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Abstract: A non-linear fracture mechanics based approach is proposed to de-
pict a typical fracture mechanism from initiation to growth, eventually leading to
failure. This concept is developed for a lightly reinforced beam in flexure. The
proposed model integrates the existing methodology of a Stress Intensity Factor
equilibrium equation with the bridging forces developed in concrete cover and re-
bar. The model and solution algorithm outlined presents an elaborate understanding
of the mechanism involved and is significant in predicting the behaviour of flexural
members. The analysis is performed using MATLAB programming. The proposed
approach ensures a maximum tolerable crack length and crack width for flexural
members to prevent a catastrophic failure. Such an approach has the potential to
serve as an analysis and design tool for reinforced concrete components subjected
to normal conditions and towards deciding rehabilitation and strengthening mea-
sures.

Keywords: Fracture model, RCC Beam, Stress intensity factor, Crack propaga-
tion.

1 Introduction

Concrete has been one of the most commonly used building materials all over the
world. However, concrete is a quasi-brittle material with high compressive strength,
low tensile strength and toughness, owing to which, cracks of different size and
shape occur during service and construction processes. This reduces the durabil-
ity of concrete structures and lifetime is shortened. Hence it is necessary to study
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the crack propagation in concrete structures. Fracture mechanics is a rapidly de-
veloping field that has great potential for application to concrete structural design.
Non-linear Fracture Mechanics (NLFM) is largely concerned with the inelastic ef-
fects that are present in the vicinity of a stressed crack tip.

2 Background

In the present economic climate, design of structural components to meet the more
stringent limits of serviceability, ultimate strengths and durability seem to be more
appealing with respect to the sustainability scenario. Ashmawi et al. (1992) de-
veloped a crack control design model to obtain the minimum area of tension steel
for a RC beam in flexure. Jan (1992) related the fracturing phenomena in RC slab
to the flexural stiffness to develop an analytical tool for its design and analysis.
Shah et al. (1995) developed a fracture mechanics approach to predict cracking
of RC members subjected to tension by balancing the rates of change of the strain
energy, the debonding energy, and the sliding energy. By combining the concept of
fictitious crack model and conventional bending theory, Hillerborg (1988), devel-
oped a model by taking into account the effect of compressive strain localization.
Bosco and Carpinteri (1992) proposed a fracture mechanics model for bending of
RC beams where concrete is assumed to be a linear elastic material and steel is
considered to be elastic-plastic. The effect of reinforced steel bars is simulated by a
closing force whose magnitude is determined by a compatibility condition. Baluch
(1992) modified this model to include the nonlinear behaviour of concrete under
compression. Alaee and Karihaloo (2003) developed an analytical model to pre-
dict the moment resistance of the retrofitted beams by taking a fracture mechanics
approach. Raghu Prasad et al. (2005) developed a one-dimensional analysis and
design procedure for reinforced concrete structures, generally based on yield phe-
nomena and the plastic flow of steel in tension and concrete in compression. Wu
et al.(2006) developed an analytical model to predict the effective fracture tough-
ness, KIC of concrete based on the fictitious crack model. Taking into account
Lagrange Multiplier Method, the maximum load, Pmax was obtained, as well as the
critical effective crack length, ac. Roeslar et al.(2007) developed a finite element-
based cohesive zone model using bilinear softening to predict the monotonic load
versus crack mouth opening displacement curve of geometrically similar notched
concrete specimens. Wu et al. (2010) proposed analytical solution to predict the
load-bearing capacity of CFRP sheet-strengthened cracked concrete beams with
reasonable accuracy. Wallin (2013) proposed a novel LEFM based estimate of the
effective stress intensity factor and the effective crack growth at maximum load in a
fracture mechanics test to obtain a simple power law approximation of the effective
K–R curve applicable to the description of not only different size specimens, but
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also specimens with varying geometry.

3 Review on Existing Fracture Models

The existing approaches to the failure of beams in bending are studied. In general, it
is accepted that reinforced concrete beams show distinct fracture characteristics due
to their quasi brittle nature and fail by steel yielding. In particular, lightly reinforced
beams in three-point-bending fail by a single crack across the central cross section,
as opposed to normally reinforced beams in which multiple or distributed cracking
occurs prior to collapse. The question of minimum reinforcement points to,

1. Stability of a system of interacting cracks, which ensures that the cracks will
remain densely spaced, and

2. Avoidance of snapback in bending at a cross-section with a single crack

The first problem controls the spacing of flexure cracks which are critical to control
their width. A certain minimum reinforcement is required to prevent a large crack
spacing, causing a large crack opening. This problem is important for serviceability
under normal loads and small overloads. The second problem which is important
for preventing sudden catastrophic failure without warning, where the resistance
to external moment is majorly taken up by concrete is discussed through various
models as follows.

All LEFM models are rooted in the model first proposed by Carpinteri. Carpinteri’s
model follows the basic superposition approach where the reinforced beam with a
crack of length ′a′ subjected to bending is approximated by a beam subjected to
the bending moment and to the steel force applied remotely from the crack plane.
Next, the steel action is decomposed in a standard way into a bending moment and a
centric force. With this decomposition, the stress intensity factor and the additional
rotation caused by the crack θc is calculated. Carpinteri assumed that the steel
behaviour was elastic-perfectly plastic, and that the crack was closed while the
steel remained elastic. Therefore the crack growth takes place only when the steel
yields and the stress intensity factor reach its critical value simultaneously.

The major limitation of this model is that, due to the simplifications involved in the
derivation, the crack cannot grow while the steel remains elastic and does not slip
whereas in reality it does slip.

Ashmawi et al. (1992) modified Carpinteri’s model to include the nonlinear be-
haviour of concrete under compression and obtained the minimum area of tension
steel for a RC beam in flexure to safely sustain a design moment within the pre-
scribed limit of permissible crack length. This model was based on an iterative
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procedure which was developed by satisfying simultaneously the fracture criterion
of crack growth and the equilibrium condition at incipient fracture. This model
followed the linear variation in strain across the depth of beam, with respect the
stress in the uncracked ligament of concrete. The compressive stress in concrete
was taken in the form of ’Madrid Parabola’ which is similar to the one given in IS
456 2000.

Figure 1: Comparison of Load vs. Crack Length [Ashmawi et al. (1992), Bosco
and Carpinteri (1992)].

Baluch model keeps Carpinteri’s solution after steel yielding, but relaxes the as-
sumption that the crack remains closed while the steel is elastic. It compares the
load-crack length plots for two lightly reinforced notched beams tested in three-
point-bending with Carpinteri’s model. From Figure. 1, it can be noted that the
theoretical predictions by Baluch coincide with that of Carpinteri’s model only af-
ter the yielding of steel. Also the theory predicts a sharp change of slope upon
steel yielding, which happens only in an ideal scenario and not in reality where a
rounded transition happens.

The cohesive crack model has been used by several investigators to analyze lightly
reinforced beams in three-point bending. All the previous models investigated has
established a common point that a single cohesive crack forms at the central section
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while the concrete in the bulk behaves elastically and the steel is elastic-plastic.
Hedadal and Kroon (1991) considered the bond slip and implemented it numeri-
cally. They considered the load-displacement plot obtained from pull-out tests to
include the effect of reinforcement. It is assumed that the steel displacement us is
taken as half the crack opening at the level of reinforcement, ws. This model intro-
duces the action of steel on the concrete as the force Fs concentrated at the surface
of the cohesive crack and treats it as a cohesive force with a load-crack opening
plot as shown in Figure. 2.

Figure 2: Load-Displacement Plot by Hedadal-Kroon (1991).

Planas et al. (1993) model used a different numerical approach incorporating the
effect of the reinforcement by means of internal stresses. This allows considering
the steel concrete interaction to be located within the concrete rather than at the
surface. In the first approach it is analyzed for the case of perfect bond with the
steel concrete interaction represented by two forces acting on the crack faces. The
second case depicts the concentrated force of steel at the centre of gravity of the
bond stresses at a length of Ls/2 and the last case is analyzed by considering the
distributed bond stresses at a length Ls. The analysis shown in Figure. 3 confirms
that perfect adherence implies a very sharp and high peak. However it also turns out
that this peak depends strongly on the width or diameter of the reinforcement. The
reason is that in this approach the steel forces are modeled as a nodal force which
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causes the computational procedures to smear this force roughly over an element
width and thus one never deals with the concentrated force but with the distributed
force.

Figure 3: Load-Displacement Plot by Planas et al. (1993).

4 Proposed Analytical Model

All the existing models shown above depict a general pattern with respect to the
load vs. deflection plots. A similar pattern is observed using the proposed analyti-
cal model. Also this model shows an improved version of crack propagation from
initiation to growth comparing with that of the existing Baluch model (1992).The
mechanism for the proposed NLFM based model for the flexural failure is ex-
plained in Figure. 4, where the free body diagram is shown. It is seen that in
addition to the external moment due to external load, there are two distinct forces
which resist the fracture in the component.

The resisting forces include the concentrated force from rebar Fs and the tensile
strength of the concrete σ s. The non-linear interaction and behaviour between these
two forces are further analysed by considering the following mechanism shown in
Figure. 5.

Perfect bond between steel and concrete is assumed in this mechanism. This mech-
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Figure 4: Free Body Diagram for Flexural Crack Propagation.

Figure 5: Load vs. Deformation plots corresponding to various stages of crack
growth.

anism shows that the cohesive crack growth process in a reinforced concrete beam
follows the stages shown in Figure. 5 (a)-(d).

1. The cohesive zone extends to the cover and may go through the first peak if
the cover is thick enough.

2. The cohesive crack is pinned by the steel and hardening occurs.

3. The tensile strength is reached at points ahead of reinforcement after which
two separate cracks exist at both sides of the reinforcement until the yield
strength is reached in the steel.

4. A softening phase begins, with an open crack extending across the reinforce-
ment.

This mechanism is applied to the three-point bend lightly reinforced beam to inves-
tigate its non-linear fracture behaviour.

The “cohesive law” given by Dugdale (1960) and Barenblatt (1962), which rep-
resents the relation between the crack opening displacement and the traction that
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resists them is applied. The cohesive law operates up to a critical value of the crack
opening displacement where the stress drops to zero. Since the stresses at the strip
yield zone are infinite, there cannot be a singularity at the crack tip (the stress in-
tensity factor at the tip of plastic zone must be equal to zero). Thus the plastic
zone length rp is found from the condition that the stress intensity factors from the
remote tension and closure stress cancel one another.

c = rp =
πK2

I

8σ2
y

The relationship between the geometrical properties of a crack and the bridging
force exerted by steel crossing the crack is quite complicated to formulate a theo-
retical approach. The method for calculating the steel bridging force is taken from
Kaar and Hognestad (1965) formula.

Kaar and Hognestad (1965) modified the previous empirical relations and estab-
lished Kaar-Hognestad formulae to predict crack widths on the tension face of flex-
ural members with high strength deformed bars.

wc = 0.115rtA
1/4
c fs×106

This empirical relation is used in the proposed analytical model to establish the
approximate relation between steel force Fs and the crack opening displacement
wc.

As the stress at the crack tip is finite, the net stress intensity factor at the crack tip
must vanish. Thus leading the crack faces to close smoothly near the tip. The plastic
correction is obtained from the Dugdale-Barenblatt model as discussed earlier and
denoted as zone c near the crack tip which is much smaller than the length of the
crack ′a′.

The net KI , at the crack tip is obtained by superimposing the stress intensity factors
produced at the crack tip by the applied moment (KIM), and the closure forces by
steel (KIS) and concrete (KIConc). The condition of finite stress at crack tip KI is
taken as,

KIM−KIS−KIConc = 0

The negative sign for the last two terms indicates that the stress intensity factor
produced by the applied moment is reduced by the various closure forces.

KIM is calculated using the formula by Guinea et al. (1998) and the rest are calcu-
lated using directly or with integration with the help of relation proposed by Tada
et al. (1985). The stress intensity factor produced at the crack tip by the moment
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Mgiven by Guinea et al. (1998).

KIM =
M

h3/2b
YM (ξ )

where, ξ is a/h and the geometric factor YM (ξ ) for a span to depth ratio of 8 is
taken as,

YM (ξ ) =
6ξ

1
2
(
1.99+0.83ξ −0.31ξ 2 +0.14ξ 3

)
(1−ξ )

3
2 (1+3ξ )

To compute KIConc, the residual stress in concrete is discretized into infinitely many
concentrated forces as shown in Figure.6. Each force is applied over small crack
segments of length dy at a distance y( = y∗ .h) from the bottom of the crack.

Figure 6: Discretization of Cohesive Stresses in Concrete.

The magnitude of each force is formulated as

dFc = σcw(1− y/a)bdy

The stress intensity factor produced by this force can be calculated by the relation
suggested by Tada et al. (1985).

dKIConc =
dFc
h1/2b

YS (ξ ,y∗)dy∗

Finally this relation is integrated over the length of the crack in concrete.

The stress intensity factor produced by the concentrated steel force, FS acting at
β=c/h is given by Tada et al. (1985).

KIS =
FS

h1/2b
YS (ξ ,β )
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where the geometric factor YS (ξ ,β ) for a span to depth ratio of 8 is taken as,

YS (ξ ,β ) =

{
3.52

(
1− β

ξ

)
(1−ξ )

3
2
−

4.35− 5.28β

ξ

(1−ξ )
1
2

+

1.30−0.30
(

β

ξ

)3/2

(
1−
(

β

ξ

)2
)1/2 +0.83− 1.76β

ξ


×
[

1−
(

1− β

ξ

)
ξ

]}
2√
Πξ

For calculating the geometric factor for stress intensity factor due to cohesive forces
in concrete YS (ξ ,y∗), y∗ is replaced with β in the above expression. The theoret-
ical formulations and analysis is performed using the MATLAB software and the
flowchart is given in Figure. 7.

5 Results and Discussion

The proposed model is analysed for reinforced concrete beams for two different
cover thicknesses and for various percentages of steel. Figures. 8-10 show the
various load-deflection plots for the proposed non-linear fracture mechanics based
model for different conditions. Figures. 11-13 show the various load-crack length
plots for the proposed non-linear fracture mechanics based model for different con-
ditions. Table 1 tabulates the distinct values of parameters involved in the analysis
for various conditions.

The results obtained from the analysis show,

1. Non-linear variation with the help of load-displacement plots.

2. Crack initiation and propagation with the help of load-crack length plots.

There is a common peak observed in all the plotted charts from the proposed an-
alytical model which corresponds to a steep increase in the load at the level of
reinforcement. This is due to the theory that when the crack propagates through the
cover and reaches the rebar, the flexural load is taken up solely by the steel bridg-
ing force. Later at consecutive levels there is a gradual increase in load to attain the
peak load level once again. Since such results are not observed in real, this theory
has to be further improved to get a smooth distribution of forces at the composite
level where steel reinforcements are embedded in concrete

It is clearly noted from the load-deflection plots that,

1. A non-linear variation is obtained through the proposed fracture based ap-
proach.
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Figure 7: Flowchart for the Proposed NLFM Model.
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Figure 8: Load-Deflection Plot for 0.785% steel.

Figure 9: Load-Deflection Plot for 1.131% steel.
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Figure 10: Load-Deflection Plot for 1.571% steel.

Figure 11: Load-Crack Length Plot for 0.785% steel.
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Figure 12: Load-Crack Length Plot for 1.131% steel.

Figure 13: Load-Crack Length Plot for 1.571% steel.
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2. There is a smaller linear zone which is followed by a non-linear zone due to
the cracking in concrete cover.

3. The non-linear zone goes upto the peak at which the crack crosses the re-
inforcement, after which a U-shaped zone follows. This corresponds to the
load taken up by the concrete after the crack crosses the reinforcement.

4. This zone ends at a point at which the reinforcement yields after which it is
followed by a long tail. This corresponds to the steel necking and complete
slip in the bond.

It is clearly observed from the load-crack length plots that,

1. The initiation of crack is distinctly seen.

2. A sharp peak is followed after the initiation of crack when the crack propa-
gates and crosses the reinforcement.

3. The post-peak behaviour predicted by Baluch’s model is similar to the pro-
posed model.

4. The tail end in proposed model corresponds to the yielding of steel.

6 Summary

A non-linear fracture mechanics based approach has been developed with detailed
discussions on the mechanisms involved and various theoretical formulations adapted.
The analytical model proposed is used for analysing a reinforced concrete beam
with various percentages of steel. The cover thickness to reinforcement is varied to
evaluate its effect in the contribution to the fracture load.

It is generally seen that as the percentage of steel increases the peak load also in-
creases due to the increase in the stress intensity factor due to steel bridging forces.
The variations in the steel bridging forces are the cause for the difference in the
peak load for a same specimen. The analysis from the proposed model is plot for
the load-deflection vs. load-crack length which show a clear non-linear variation
and with the help of which the distinct values of the parameters involved are eval-
uated. The theoretical values obtained are comparatively lower than the usual field
values and thus improvement in load factors has to be further included along with a
smooth distribution of load at the level of reinforcement. This study can be further
applied to, concrete dams, retaining walls, canals, etc since percentage of steel is
usually low and also for rehabilitation and retrofitting measures.
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