and F(m−1) =

F(m)
(
x3 = x3(m−1)

)
.

When x3 = x3(m), in which x3(m) = ζm/h, using Eqs. (B1) and (B2), we obtain

F(m) = R(m) F(m−1), (B3)

where R(m) = Ω(m)
(
x3(m)

) [
Ω(m)

(
x3(m−1)

)]−1
.

By analogy, the vectors of primary variables in the elastic and electric fields be-
tween the top and bottom surfaces of the cylinder (i.e., F(N) and F(0)) are linked
by

F(Nl) = R(Nl) F(Nl−1) =

(
Nl

∏
m=1

R(m)

)
F(0), (B4)
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where
Nl
Π

m=1
R(m) = R(Nl) R(Nl−1) · · · R(2) R(1).

Equation (B4) represents a set of six simultaneous algebraic equations. Impos-
ing the boundary conditions prescribed on the lateral surfaces, we may rewrite the
equation as[

0
Fu

]
=

[
RII RIII
RIII RIIII

] [
0

Fb

]
, (B5)

where Fu and Fb denote the unknown variables on the outer and inner surfaces,
respectively.

According to Eq. (B5), we have a set of homogeneous equations as

RI II Fb = 0, (B6)

where RI II is a 3x3 matrix, in which the coefficients are related to the dimension-
less applied load (p̄x) and natural frequency (ωτ).

A nontrivial solution of Eq. (B6) exists if the determinant of the coefficient matrix
vanishes. The natural frequencies of FGPM sandwich cylinders for a set of fixed
values (m̂, n̂) can be obtained by

R (p̄x, ωτ) = |RIII|= 0. (B7)

Equation (B7) is called the characteristic equation. Since the determinant of RI II
yields an implicit function of p̄x and ωτ rather than an explicit one, a bisection
method is used to determine the roots of Eq. (B7).
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