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Mechanical Analysis of 3D Composite Materials by
Hybrid Boundary Node Method

Yu Miao1, Zhe Chen1, Qiao Wang1,2 and Hongping Zhu1

Abstract: In this paper, an improved multi-domain model based on the hybrid
boundary node method (Hybrid BNM) is proposed for mechanical analysis of 3D
composites. The Hybrid BNM is a boundary type meshless method which based on
the modified variational principle and the Moving Least Squares (MLS) approxi-
mation. The improved multi-domain model can reduce the total degrees of freedom
(DOFs) compared with the conventional multi-domain solver. It is very suitable for
the inclusion-based composites, especially for the composites when the inclusions
are solid and totally embedded in the matrix domain. Numerical examples are pre-
sented to verify the improved multi-domain model and the results have shown the
accuracy and efficiency of the improved model.

Keywords: Hybrid boundary node method, mechanical analysis, Composites,
Improved multi-domain model.

1 Introduction

Composite materials become more and more important in industrial projects. There
has been much interest in the modeling and simulations of composites in order to
characterize their mechanical properties for engineering applications. Much effort,
time and expense would be saved if the properties of composites could be pre-
dicted accurately. Many numerical models based on finite element method (FEM)
and boundary element method (BEM) have been developed to simulate composite
materials so far. Hou and Wu (1997) studied a multiscale finite element method
for solving a class of elliptic problems arising from composite materials and flows
in porous media. A numerical homogenization technique based on the FEM with
representative volume element (RVE) was used to evaluate the effective material
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properties with periodic boundary conditions by Kari, Berger, Rodriguez-Ramos
and Gabbert (2007). Segurado and LLorca (2004) developed a new 3D quadratic
interface finite element to simulate fracture in composite materials Hybrid/Mixed
finite elements and mixed methods [Bishay and Atluri (2012); Bishay, Sladek,
Sladek and Atluri (2012); Dong, Alotaibi, Mohiuddine and Atluri (2014); Dong,
El-Gizawy, Juhany and Atluri (2014)] were developed recently and applied for me-
chanical modeling of composites. Eischen and Torquato (1993) applied the BEM
to determine the effective elastic moduli of continuum models of composite ma-
terials. An advanced 3D boundary element method was proposed by Chen and
Liu (2005) for characterizations of composite materials. Liu, Nishimura, Otani,
Takahashi, Chen and Munakata (2005) developed a new BEM for 3D analysis of
fiber-reinforced composites based on a rigid-inclusion model. A new BEM for the
numerical analysis of mechanical properties in 3D particle-reinforced composites
was proposed by Wang and Yao (2005). Yao, Xu, Wang and Zheng (2009) applied
the BEM on the simulation of carbon nanotube (CNT) composites, including the
simulation of elastic, thermal and electric properties. Since the BEM has a dense
matrix in the final system equation, some researchers [Nishimura and Liu (2004);
Liu, Nishimura and Otani (2005); Liu, Nishimura, Otani, Takahashi, Chen and
Munakata (2005); Wang and Yao (2005); Wang and Yao (2008); Yao, Xu, Wang
and Zheng (2009)] coupled the BEM with fast multipole method (FMM) [Rokhlin
(1985)] in order to simulate composites with large scale computation.

Although the FEM and BEM are widely investigated and have been applied in
many areas, they may not be convenient and efficient to simulate composites or
fracture problems [Dong and Atluri (2013a); Dong and Atluri (2013b); Dong and
Atluri (2013c)] because of the cells caused by the mesh procedure. In order to
overcome the difficulty caused by meshing, meshless or meshfree methods are
widely investigated in recent years. Many meshless methods have been proposed
so far, including the smoothed particle hydrodynamics (SPH) method [Gingold and
Monaghan (1977); Lucy (1977)], the reproducing kernel particle methods (RKPM)
[Liu, Jun and Zhang (1995)], the hp-clouds method [Liszka, Duarte and Tworzydlo
(1996)], the element free Galerkin method (EFG) [Belytschko, Lu and Gu (1994)],
the meshless local Petrov-Galerkin (MLPG) approach [Atluri and Zhu (1998)], the
boundary node method (BNM) [Mukherjee and Mukherjee (1997)], the Galerkin
boundary node method (GBNM) [Li and Zhu (2009)], the boundary face method
(BFM) [Zhang, Qin, Han and Li (2009)], the Method of Finite Sphere [De, Hong
and Bathe (2003)], the boundary point interpolation method [Gu and Liu (2002)]
and the hybrid boundary node method (Hybrid BNM) [Zhang and Yao (2001);
Zhang, Yao and Li (2002)].

The Hybrid BNM [Zhang, Tanaka and Matsumoto (2004a); Zhang and Yao (2004)]
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is based on the moving least squares (MLS) approximation and the hybrid displace-
ment variational formula. It not only reduces the spatial dimensions by one like
boundary element method (BEM) or BNM, but also does not require any cells nei-
ther for interpolation of the solution variables nor for the boundary integration. In
fact, the Hybrid BNM requires only discrete nodes located on the surface of do-
main and its parametric representation. The Hybrid BNM has been developed by
Miao et al [Miao, Wang and Yu (2005); Miao and Wang (2006)] and applied to
some other areas, such as elastodynamics problems [Miao, Wang, Liao and Zheng
(2009)], Helmholtz problems [Miao, Wang and Wang (2009)] and multi-domain
problems [Wang, Zheng, Miao and Lv (2011)].

The meshless methods are very suitable for simulation of composite materials and
some literatures have reported relative work. Zhang et al. [Zhang, Tanaka and Mat-
sumoto (2004b); Zhang and Tanaka (2008)] simulated the CNT based composites
by Hybrid BNM based on a simplified model. Singh, Tanaka and Endo (2007) ap-
plied the EFG in the thermal analysis of CNT based composites. Wang, Miao and
Zhu (2013a) used a fast multipole Hybrid BNM (FM-HBNM) to simulate the com-
posites in 3D elasticity. There are mainly two models while simulating composites
by Hybrid BNM so far. One is the multi-domain solver [Wang, Zheng, Miao and
Lv (2011); Wang, Miao and Zhu (2013a)], which is based on the continuity and
equilibrium conditions across the interface. The other one is the simplified ap-
proach [Zhang, Tanaka and Matsumoto (2004b)], which treats the CNTs as heat
superconductors. The multi-domain solver can be applied to general composites
since no assumption is added and the unknown vectors for each material are as-
sembled in the final system equation. The simplified approach is very suitable for
the case when the inclusions are heat superconductors or rigid bodies and it can re-
duce the total degrees of freedom (DOFs) substantially, however, it is not suitable
to simulate general composites as multi-domain solver.

In this paper, an improved multi-domain model for 3D composites with inclusions
in elasticity problems base on Hybrid BNM is proposed. It has already been applied
to thermal analysis of composites [Wang, Miao and Zhu (2013b)] successfully and
we extend it to elasticity problems in this paper. In the improved model, no other
assumption is added and it can be applied to general case like the multi-domain
solver. Much important, it can reduce the total DOFs in the final system equation
as the simplified approach, and we will find out only the matrix domain is needed
to be modeled in some special case.

This paper is organized as follows. The hybrid BNM is introduced in the second
section and the multi-domain solver for 3D elasticity problems is reviewed in the
third section. The formulation for the improved multi-domain model is derived in
the fourth section. Then numerical examples are given in the fifth section.



52 Copyright © 2014 Tech Science Press CMC, vol.43, no.1, pp.49-73, 2014

2 The single-domain Hybrid BNM for 3D elasticity problems

In this section, the Hybrid BNM for 3D elasticity problems [Miao and Wang (2006)]
is reviewed. The Hybrid BNM is based on a modified variational principle. In 3D
elasticity problems, functions in the modified variational principle that assumed to
be independent are: displacements ũl and tractions t̃l on the boundary and displace-
ments ul inside the domain. Consider a domain Ω enclosed by Γ = Γu +Γt with ūl
and t̄l are the prescribed displacements and tractions, respectively.

The displacements ũ and tractions t̃ at the boundary Γ are approximated by the
MLS approximation [Zhang and Yao (2004); Miao and Wang (2006)]

ũ(s) =
N

∑
J=1

ΦJ(s)ûJ (1)

t̃(s) =
N

∑
J=1

ΦJ(s)t̂J (2)

where N is the number of nodes located on the surface ûJ and t̂J are nodal values,
and ΦJ(s) is the shape function of the MLS approximation, corresponding to node
sJ .

The u and t inside the domain can be approximated by fundamental solutions as

u =


u1
u2
u3

=
N

∑
J=1

 uJ
11 uJ

21 uJ
31

uJ
12 uJ

22 uJ
32

uJ
13 uJ

23 uJ
33


xJ

1
xJ

2
xJ

3

 (3)

t =


t1
t2
t3

=
N

∑
J=1

 tJ
11 tJ

21 tJ
31

tJ
12 tJ

22 tJ
32

tJ
13 tJ

23 tJ
33


xJ

1
xJ

2
xJ

3

 (4)

where uJ
l j = ul j(sJ,Q) and tJ

l j = tl j(sJ,Q) are the fundamental solutions xJ
l are un-

known parameters. For 3D elasticity problems, the fundamental solutions are

uJ
l j =

−1
16πr(1− v)µ

{(3−4v)δl j− r,lr, j} (5)

tJ
l j =

−1
8π(1− v)r2 {[(1−2v)δl j +3r,lr, j]

∂ r
∂n

+(1−2v)(r,ln j− r, jnl)} (6)

where r = r(sJ,Q) and Q is the field point while sJ is the source point.

As the modified variational principle holds both in the whole domain and any sub-
domain, the local sub-domain around each node can be taken into consideration.
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Then the following set of equations, expressed in matrix form, are given as [Zhang
and Yao (2004); Miao and Wang (2006)]

Ux = Hû (7)

Tx = Ht̂ (8)

where

UIJ =
∫

ΓI

 uJ
11 uJ

21 uJ
31

uJ
12 uJ

22 uJ
32

uJ
13 uJ

23 uJ
33

hI(Q)dΓ (9)

TIJ =
∫

ΓI

 tJ
11 tJ

21 tJ
31

tJ
12 tJ

22 tJ
32

tJ
13 tJ

23 tJ
33

hI(Q)dΓ (10)

HIJ =
∫

ΓI

 ΦJ(s) 0 0
0 ΦJ(s) 0
0 0 ΦJ(s)

hI(Q)dΓ (11)

xT = [x1
1,x

1
2,x

1
3, · · · ,xN

1 ,x
N
2 ,x

N
3 ] (12)

ûT = [û1
1, û

1
2, û

1
3, · · · , ûN

1 , û
N
2 , û

N
3 ] (13)

t̂T = [t̂1
1 , t̂

1
2 , t̂

1
3 , · · · , t̂N

1 , t̂
N
2 , t̂

N
3 ] (14)

where hI(Q) is a weight function, ΓI is a regularly shaped local region around node
sI in the parametric representation space of the boundary surface. Therefore, the
integrals in Equations (9), (10) and (11) can be computed without using boundary
elements.

For a general problem, either ũl or t̃l can be known at each node on the boundary
and by rearranging Equations (7) and (8), a final algebraic equation in terms of x
only can be obtained as below:

Ax = d (15)

For the node sI , if ũl is known, select the correspond row in U to A, otherwise,
select the correspond row in T to A, and the corresponding term of d comes from
the matrix-vector product of Hû or Ht̂. Then the unknown vector x is obtained by
solving the final algebraic equation. The nodal values û and t̂ on the boundary can
be computed by the back-substitution of x into Equations (7) and (8)
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3 The multi-domain Hybrid BNM for 3D elasticity problems

In this section, the multi-domain Hybrid BNM for 3D elasticity problems [Wang,
Zheng, Miao and Lv (2011)] is introduced. Consider a problem with n sub-domains
and Ni nodes are distributed on the bounding surface of subdomain-i. Then for each
sub-domain, we can have the following equations from Equations (7) and (8)

Uixi= Hiûi (16)

Tixi= Hit̂i (17)

where superscript i indicates the subdomain i.

The boundary nodes of subdomain-i can be sorted into n groups according to the lo-
cations of the nodes. Group i contains nodes that belong exclusively in subdomain-i
and group j contains nodes that are on the interface with subdomain- j, where j is
from 1 to n and j 6= i. Accordingly, Equations (16) and (17) are partitioned into
blocked matrix equations as

Ui
11 Ui

12 · · · Ui
1n

Ui
21 Ui

22 · · · Ui
2n

...
...

. . .
...

Ui
n1 Ui

n2 · · · Ui
nn




xi
1

xi
2
...

xi
n

=


Hi

1ûi
1

Hi
2ûi

2
...

Hi
nûi

n

 (18)


Ti

11 Ti
12 · · · Ti

1n
Ti

21 Ti
22 · · · Ti

2n
...

...
. . .

...
Ti

n1 Ti
n2 · · · Ti

nn




xi
1

xi
2
...

xi
n

=


Hi

1t̂i
1

Hi
2t̂i

2
...

Hi
nt̂i

n

 (19)

where the superscript i denotes the subdomain-i; the subscript k=1, 2,. . . n denotes
that the prescribed quantities are associated with the nodes in group k. The double
subscripts i j, i and j = 1,2, ...n is used to convey the U T in Equations (16) and
(17), by which the prescribed coefficient matrix blocks are computed, belong to
group i and j, respectively.

At the interfaces between sub-domain i and j, the following continuity conditions
exist. For the displacements{

u j
i

}
=
{

ui
j
}

(20)

and for the tractions{
t j
i

}
=−

{
ti

j
}

(21)
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Consider a problem with two sub-domains, then for subdomain-1, we can have[
U1

11 U1
12

U1
21 U1

22

]{
x1

1
x1

2

}
=

{
H1

1û1
1

H1
2û1

2

}
(22)

[
T1

11 T1
12

T1
21 T1

22

]{
x1

1
x1

2

}
=

{
H1

1t̂1
1

H1
2t̂1

2

}
(23)

For subdomain-2, we can have[
U2

11 U2
12

U2
21 U2

22

]{
x2

1
x2

2

}
=

{
H2

1û2
1

H2
2û2

2

}
(24)

[
T2

11 T2
12

T2
21 T2

22

]{
x2

1
x2

2

}
=

{
H2

1t̂2
1

H2
2t̂2

2

}
(25)

Using Equations (20) and (21), Equations (22), (23), (24) and (25) can be assem-
bled to an overall matrix equation as

A1
11 A1

12 0 0
U1

21 U1
22 −U2

11 −U2
12

T1
21 T1

22 T2
11 T2

12
0 0 A2

21 A2
22




x1
1

x1
2

x2
1

x2
2

=


d1

1
0
0
d2

2

 (26)

where Ai
i j and di

i are formed by merging Ui
i j and Ti

i j, Hi
iûi

i and Hi
it̂i

i, respectively,
according to the known boundary conditions.

If use ai j stand for Ui
jk and Ti

jk, xi stand for xi
j, respectively, and ignore the minus

symbol Equation (26) can be rewritten as below a11
a12 a21

a22

{ x1
x2

}
=


d1

1
0
d2

2

 (27)

Similarly, for three subdomains, the final equation for the entire domain can be
written as

a11
a12

a13

a21
a22

a23

a31
a32
a33




x1
x2
x3

=



d1
1

0
d2

2
0
0
d3

3


(28)
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Equation (28) can be rewritten as
A2

a13
a23

a31
a32
a33




x1
x2
x3

=


D2

d3
3

 (29)

where A2 stands for the coefficient matrix of the two subdomains in the left hand
side of Equation (27) and D2 stands for the vector in the right hand side of Equation
(27). Then for n subdomains, the final equation for the entire domain can be written
as

An−1
a1n

. . .

an1
...

ann




x1
x2
...

xn

=


Dn−1

dn
n

 (30)

where An−1 and Dn−1 stand for the coefficient matrix and right hand vector of the
n-1 subdomains.

The unknown vector x can be solved by the final matrix equation, and then by back-
substitution x to matrix equations for each sub-domain, the boundary unknowns can
be obtained either on the interfaces or the external boundary surfaces.

4 Improved multi-domain Hybrid BNM for 3D elasticity problems

For composite materials, the multi-domain solver introduced in section 3 is a natu-
ral way to be chosen. Now consider a matrix with inclusions as showed in Figure
1(a). S0 is the sub-domain of matrix and S1,S2, ...,Sn are sub-domains of the inclu-
sions. For the matrix, Equations (18) and (19) can be rewritten as


U0

00 U0
01 · · · U0

0n
U0

10 U0
11 · · · U0

1n
...

...
. . .

...
U0

n0 U0
n1 · · · U0

nn




x0
0

x0
1
...

x0
n

=


H0

0û0
0

H0
1û0

1
...

H0
nû0

n

 (31)


T0

00 T0
01 · · · T0

0n
T0

10 T0
11 · · · T0

1n
...

...
. . .

...
T0

n0 T0
n1 · · · T0

nn




x0
0

x0
1
...

x0
n

=


H0

0t̂0
0

H0
1t̂0

1
...

H0
nt̂0

n

 (32)
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Figure 1: (a) The model of matrix with inclusions; (b) Three kinds of inclusions.

where scripts 0 and k, k=1,. . . , n indicate the subdomain of matrix and the k-th
inclusion, respectively.

Three types of inclusions can be considered as shown in Figure 1(b) and the inclu-
sion type 2 is totally in the matrix and it is hollow. Then for the general case, the
system equations for the k-th inclusion domain can be written as

[
Uk

00 Uk
0k

Uk
k0 Uk

kk

]{
xk

0
xk

k

}
=

{
Hk

0ûk
0

Hk
kûk

k

}
(33)

[
Tk

00 Tk
0k

Tk
k0 Tk

kk

]{
xk

0
xk

k

}
=

{
Hk

0t̂k
0

Hk
k t̂k

k

}
(34)

If the inclusions are solid and totally embed in the matrix (the inclusion type 3 in
Figure 1(b)), then Equations (33) and (34) can be rewritten as

Uk
00xk

0 = Hk
0ûk

0 (35)

Tk
00xk

0 = Hk
0t̂k

0 (36)
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One can obtain the final system equation for the whole domain as

A0
00 A0

01 · · · A0
0n 0 0 0 0 0

U0
10 U0

11 · · · U0
1n −U1

00 −U1
01 0 0 0

...
...

. . .
... 0 0

. . . 0 0
U0

n0 U0
n1 · · · U0

nn 0 0 0 −Un
00 −Un

0n
T0

10 T0
11 · · · T0

1n T1
00 T1

01 0 0 0
...

...
. . .

... 0 0
. . . 0 0

T0
n0 T0

n1 · · · T0
nn 0 0 0 Tn

00 Tn
0n

0 0 0 0 A1
00 A1

01 0 0 0

0 0 0 0 0 0
. . . 0 0

0 0 0 0 0 0 0 An
00 An

0n





x0
0

x0
1
...

x0
n

x1
0

x1
1
...

xn
0

xn
n



=



d0
0

0
...
0
0
...
0
d1

1
...

dn
n



(37)

Equation (37) is the conventional multi-domain solver for the composites of matrix
with inclusions. All the unknown parameters x about the matrix and inclusions are
solved in this equation.

Now we derive the improved formulation for composites with inclusions, which is
based on the multi-domain solver.

From Equation (31) one can have

H0
k û0

k = U0
k0x0

0 +U0
k1x0

1 + · · ·+U0
knx0

n =
n

∑
j=0

U0
k jx

0
j (38)

From Equation (33) one can have{
xk

0
xk

k

}
=

[
Uk

00 Uk
0k

Uk
k0 Uk

kk

]−1{ Hk
0ûk

0
Hk

kûk
k

}
=

[
AU BU

CU DU

]{
Hk

0ûk
0

Hk
kûk

k

}
(39)

where[
AU BU

CU DU

]
=

[
Uk

00 Uk
0k

Uk
k0 Uk

kk

]−1

(40)

Then from Equation (39) one can obtain

xk
0 = AU Hk

0ûk
0 +BU Hk

kûk
k (41)

And from Equation (33) one can obtain

Hk
kûk

k = Uk
k0xk

0 +Uk
kkxk

k (42)
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At the interface between the matrix and inclusion, both the displacement and trac-
tion must be continuous. If we use the same set of nodes distributed on the interface,
we can obtain

Hk
0ûk

0 = H0
k û0

k (43)

Hk
0t̂k

0 =−H0
k t̂0

k (44)

Substituting Equations (42) and (43) into Equation (41) and using Equation (38),
one can have

xk
0 =

[
I−BU Uk

k0

]−1
(AU

n

∑
j=0

U0
k jx

0
j +BU Uk

kkxk
k) (45)

where I is the identity operator.

Using the boundary conditions, for the matrix domain one can have
A0

00 A0
01 · · · A0

0n
T0

10 T0
11 · · · T0

1n
...

...
. . .

...
T0

n0 T0
n1 · · · T0

nn




x0
0

x0
1
...

x0
n

=


d0

0
H0

1t̂0
1

...
H0

nt̂0
n

 (46)

For the k-th inclusion domain one can have[
Tk

00 Tk
0k

Ak
k0 Ak

kk

]{
xk

0
xk

k

}
=

{
Hk

0t̂k
0

dk
k

}
(47)

Submitting Equation (45) into Equation (47) and using Equation (44) we can obtain

−H0
k t̂0

k = Tk
00

[
I−BU Uk

k0

]−1 AU
n
∑
j=0

U0
k jx

0
j

+(Tk
00

[
I−BU Uk

k0

]−1 BU Uk
kk +Tk

0k)x
k
k

(48)

dk
k = Ak

k0

[
I−BU Uk

k0

]−1 AU
n
∑
j=0

U0
k jx

0
j

+(Ak
k0

[
I−BU Uk

k0

]−1 BU Uk
kk +Ak

kk)x
k
k

(49)

Then by assembling Equations (48) and (49) into Equation (46) one can obtain the
final system equation as

A0
00 A0

01 · · · A0
0n 0 0 0

F0
10 F0

11 · · · F0
1n G1 0 0

...
...

. . .
... 0

. . . 0
F0

n0 F0
n1 · · · F0

nn 0 0 Gn

Q0
10 Q0

11 · · · Q0
1n R1 0 0

...
...

. . .
... 0

. . . 0
Q0

n0 Q0
n1 · · · Q0

nn 0 0 Rn





x0
0

x0
1
...

x0
n

x1
1
...

xn
n


=



d0
0

0
...
0
d1

1
...

dn
n


(50)
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where

F0
k j = T0

k j +Ek
1U0

k j (51)

Gk = Ek
2Uk

kk +Tk
0k (52)

Q0
k j = Ek

3U0
k j (53)

Rk = Ek
4Uk

kk +Ak
kk (54)

Ek
1 = Tk

00

[
I−BU Uk

k0

]−1
AU (55)

Ek
2 = Tk

00

[
I−BU Uk

k0

]−1
BU (56)

Ek
3 = Ak

k0

[
I−BU Uk

k0

]−1
AU (57)

Ek
4 = Ak

k0

[
I−BU Uk

k0

]−1
BU (58)

For the case when the inclusions are solid and totally embed in the matrix, Equation
(50) can be rewritten as

A0
00 A0

01 · · · A0
0n

D0
10 D0

11 · · · D0
1n

...
...

. . .
...

D0
n0 D0

n1 · · · D0
nn




x0
0

x0
1
...

x0
n

=


d0

0
0
...
0

 (59)

where

D0
k j = T0

k j +CkU0
k j (60)

Ck = Tk
00

[
Uk

00

]−1
(61)

If the inclusions are of the same size and material, the corresponding incidence
matrices Ck are also identical. Therefore, Ck is required to be formed only once. If
the inclusions are of the same shape, Ck can also be calculated only once because
of the similar relationship between inclusion phases of different size and material.
If we assume the Poisson’s ratios of the inclusions are the same, one can have the
following relationship

Ck+1 =
Ek+1

Ek
rk

rk+1 Ck (62)

where Ek and rk are Young’s module and radius of the k-th inclusion, respectively.
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In Equations (50) and (59), the unknowns on the interfaces are assembled only once
compared with Equation (37), thus, the total unknowns in the final system equation
can be reduced by the improved multi-domain solver. In equation (50), if the in-
clusions are of the same shape and the same boundary condition, Equations (52),
(54), (55), (56), (57) and (58) can also be computed once and the computational
resource, both the time and memory required, can be saved further. Compared with
the simplified approach proposed by Zhang, Tanaka and Matsumoto (2004b), no
assumption is needed and it can be applied to analyze more general composites.
The improved multi-domain solver is also very suitable to couple with FMM for
large scale computation.

5 Numerical examples

The proposed technique has been implemented in C++ program. Three numerical
examples are studied in this section. For the purpose of error estimation, a formula
is defined as

e =
1
|u|max

√
1
N

N

∑
i=1

(u(e)i −u(n)i )2 (63)

where u(e)i and u(n)i refer to the exact and numerical solutions respectively and |u|max
is the maximum value of u over N nodes.

In all the examples, Gaussian elimination method is used to solve the final system
equations and both the multi-domain solver and improved multi-domain solver are
used.

5.1 Validation of the method

In this example, a hollow sphere shown in Figure 2 is considered, the outer radius
of the sphere is 10 and the inner radius is 1, the Young’s module E = 1.0 and
the Poisson’s ratio v = 0.25 Direchlet boundary conditions on all the surfaces are
imposed, according to the following exact solution:

ux =
2x+ y+ z

2
(64)

uy =
x+2y+ z

2
(65)

uz =
x+ y+2z

2
(66)
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Figure 2: A hollow sphere with three subdomains.

In order to apply the multi-domain and improved multi-domain solver, the hollow
sphere is divided into three subdomains with the same materials, see Figure 2. For
the subdomain 2, the outer radius is 2 and the inner radius is 1. For subdomain 3,
the radius is 2 and its center located at point (6, 0, 0).

In the model, the spherical face is considered as one face and all the spherical
faces have the same number of nodes distributed on them. Several different node
arrangements are used to show the efficiency and accuracy of the technique. Figure
3 shows the relative error of ux computed by the nodes on line (1, 0, 0) to (10, 0, 0).
From Figure 3 one can observe that the improved multi-domain solver has the same
precision as the conventional multi-domain solver. The CPU time for solving the
final system equation is shown in Figure 4 and we can observe that the improved
multi-domain is more efficient than the conventional multi-domain solver since it
can reduce the total DOFs in the final system equation.

5.2 Cube with eight spherical inclusions

A cube with eight spherical inclusions shown in Figure 5 is considered in this exam-
ple. The parameters of the cube are: the length a=2, the Young’s module E = 1.0,
Poisson’s ratio v = 0.25. The cube is roller supported on the left end and a uni-
form distributed traction is loaded on outer normal direction of the right end. These
boundary conditions allow us to estimate the effective Young’s module in the axial
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direction as

Ee f f =
σL
∆u

(67)

where Ee f f is the estimated effective Young’s module, L is the length, σ is average
stress of the two ends and ∆u is the difference of displacement between the two
ends.

Two models are considered. In the first model, the parameters of the inclusions are:
the radius r=0.2 and the Young’s module Ein changes from 1 to 10. In the second
model, the Young’s module Ein = 8 and the radius of the inclusion changes from 0.1
to 0.4. In all the models, the Poisson’s ratio v = 0.25, 600 nodes are distributed on
the outer faces and 172 nodes are distributed on each interface. Table 1 shows the
information of total unknowns in the final system equation and the computational
time. From Table 1, one can indicate that the number of DOFs in the improved
multi-domain solver is reduced to nearly one half of that in the conventional multi-
domain solver. Thus, the improved multi-domain solver is more efficient and From
Table 1, one can observe that the CPU time has been saved much by improve solver.
Figure 6 and Figure 7 show the effective Young’s modules while the Young’s mod-
ule of the inclusion and radius of the inclusion changes, respectively. In order to
show the validation of the method, the Mori-Tanaka method [Karris (1989)] is also
used. From Figure 6 and Figure 7 one can observe that the results obtained by the
improved multi-domain solver and conventional multi-domain solver are the same
and both of them have good agreement with the Mori-Tanaka method. It should be
noted that Mori-Tanaka method can only be used to estimate the effective module
of composite for some special cases, it cannot give the field of stress or displace-
ment under boundary conditions. However, by applying numerical methods like
introduced in this paper, these aims can be easily achieved.

If the matrix has more inclusions, the Hybrid BNM can also be applied easily.
However, without fast algorithms the technique cannot solve large scale problems
[Wang, Miao and Zheng (2010); Wang, Miao, Zhu and Zhang (2012); Wang, Miao
and Zhu (2013a); Wang, Miao and Zhu (2013c); Miao, Wang, Zhu and Li (2014)]

Table 1: Time information of cub with 8 spherical inclusions.

Solver type Total unknowns in the final
equation

CPU time (s)

Multi-domain solver 10056 610
Improved multi-domain solver 5928 124
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Figure 5: Model of cub with 8 uniformly distributed spherical inclusions.

Figure 6: Effective Young’s module with Young’s module of the inclusion.
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Figure 7: Effective Young’s module with radius of the inclusion.

5.3 A square RVE

A square RVE model with an inclusion embedded is considered in this example.
The geometry is shown in Figure 8. The parameters of the matrix are: the length
L=100, the width W = 20, the height H = 20, the Young’s module Ematrix = 1.0 and
the Poisson’s ratio v = 0.25. The RVE is roller supported on one end and applied
with a uniform normal displacement uy = 100 on the other end. The parameters of
the inclusion are: the length Lc=50, the outer radius r=5, the thickness t=0.4 and
the Poisson’s ratio v = 0.25. If the Young’s module of the inclusion is supposed
to be much higher than the matrix, this model can be considered as a CNT based
composites.

The ratio of the Young’s modules between the inclusion and the matrix is defined as
c = Einclusion/Ematrix. Numerical results for the displacements at lines x = 0,z = 4.8
(through the inclusion) and x = 0,z = 5.1 (very near the inclusion) with different
values of ratio c are presented in Figure 9. In this example, we use MS and IMS
denote the multi-domain solver and improved multi-domain solver, respectively.
The results obtained by the multi-domain solver and improved multi-domain solver
are the same. From Figure 8, we can observe that the displacements at the two lines
are very close with a given ratio c. The difference of the displacements within the
inclusion (r=4.8) and near the inclusion (r=5.1) becomes smaller as the increase of
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 Figure 8: A square RVE model.

ratio c. The displacements become almost constant along the length of the inclusion
when c=1000 and the results are very similar to a RVE with rigid inclusion.

Figure 10 shows the displacements at line x = 0,z = 4.8 with four different thick-
ness t of the inclusion while c=200. While t = 5.0, the inclusion is solid and only
its outer face is needed. In Figure 10, we can observe that thickness of the inclusion
has little influence on the displacements at the evaluated line. One of the reasons
is that the inclusion is nearly a rigid body in this case and the displacements of the
inclusion is the same. Figure 11 shows the effective Young’s module of the RVE
with various thickness t and ratio of the Young’s modules between the inclusion
and the matrix. From Figure 11 one can observe that the difference of the effective
Young’s modules becomes littler and littler as the increase of the ratio c and the
effective Young’s modules become very close for the various thickness t when the
ratio c is more than 6000. From this example we can find out that the thickness of
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the inclusion has little influence on the effective Young’s module of the RVE when
the Young’s module of the inclusion is much higher than the matrix, and only the
outer face of the inclusion is needed be modeled, which can reduce much resource
further.
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Figure 9: Displacements along the axial lines (t=0.4).
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Figure 11: Effective Young’s module of the RVE with various t and c.

6 Conclusions

In this paper, an improved multi-domain solver is proposed for the mechanical
analysis of composites with inclusions by the Hybrid BNM. Continuity conditions
are used in the improved multi-domain solver as the conventional multi-domain
solver. The unknown vectors on the interfaces are needed to be assembled only
once in the final system equation of improved solver, thus, the computational time
and memory required can be reduced.

The improved multi-domain model proposed can be applied to more general com-
posites than the simplified approach, and especial suitable for the composites when
the inclusions are solid and totally embedded in the matrix domain. Composites
which similar as rigid inclusion based composites are also discussed in the paper
and we can find out that the thickness of the rigid inclusion has little influence on
the effective Young’s module.

The improved multi-domain solver is very suitable for large-scale computation and
coupling it with fast algorithm, such as FMM is a subject of future research.

The difference between the numerical and experimental results has been observe in
the work of Yao, Xu, Wang and Zheng (2009) It means that the numerical method
has to be improved by considering more practical microstructural factors, includ-
ing the imperfect interface conditions and thermal contact between fibers. These
researches will be investigated in the future.
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