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A Simple Locking-Alleviated 3D 8-Node
Mixed-Collocation C0 Finite Element with

Over-Integration, for Functionally-Graded and Laminated
Thick-Section Plates and Shells, with & without Z-Pins
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Abstract: Following previous work of [Dong, El-Gizawy, Juhany, Atluri (2014)],
a simple locking-alleviated 3D 8-node mixed-collocation C0 finite element (de-
noted as CEH8) is developed in this study, for the modeling of functionally-graded
or laminated thick-section composite plates and shells, without using higher-order
or layer-wise zig-zag plate and shell theories which are widely popularized in the
current literature. The present C0 element independently assumes an 18-parameter
linearly-varying Cartesian strain field. The independently assumed Cartesian strains
are related to the Cartesian strains derived from mesh-based Cartesian displacement
interpolations, by exactly enforcing 18 pre-defined constraints at 18 pre-selected
collocation points. The constraints are rationally defined to capture the basic kine-
matics of the 3D 8-node C0 element, and to accurately model each basic deforma-
tion mode of tension, bending, shear, and torsion. A 2×2×2 Gauss quadrature is
sufficient for evaluating the stiffness matrix of CEH8 C0 3D elements for homo-
geneous materials, but over-integration (with a higher-order Gauss Quadrature, a
layer-wise Gauss Quadrature, or a simple Trapezoidal Rule in the thickness direc-
tion) is used for functionally-graded materials or thick-section laminated composite
structures with an arbitrary number of laminae. Through several numerical exam-
ples, it is clearly shown that the present CEH8 3D C0 element can accurately cap-
ture the stress distribution of FG and thick laminated structures with an arbitrary
number of laminae even when only one element is used in the thickness direction.
In stark contrast to the higher-order or layer-wise zig-zag plate and shell theories,
with assumptions for displacement or stress fields in the thickness direction, which
may require complicated C1 finite element, the present C0 element can accurately
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compute the jumps in bending stresses at the interfaces of layers, while the out-of
plane normal and shear stresses can be accurately recovered by exploring the equi-
librium equations of 3D linear elasticity. By adding the contributing stiffness of
z-pins into the stiffness matrix of CEH8, it is also demonstrated that the presently
developed method can be used to study the effect of using z-pin reinforcements
to reduce the inter-laminar stresses of composite structures, in a very simple and
computationally-efficient manner.

Keywords: mixed FEM, collocation, plate, shell, functionally-graded material,
thick-section composite laminate, z-pins.

1 Introduction

It is known that primal finite elements of deformable solids, based on low-order
C0 isoparametric displacement interpolations, suffer from shear locking for typ-
ical engineering structures with large length-to-thickness ratios, such as beams,
plates, and shells. This is mainly because of the incompleteness of FEM displace-
ment interpolations, as well as the incompleteness of the strains derived from the
interpolated displacement fields, see [Atluri (2005)]. Selective-reduced-order in-
tegrations [Hughes (1980)] are widely used in commercial software packages to
improve the accuracy of FEM solutions by reducing the bending stiffness of ele-
ments. However, it relies on the decomposition of the element strain energy density
into a dilatational part and a shear part, which is not straight-forward for anisotropic
materials and nonhomogeneous composite materials. Moreover, for functionally-
graded materials and laminated structures, over-integration is necessary in order to
accurately evaluate the element stiffness matrix, see [Dong, El-Gizawy, Juhany and
Atluri (2014)].

A more rational way of alleviating shear locking is to independently assume rela-
tively complete stress/strain/displacement fields, and derive high-performance hy-
brid/mixed finite elements, see [Pian (1964); Atluri (1975); Atluri, Gallagher and
Zienkiewicz (1983)]. One of the most popular is the hybrid-stress type of el-
ement, see [Pian (1964); Pian and Chen (1983); Rubinstein, Punch and Atluri
(1983); Punch and Atluri (1984); Pian and Sumihara (1984); Xue, Karlovitz and
Atluri (1985); Pian and Wu (1988); Yuan, Huang and Pian (1993)]. Various ver-
sions of assumed strains mixed elements were also developed in [Simo and Rifai
(1990); Weissman and Taylor (1992)]. These hybrid and mixed finite elements
are all based on multi-field variational principles, using continuous Lagrange mul-
tiplier test functions to enforce the compatibility between the independently as-
sumed stress/strain fields and those derived from mesh-based displacement interpo-
lations. Such a stencil not only limits the optimization of element performances, but



3D 8-Node Mixed-Collocation C0 Finite Element 165

also makes hybrid/mixed elements suffer from LBB conditions and saddle-point-
problem instabilities, see [Brezzi (1974), Rubinstein, Punch and Atluri (1983)].

In [Dong and Atluri (2011)], a new framework of developing hybrid/mixed ele-
ments was proposed, without using multi-field variational principles or continu-
ous Lagrange multipliers. The essential idea was to enforce the compatibility be-
tween primitive and mixed variables by simple collocation at a set of pre-defined
points within the element. This approach avoids LBB conditions, and provides
great flexibility in selecting collocation points & methods to improve the accuracy
and robustness of developed elements. The essential idea was successfully used to
develop a series of computational grains, for direct numerical modeling of com-
plex and random microstructures of heterogeneous materials, see [Dong and Atluri
(2012a,b,c,2013); Bishay and Alturi (2012,2013)]. In [Dong, El-Gizawy, Juhany
and Atluri (2014)], a locking-alleviated, and almost-distortion-insensitive 4-node
quadrilateral C0 element (CEQ4) was also developed based on this approach, by
defining a set of more rational constraints at each collocation point, to accurately
model each deformation mode of tension, bending, and shear. By combining CEQ4
with over-integration along the thickness direction, it was shown that functionally-
graded and laminated thick-section beams can also be accurately modeled by CEQ4
in a very simple manner, without using higher-order theories [Lo, Christensen, and
Wu (1977); Reddy and Robbins (1994)] or zig-zag displacement/stress assump-
tions [Carerra (2003)], and even without using theories of beams/plates/shells by
Euler, Bernoulli, Timoshenko (1953), or of Reissner (1945) and Mindlin (1951).

In this study, we extend the previous version of CEQ4 to a three-dimensional 8-
node brick C0 element, which we name as CEH8. The present element indepen-
dently assumes an 18-parameter linearly-varying Cartesian strain field, which is
then related to the Cartesian strains derived from mesh-based Cartesian displace-
ment interpolations, by exactly enforcing 18 pre-defined constraints at 18 pre-
selected collocation points. We then combine CEH8 with over-integration in the
thickness direction, to model the deformation of functionally-graded or laminated
composite plates and shells, with an arbitrary number of laminae. It is shown that,
without using higher-order theories or zig-zag theories for laminated thick com-
posite plates and shells, the present simple 3D C0 element can reasonably capture
the correct distributions as well as jumps of in-plane stresses, even if only one 3D
C0 element is used in the thickness direction. With a stress recovery approach us-
ing equilibrium equations of 3D elasticity, the transverse normal and shear stresses
can also be computed easily, from the computed in-plane stresses and their vari-
ation in the thickness direction. Moreover, this simple eight-node 3D C0 element
is also used for the study of z-pinned laminated plates, by simply adding the stiff-
ness of the z-pins to the stiffness matrix of each element. It was shown that by
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adding stiffer z-pins in the thickness direction, inter-laminar normal stresses and
sheared stresses can be reduced, which is expected to alleviate the delamination of
composite structures.

2 Detailed Formulation for the Present Locking-Alleviated, Almost-Distortion-
Insensitive, 8-Node Three-Dimensional C0 CEH8 Element

 

Figure 1: The eight-node brick C0 element with non-dimensional coordinates.

2.1 Independently assumed strain field

We firstly define a local Cartesian coordinate system x̄1− x̄2− x̄3, with its origin
located at the center of the element. The orthonormal base vectors of the local
Cartesian coordinate system are defined as follows:

ē1 =
ḡ1

‖ḡ1‖
, ē3 =

ḡ1× ḡ2

‖ḡ1× ḡ2‖
, ē2 = ē3× ē1 (1)

where ḡ1, ḡ2, ḡ3 are constant covariant base vectors evaluated at the center of the
element, for the curvilinear coordinate system of the element as shown in Fig. 1 .

The local Cartesian components of the strain tensor are then independently assumed
as:

ε∗11
ε∗22
ε∗33

2ε∗23
2ε∗13
2ε∗12


=


1 0 0 0 0 0 x̄2 x̄3 x̄2x̄3 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 x̄1 x̄3 x̄1x̄3 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 x̄1 x̄2 x̄1x̄2 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 x̄1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 x̄2 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 x̄3


 γ1

...
γ18

 (2)
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The procedure for determining such a strain-field assumption is described in detail
in the first section of [Dong, El-Gizawy, Juhany and Atluri (2014)]: firstly derive
strains from mesh-based displacement interpolations, then find out the locking-part
between derived shear & normal strains, finally eliminate the locking-part of shear
strains, leading to the locking-free strain-field assumption as given in Eq. (2).

We further rewrite Eq. (2) in a matrix-vector notation for convenience:

εεε
∗= Aγ (3)

2.2 Enforcing the compatibility between the independently assumed strain and
displacement fields

Following previous work of [Dong, El-Gizawy, Juhany and Atluri (2014)], a set
of 18 rational collocation equations are defined, to capture the basic kinematics of
the 3D C0 8-node element, and to accurately model each basic deformation mode
of tension, bending, shear, and torsion. In order to do this, we firstly study the
infinitesimal deformation of an infinitesimal fiber AB in Fig. 2(a). As illustrated
in many textbooks of solid mechanics, such as [Fung and Tong (2001)], the ratio of
stretch in the fiber’s axial direction can be calculated as:
δ

l
= n · ε ·n≡ ê(εεε,n) (4)

where l denotes the length of AB, δ denotes the stretch of the fiber in the axial
direction, n denotes the unit vector in the direction of AB, and ê is the commonly
known engineering strain in the axial direction of the fiber .

Similarly, we also study the infinitesimal deformation of two infinitesimal fibers
AB and AC. In order to do this, we firstly define a local Cartesian coordinate system
x̂1− x̂2− x̂3, where both of the two fibers lie in the plane of x̂1− x̂2. Then the
change in the angle between the two fibers projected onto the plane of x̂1− x̂2 can
be expressed as:

∆θ
CAB = ε̂11 (n̂1n̂2− m̂1m̂2)+ ε̂22 (m̂1m̂2− n̂1n̂2)

+2ε̂12 (m̂1m̂1− n̂1n̂1)≡ γ̂ (εεε,n,m)
(5)

where n and m denotes the unit vector in the axial direction of fibers AB and CD
respectively, and γ̂ is an engineering shear strain that is newly defined in this study
representing the change of angles between fibers AB and AC.

Then in order to relate undetermined parameters γ for assumed strains to nodal
displacements q, a set of 18 collocation points are adopted, as shown in Fig. 3,
which are the same as those used in [Bishay and Alturi (2012)]. And the following
rational collocation scheme is implemented following previous work of [Dong, El-
Gizawy, Juhany and Atluri (2014)]:
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(a) 

 
(b) 

 Figure 2: (a) Stretch of an infinitesimal fiber (b) Change of the angle between two
infinitesimal fibers.

1. for points 9-12 (ξ1 = 0,ξ2 = ± 1√
3
,ξ3 = ± 1√

3
), collocate axial engineering

strain ê with fiber’s axial direction defined as n = g1;

2. for points 13-16 (ξ1 = ± 1√
3
,ξ2 = 0,ξ3 = ± 1√

3
), collocate axial engineering

strain ê with fiber’s axial direction defined as n = g2;

3. for points 17-20 (ξ1 = ± 1√
3
,ξ2 = ± 1√

3
,ξ3 = 0), collocate axial engineering

strain ê with fiber’s axial direction defined as n = g3;

4. for points 21-22 (ξ1 = 0,ξ2 = 0,ξ3 = ± 1√
3
), collocate angular engineering

strain γ̂ with two fibers’ axial directions defined as n = g1,m = g2;
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5. for points 23-24 (ξ1 = ± 1√
3
,ξ2 = 0,ξ3 = 0), collocate angular engineering

strain γ̂ with two fibers’ axial directions defined as n = g2,m = g3;

6. for points 25-26 (ξ1 = 0,ξ2 = ± 1√
3
,ξ3 = 0), collocate angular engineering

strain γ̂ with two fibers’ axial directions defined as n = g1,m = g3.

where g1,g2,g3 are covariant base vector evaluated at each collocation point.

With these 18 equations, the 18 parameters of γ1, · · ·γ18 are determined:

γγγ = Cq (6)

The strain fields are thus related to the nodal displacements q by:

εεε
∗= ACq = B∗q (7)

 
Figure 3: CEH8: enforcing 18 pre-defined constraints at 18 preselected collocation
points.
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The stiffness matrix is determined from the strain energy stored in element Ωe:

ke=
∫
Ωe

B∗T DB∗dΩ (8)

We denote the presently developed 8-node brick element as CEH8.

2.3 Some remarks on CEH8

Remark 1: Because of the assumption of linearly-varying strain fields, it is obvi-
ous that a 2×2×2 Gauss quadrature is necessary if each element is used to model a
piece of a homogeneous material. However, if a non-homogeneous material within
the element is considered, such as functionally-graded materials or thick-section
laminated composites with an arbitrary number of laminae, we can use “over-
integration” to accurately compute the stiffness matrix. For continuously graded
materials, a 3×3×3 Gauss quadrature is good enough. However, for laminated
plates and shells, it is more convenient to either use a layer-wise two-point Gauss
quadrature in the thickness direction, or use a simple Trapezoidal rule in the thick-
ness direction, with the number of sampling points depending on the number of
plies in the thickness, to evaluate the stiffness matrix of the element.

Remark 2: If only one element of CEH8 is used in the thickness direction, the
transverse normal and shear stresses directly computed by Eq. (2) may be inaccu-
rate. In this study, we use a stress-recovery approach to compute the distribution of
transverse stresses, by considering the equilibrium equations of 3D linear elasticity.
For example, for FG and laminated plates, the distribution of transverse stresses can
be obtained by numerically evaluating:

σzx =−
∫ z

z0

(σxx,x +σxy,y)dz

σzy =−
∫ z

z0

(σyy,y +σxy,x)dz

σzz =−
∫ z

z0

(σzx,x +σzy,y)dz

(9)

where z = z0 denotes the lower surface of plate.

For cylindrical shells, the distribution of transverse stresses can also be evaluated,
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by numerical solving the following 3 differential equations:

∂σrθ

∂ r
+2

σrθ

r
=−1

r
∂σθθ

∂θ
− ∂σθz

∂ z
∂σrz

∂ r
+

σrz

r
=−∂σzz

∂ z
− 1

r
∂σθz

∂θ

∂σrr

∂ r
+

σrr

r
=

σθθ

r
− 1

r
∂σrθ

∂θ
− ∂σrz

∂ z

(10)

In Eq. (10), the left hand-side invovles stress components to be recovered, and the
right-hand side are directly evaluated from the solutions of CEH8. Each equation
is a first-order single-variable ODE, which can be solved with a variety of com-
putational methods, see [Dong, Alotaibi, Mohiuddine, and Atluri (2014)]. In this
study, simple collocation of Eq. (10) is implemented at a variety of points along the
thickness direction. Combined with the traction free condition at the inner surface
of the cylindrical shell, stress components σrθ ,σrz,σrr can be efficiently recovered
from the computed in-plane normal and shear stresses.

Remark 3: Higher-order theories [Reddy and Robbins (1994)] and zig-zag theo-
ries [Carerra (2003)] for beams, plates, and shells are popularized in the current
literature for analyzing functionally-graded and laminated structures. For example,
third-order theory of plates by [Reddy (1984)] adopts the following expansion of
displacements in the thickness direction:

u = u0 + zϕx− z2
(

1
2

∂ϕz

∂x

)
− z3

[
4

3h2

(
∂w0

∂x
+ϕx

)
+

1
3

∂φz

∂x

]
v = v0 + zϕy− z2

(
1
2

∂ϕz

∂y

)
− z3

[
4

3h2

(
∂w0

∂y
+ϕy

)
+

1
3

∂φz

∂y

]
w = w0 + zϕz + z2

φz

(11)

This not only complicates the problem by having 7 dependent variables u0,v0,w0,
ϕx,ϕy,ϕz,φz instead of 3 variables of u,v,w, but also requires C1 continuous trial
functions for w0,ϕz,φz, which is extremely disadvantageous for the development of
general-purpose finite elements of plates and shells.

Layer-wise theories express displacements in each layer of the laminated structure
in terms of polynomial interpolations. For example, [Reddy (1987)] expresses dis-
placements in the kth layer of the laminate as:

uk = ∑
i

uk
i ϕ

k
i

vk = ∑
i

vk
i ϕ

k
i

wk = ∑
i

wk
i ϕ

k
i

(12)
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where ϕk
i are Lagrange interpolation functions (linear, quadratic, etc.) in the thick-

ness direction. This further complicates the problem by having additional depen-
dent variables in each layer, and may lead to ill-conditioned system of equations
for laminated structures with a large number of plies.

In contrast to the above-mentioned higher-order or layer-wise theories for plates
and shells, the currently-developed locking-alleviated 8-node C0 brick element has
the simplest topology with only 3 variables in each node. It automatically takes
account of multi-layer effects (with an arbitrary number of laminae) by using over-
integration along the thickness direction, without increasing the number of DOFs
for each element. Moreover, the current framework of analyzing FG and laminated
plates and shells with over-integration can also be combined with other 3D C0

elements such as 20-node and 27-node bricks, which are already mature in most
general-purpose FEM packages such as ANSYS and ABAQUS. Using locking-
free solid elements for direct numerical modeling of FG and laminated structures
saves the trouble of developing specific theories for plates and shells, and thus
provides an “one-size fit all” procedure for universal modeling of both bulk solids
and engineering structures.

3 Numerical Examples

3.1 Homogeneous beams

In this subsection, we consider an isotropic and homogeneous cantilever beam sub-
jected to a unit bending load or a unit shear force at the free-end. As shown in Fig.
4, the beam’s length is 5, and the beam has a 1×1 square section. Young’s modulus
E = 1.0 and Poisson’s ratio v= 0 are considered. An exact solution for this problem
is given in [Timoshenko and Goodier (1970)]. We solve this problem with different
meshes, and the distortion ratio is defined by the ratio of lengths of the lower and
upper two edges of the first element, i.e. 2.5+e

2.5−e . A 2× 2× 2 Gauss quadrature is
used for evaluating the stiffness matrix of each element. The computed normal-
ized vertical displacement at point A and the computed normalized bending stress
at point B are shown in Figs. 5-8. It is clearly seen that the primal eight-node C0

brick element suffers from severe locking, while the present mixed-collocation C0

element CEH8 is locking-alleviated, and almost distortion-insensitive.

3.2 Functionally-graded plates

In this subsection, a cantilever unit-thickness 10× 10 square plate is considered.
Young’s modulus is exponentially varying in the z direction, i.e. E = eβ z,β = log5.
Thus, we have E = 1 at the lower surface and E = 5 at the upper surface. We also
consider v = 0 for illustration purposes. Three load cases are considered, where
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Figure 4: A homogeneous cantilever beam (E = 1,v = 0) subjected to a bending
load or a shear force at the free-end, modeled by 2 distorted elements.

 
Figure 5: Computed vertical displacement at point A of the homogenous material
cantilever beam subjected to bending load at the free end.



174 Copyright © 2014 Tech Science Press CMC, vol.41, no.3, pp.163-192, 2014

 
Figure 6: Computed bending stress at point B of the homogenous material can-
tilever beam subjected to bending load at the free end.

 
Figure 7: Computed vertical displacement at point A of the homogenous material
cantilever beam subjected to shear load at the free end.
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Figure 8: Computed bending stress at point B of the homogenous material can-
tilever beam subjected to shear load at the free end.

 

Figure 9: A cantilever functionally graded plate (E = 5z,v= 0) subjected to tensile,
bending, or shear load at the free end.
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Figure 10: Computed tensile stress at x = 5,y = 0 for the square plate subjected to
a uniformly distributed tensile load (N = 1/length) at the free end.

 
Figure 11: Computed bending stress at x = 5,y = 0 for the square plate subjected
to a uniformly distributed bending load (M = 1/length) at the free end.
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Figure 12: Computed bending stress at x = 5,y = 0.5 for the square plate subjected
to a uniformly distributed shear load (P = 1/length) at the free end.

 
Figure 13: Computed out-of-plane shear stress at x = 5,y = 1 for the square plate
subjected to a uniformly distributed shear load (P = 1/length) at the free end.
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the free end of the plate is subjected to uniformly distributed tensile, bending, and
shear loads respectively. Analytical solutions for this problem were given in [Kim
and Paulino (2002); Zhong and Yu (2007)]. For the case with tensile or bending
load, the plate is modeled by only one element. And for cases with shear load,
the plate is modeled by a 10× 10 mesh with C0 brick elements. Because of the
exponentially varying material parameters, a 3×3×3 Gauss quadrature is used for
evaluating the stiffness matrix. In Figs. 10-13, computed in-plane normal stresses
and out-of-plane shear stresses are compared to analytical solutions. Almost exact
solution is obtained with the currently developed CEH8 C0 brick elements even
though very coarse mesh is used.

3.3 Laminated plates

Firstly, we consider a thick-section 50-ply ([0˚/90˚]25) laminated 10 inches × 10
inches square plate. Each layer of the laminate is composed of a Graphite/Epoxy
composite, with the following material parameters:

EL = 25×106 psi, ET = 1×106 psi,
GLL = 0.5×106 psi, GLT = 0.2×106 psi,
vLT = 0.25, vT T = 0.25,

where L denotes the fiber’s direction and T denotes the transverse direction.

The thickness of the plate is 1 inch, so that each ply is 0.02 inch in thickness. The
laminated plate is simply-supported at each edge. And it is subjected to a uniform
lateral load q = 1 psi.

We solve this problem using a uniform 10× 10 mesh with CEH8 elements, as
well as using NASTRAN. The comparison between the meshes by CEH8 and by
NASTRAN is given in Fig 14. Because of the large aspect ratio for each layer of
the laminated plate, a very fine mesh is necessary for NASTRAN, with about 1.5
million DOFs and about 2.5 hours of computational time on a regular PC with
i7 CPU. On the contrary, CEH8 only requires a very coarse mesh with 726 DOFs
and about 5 seconds of computational time. Computed in-plane and out-of-plane
stresses by NASTRAN and CEH8 are also shown in Figs. 15-16. It can be clearly
seen that similar computational results are obtained even though CEH8 requires
about 2000 times less computational time as compared to NASTRAN.

We also consider a different plate with a very-high aspect ratio. The same compos-
ite material, the same 50-ply laminate, the same thickness, and the same boundary
conditions and loads are considered. The only difference for the current laminated
plate is that a = b = 1000 inches, so that it has an aspect ratio of 1000. We also
solve this problem with 10×10 CEH8 elements, with computed stresses shown in
Fig. 17. This demonstrates that the current simple eight-node C0 brick element can
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be used to tackle problems of both thick-section and thin-section plates, without
having to resorting to theories of plates and shells.

         

 

(a) 

 

(b) 

 Figure 14: Finite element model for the 50-ply laminated plate (a/h = 10) by (a)
NASTRAN and (b) currently-developed 3D C0 CEH8.

3.4 Laminated shells

In this section, we consider a thick-section 50-ply ([0˚/90˚]25) laminated cylindrical
shell. Each layer of the laminate is composed of the same Graphite/Epoxy material
whose material parameters are given in the last section. The inner radius and outer
radius of the cylindrical shell are rin = 10 inches and rout = 11 inches respectively.
The spans of the cylindrical shell in z direction and in θ direction are l = 10 inches
and ϕ = π

3 respectively. And the cylindrical shell is simply-supported in radial
direction at θ = 0 and θ = π/3.
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 Figure 15: Computed σxx,σyy,σzz at x = y = 4.5 inches, and computed σxz,σyz at
x = y = 1 inch, for the thick-section laminated plate (a/h = 10), with CEH8.
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Figure 16: Computed  , ,xx yy zz    at 4.5 inchesx y  , and computed ,xz yz   at 1 inchx y  , for 

the thick-section laminated plate ( / 10a h  ),  with NASTRAN 

 

Figure 16: Computed σxx,σyy,σzz at x = y = 4.5 inches, and computed σxz,σyz at
x = y = 1 inch, for the thick-section laminated plate (a/h = 10), with NASTRAN.
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Figure 17: Computed  , ,xx yy zz    at 450 inchesx y  , and computed ,xz yz   at 100 inchesx y  , 

for the thin-section laminated plate ( / 1000a h  ),  with CEH8 

 

Figure 17: Computed σxx,σyy,σzz at x = y = 450 inches, and computed σxz,σyz at
x = y = 100 inches, for the thin-section laminated plate (a/h = 1000), with CEH8.
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In this study, we consider two load cases for the current cylindrical shell. In the
first case, the deformation in z direction is constrained, and a radial load of qr =

sin
(

π

ϕ
θ

)
psi is applied to the outer surface of the shell. This is actually a plane

strain problem, the analytical solution of which can be found in [Ren (1987)]. We
solve this problem with a uniform 20× 20 mesh of CEH8 (see Fig. 18), and plot
the computed stresses in Figs. 19-20. Excellent agreements can be found between
the computational results and the analytical solution of [Ren (1987)].

We also consider a second case where the deformation in z direction is not con-
strained. And a bi-directional sinusoidal load qr = sin

(
π

ϕ
θ

)
sin
(

π

l z
)

psi is applied
to the outer surface of the shell. We solve this problem with the same 20×20 mesh
with CEH8 elements, and plot the computed stresses in Fig. 21-22, as a reference
for future studies of laminated shells.

 

Figure 18: Finite element model for the 50-ply laminated shell by 400 CEH8 ele-
ments.

3.5 Z-pin Reinforcements for Laminated Plates

In this section, we study the effect of z-pins on reducing inter-laminar stresses
of laminated plates. The same simply-supported thick 50-ply laminated plate as
studied in section 3.3 is considered here. A uniformly-distributed tensile load (p =
1) is applied to the upper surface of the plate. 100 uniformly distributed steel z-pins
are used to reinforce the laminated plate in the thickness direction. The material
parameters for steel z-pins are E = 29× 106 psi, v = 0.3. The diameter of each
z-pin is 0.2523 inch, so that the volume fraction of z-pins is 5%. We solve this
problem with 10×10 currently-developed 3D C0CEH8 elements, by simply adding
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 Figure 19: Computed bending stress at θ = 19
120 π,z = 5 inches, for the thick-section

laminated shell, with lateral load qr = sin
(

π

ϕ
θ

)
, and with deformation in z direc-

tion constrained to simulate a plane strain case.

 
Figure 20: Computed out-of-plane shear stress at θ = 1

60 π,z = 5 inches , for the

thick-section laminated shell, with lateral load qr = sin
(

π

ϕ
θ

)
, and with deforma-

tion in z direction constrained to simulate a plane strain case.
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Figure 21: Computed bending stress at θ = 19
120 π,z = 4.75 inches , for the thick-

section laminated shell, with lateral load qr = sin
(

π

ϕ
θ

)
sin
(

π

l z
)

psi, and with de-
formation in zdirection unconstrained to simulate a 3D case.
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Figure 22: Computed out-of-plane shear stress at θ = 1

60 π,z = 5 inches , for the

thick-section laminated shell, with lateral load qr = sin
(

π

ϕ
θ

)
sin
(

π

l z
)

psi, and with
deformation in zdirection unconstrained to simulate a 3D case.

Figure 23: A simply-supported 50-ply laminated plate (a/h= 10 ) with 5% volume
fraction of z-pins, modeled by 100 currently-developed 3D C0 CEH8
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Figure 24: Computed out-of-plane shear stresses at x = y = 1 inch, for the simply-
supported thick-section laminated plate, with and without z-pin reinforcements
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Figure 25: Computed out-of-plane normal stress at x = y = 5 inches, for the simply
supported thick-section laminated plate, with and without z-pin reinforcements

the contributing stiffness of z-pins into the stiffness matrix of each CEH8 element:

ke=
∫
Ωe

B∗T DB∗dΩ+
∫
Ωz

B∗T DzB∗dΩ (13)

where Dz represents the elastic stiffness of the z-pin (Ωz) within each element. The
computed out-of-plane normal and shear stresses are shown in Fig. 24-25. It can be
seen that z-pin reinforcements can help reducing inter-laminar stresses of laminated
plates, thus reducing the possibility of structural failure caused by delamination.

4 Conclusion

A locking-alleviated 3D eight-node C0 brick element is developed, following the
previous work of [Dong, El-Gizawy, Juhany and Atluri (2014)]. The present el-
ement independently assumes an 18-parameter linearly-varying Cartesian strain
field. The 18 parameters for the assumed Cartesian strains are related to the Carte-
sian nodal displacements, by enforcing a set of predefined constraints at 18 pre-
defined collocation points. The constraints are rationally defined to capture the ba-
sic kinematics of the 3D 8-node element, and to accurately model each basic defor-
mation mode of tension, bending, shear, and torsion. A scheme of over-integration
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is also used, for evaluating the stiffness matrices for functionally-graded materials
or thick-section laminates with an arbitrary number of laminae. Through several
numerical examples, it is clearly shown that, the current approach can obtain very
accurate solutions for in-plane stresses of FG and laminated structures, even by
using only one CEH8 3D C0 element in the thickness direction. The out-of-plane
normal and shear stress are also accurately recovered using equations of 3D elas-
ticity. By adding the contributing stiffness of z-pins into the stiffness matrix of
CEH8, it is also demonstrated that the presently developed method can be used to
study the effect of using z-pin reinforcements to reduce the inter-laminar stresses
of composite structures, in a very simple and computationally-efficient manner. In
contrast to higher-order or layer-wise theories of plates and shells that are popu-
larized in the current literature, the currently-developed locking-alleviated 8-node
C0 brick element saves the trouble of developing specific theories plates and shells,
but simply uses the widely-available theories of elasticity for the modeling of FG
and laminated structures.
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