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Analytical Treatment of the Isotropic and Tetragonal
Lattice Green Functions for the Face-centered Cubic,

Body-centered Cubic and Simple Cubic Lattices

B.A. Mamedov1

Abstract: In this paper, we propose an efficient method to calculate the isotropic
and tetragonal lattice Green functions for the face-centered cubic (FCC), body-
centered cubic (BCC) and simple cubic (SC) lattices. The method is based on
binomial expansion theorems, which provide us with analytical formulae through
basic integrals. The resulting series present better convergence rates. Several accel-
eration techniques are combined to further improve the efficiency of the established
formulas. The obtained results for the lattice Green functions are in good agree-
ment with the known numerical calculation results.
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1 Introduction

The lattice Green functions plays a decisive role in the theory of solid state physics
[Economou (1983); Morita and Horiguchi (1972)]. These functions arise not only
in their own right, but are also central to the calculation of the lattice statistical
problems [Berlin and Kac (1952); Economou (1983); Kobelev, Kolomeisky and
Fisher (2002); Montroll and Weiss (1965); Tewary and Read (2004); Tewary and
Vaudin (2011); Yakhno and Ozdek (2012)]. In the literature, various efficient
methods have been proposed for improving the evaluation of the lattice Green
functions [Economou (1983); Berlin and Kac (1952); Kobelev, Kolomeisky and
Fisher (2002); Montroll and Weiss (1965); Tewary and Read (2004); Tewary and
Vaudin (2011); Yakhno and Ozdek (2012)]. In literature, most of the studies on
lattice functions are based on elliptic integral and recurrence relations [Borwein,
Glasser, McPhedran, Wan and Zucker (2013); Inoue (1974); Iwata (1969); Morita
and Horiguchi (1971); Morita (1975)]. Unfortunately, for most of these purely
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elliptic integrals and recurrence relations, there are some limitations in their appli-
cability despite the huge development in the computational methods. The repro-
duce properties of the recurrence relation schemes can lead to a decrease in the
accuracy of calculation results. Therefore, it is desirable to use the binomial ex-
pansion theorems from which the problems of evaluation of lattice Green functions
do not arise. Simple yet accurate analytical formulae have proposed to compute
anisotropic lattice Green functions for FCC, BCC and SC lattices [Guseinov and
Mamedov (2007); Mamedov and Askerov (2008)]. Notice that, the obtained simple
analytical formulas for the lattice Green functions are completely general for t ≥ 3.

In the present article we propose the series expression formulas occur as one infi-
nite sum and in terms of In basic integral, which make possible the fast and accurate
evaluation of the isotropic and tetragonal lattice Green functions. This simplifica-
tion and the use of the computer memory for calculation of binomial coefficients
may extend the limits of large arguments to the calculators and result in speedier
calculation, should such limits be reached in practice. The new analytical approach
for evaluating the isotropic and tetragonal lattice Green functions for FCC, BCC
and SC lattices is conceptually simpler than existing methods in the literature.

2 Definition and basic formulas

The isotropic and tetragonal lattice Green functions are defined as

G(t, l,m,n) =
1

π3

π∫
0

π∫
0

π∫
0

cos lxcosmycosnz
t−ω(x,y,z)

dxdydz (1)

where t is a complex number, which is described in terms of energy in solid state
physics, and (l,m,n) is a set of integers such that the sum l +m+ n is an even
number [Morita (1975)]. γ is the parameter which is unity for the isotropic lattice.
If γ 6= 1 lattice may be called tetragonal lattice [Morita (1975)]. The parameters
ω(x,y,z) are defined as follows:

for FCC lattice

ω(x,y,z) = γ cosxcosy + cosycosz+ coszcosx (2)

for BCC lattice

ω(x,y,z) = cosxcosycosz (3)

for SC lattice

ω(x,y,z) = cosx+ cosy+ γ cosz (4)
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ω(x,y,z) = 2cosxcosy+ γ cosz (5)

In order to establish expressions for the lattice Green functions we shall first con-
sider well known binomial expansion theorems for an arbitrary real or complex n
and |x|> |y| [Gradshteyn and Ryzhik (1980)],

(x± y)n = lim
N′→∞

N′

∑
m=0

(±1)m Fm(n)xn−m ym. (6)

Here N is the upper limit of summations andFm(n) are binomial coefficients defined
by

Fm(n) =

{
n(n−1)...(n−m+1)

m! for integer n
(−1)mΓ(m−n)

m!Γ(−n) for noninteger n
(7)

We notice that for m < 0 the binomial coefficient Fm (n) in Eq. (7) is zero and the
positive integer n terms with negative factorials do not contribute to the summation.
Taking into account Eq. (6) we obtain for the function (t−ω)−1 occurring in Eq.
(1) the following series expansion relations:

(t−ω)−1 =
∞

∑
i=0

Fi(−1)×
{

(−1)it−1−iω i for ω ≤ t ≤ ∞

(−1)i+1ω−1−it i for 0≤ t ≤ ω
(8)

Thus, substituting Eq. (8) into Eq. (1), we obtain the series expansion formulas for
the isotropic and tetragonal lattice Green functions in terms of binomial coefficients
and basic integrals, respectively

for FCC lattice

G(t, l,m,n) =
1

π3 lim
N→∞

N

∑
i=0

(−1)iFi(−1)t−1−i×
i

∑
j=0

Fj(i)γ i− j
j

∑
k=0

Fk( j)

× Ji− j+k(l)Ji−k(m)J j(n) for t ≥ 3 ,

(9)

for BCC lattice

G(t, l,m,n) =
1

π3 lim
N′→∞

N′

∑
i=0

(−1)iFi(−1)t−1−i× Ji(l)Ji(m)Ji(n) for t ≥ 1, (10)

for SC lattice

G(t, l,m,n) =
1

π3 lim
M′→∞

M′

∑
i=0

(−1)iFi(−1)t−1−i×
i

∑
j=0

Fj(i)2i− j
γ

jJi− j(l)

× Ji− j(m)J j(n) f or t ≥ 3,

(11)
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G(t, l,m,n) =
1

π3 lim
M→∞

M

∑
i=0

(−1)iFi(−1)t−1−i×
i

∑
j=0

Fj(i)
j

∑
k=0

Fk( j)γkJi− j(l)

× J j−k(m)Jk(n) f or t ≥ 3

(12)

By using the proposed method, we can obtain alternative series formulas for lattice
Green functions, respectively:

for FCC lattice

G(t, l,m,n) =
1

π3 lim
N→ ∞

L→ ∞

N

∑
i=0

(−1)iFi(−1)t−1−i×
L

∑
j=0

(−1) jFj(−1− i)γ jt− j
i

∑
k=0

Fk(i)

× J j+k(l)J j+i−k(m)Ji(n) for t≥ 3
(13)

for SC lattice

G(t, l,m,n) =
1

π3 lim
N→ ∞

L→ ∞

N

∑
i=0

(−1)iFi(−1)t−1−i×
L

∑
j=0

(−1) jFj(−1− i)t− j
i

∑
k=0

Fk(i)

× J j(l)Ji−k(m)Jk(n) f or t ≥ 3
(14)

G(t, l,m,n) =
1

π3 lim
N→ ∞

L→ ∞

N

∑
i=0

(−1)iFi(−1)γ it−1−i×
L

∑
j=0

(−1) jFj(−1− i)2 jt− jJ j(l)

× J j(m)Ji(n) f or t ≥ 3
(15)

The quantities Jn(k) occurring in Eqs. (9)-(15) are determined by the relation

Jn(k) =


In for k = 0
Ln(k) for k > 1
In+1 for k = 1
0 for k > n or k+n odd

(16)
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The basic integrals Ln(k) and In occurring in Eq. (16) are determined from the
following relations, respectively

Ln(k) =
π∫

0

coskxcosn xdx =2k−1Ik+n + k
E[k/2]

∑
i=1

(−1)i2k−2i−1Fi−1(k− i−1)Ik+n−2i

i

(17)

and

In =

π∫
0

cosn
ϕ dϕ =

 0, if n odd
√

π
Γ( n+1

2 )
Γ( n

2+1)
, if n even

(18)

In Eq. (17) the index E[k/2] is the upper limit of summation defined by

E(n/2) =
n
2
− 1

4
[1− (−1)n]. (19)

In Eqs. (9)-(15) the indexes N, N′, M and M′ are the upper limits of summations.
In the present work, we propose an alternative accurate method for the analyti-
cal evaluation of the lattice Green functions for FCC, BCC and SC lattices. The
obtained formulas are practically simple and they offer some advantages over cur-
rently available methods.

3 Numerical results and discussion

We have presented a new approach to the calculations of isotropic and tetragonal
lattice Green functions using binomial expansion theorems. The analytical results
are validated by the numerical calculations for each lattice Green function. The
numerical computation of the lattice Green functions has been performed by using
the scientific software Mathematica 7.0. Comparisons of the numerical and analyt-
ical results are presented in Tables 1, 2 and 3. It is clear from these tables that the
results from the literature and Mathematica numerical integration and the analytical
method proposed in this article are satisfactory for all sets of the parameters. The
computer time required for the calculation of lattice Green functions is not given
in tables due to the fact that the comparison cannot be made as computer times are
different because different computers have been used in various studies reported in
literature. It is seen from the algorithm presented for lattice Green functions that
our CPU times are satisfactory. For instance, for lattice Green functions with sets
t = 2.7; l = 4; m = 2; n = 0; γ = 1; N′ = 80 the CPU times taken are about 0.015 s
and 0.038 s by using formulas Eq. (10) and Eq. (3.2) in [Morita (1975)], respec-
tively. The calculations have been made on a Pentium 4 PC at 800MHz with 128
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Table 1: The comparative values of FCC isotropic lattice Green function for N =
120.

t l m n Eq. (9) Mathematica numerical
integration results

4 2 1 1 5.3062307621299137683455E-03 5.306230761691927860157E-03
3.5 6 0 0 3.6079167865531488070641E-04 3.607916588543670594077E-04
3.8 4 3 3 1.6110394471151018383981E-04 1.611038325096119013263E-04
4.3 3 3 6 6.5403200327858619784236E-06 6.540340964471339796059E-06
7.5 6 0 0 1.8199237462528864261211E-07 1.8199237733671659348793E-07
3.2 8 0 0 5.3955876002755865605106E-04 5.3977039895542549565637E-04
5 7 4 3 1.9477065970304899504571E-07
4 5 5 6 2.1683762666557503630379E-06
8 8 8 8 4.0649237534969050228644E-14

9.4 10 9 9 2.47159951774980913243029E-17
5.4 12 10 10 3.60265033981501958314341E-14
6.2 4 4 4 2.85696417818323232226771E-07
16.2 6 5 5 2.20926265243354104623488E-13

Table 2: The comparative values of BCC isotropic lattice Green function for N =
80.

t l m n Eq.(10) Mathematica numerical
integration results

1.3 2 2 2 0.015328185311883785799202 0.0153281966390183833347492
3.1 4 2 2 1.57355130627778862489406E-05 1.573711806736570394474906E-05
4.5 4 2 2 2.26195771005028166150425E-06 2.261960562366932080302652E-06
5.6 6 4 4 8.67874138669806066405194E-10
8.5 2 6 2 2.7430637413164117682923E-10
2.1 10 10 10 8.5712939506842540919149E-12
12 8 8 8 1.28450509931113334829599E-17
1.1 12 12 12 3.15175393922039510877721E-06

Table 3: The comparative values of SC isotropic lattice Green function for N = 80.

t l m n Eq. (11) Borwein, Glasser, McPhedran, Wan
and Zucker (2013)

4.8 2 1 1 4.92502989502253462788641E-04 4.92502989502253462788641E-04
5.5 4 2 2 7.40028930038766807138731E-07 7.4002893003876680717664E-07
4.1 6 3 3 4.63923075405655182523850E-07 4.6392307669113602187456E-7
3.5 8 4 4 9.55401135846749948703423E-07 9.55942586475958801483921E-07
8.3 10 5 5 4.69853135335122975660583E-18 4.69853135335122975660583E-18
12.6 12 6 6 6.73673151065469189786922E-26 6.73673151065469189786922E-26
18.6 14 12 12 9.58228756482614247423874E-35 9.58228756482614247423874E-35
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Table 4: Convergence of derived expression for FCC lattice (Eq.(9)) as a function
of summation limit N for l = 4; m = 5; n = 5; γ = 1.

N t = 3.6 t = 7.3
50 4.00398211097867414956991692E-05 7.11326487186323909822468636E-09
60 4.00698936760028318721439499E-05 7.11326487186324022662787621E-09
70 4.00742317957675876305810460E-05 7.11326487186324022676650383E-09
80 4.00748569241555778559327183E-05 7.11326487186324022676652082E-09
90 4.00749472845982961016203988E-05 7.11326487186324022676652082E-09
100 4.00749604069890322643812232E-05
110 4.00749623224744173196273600E-05
120 4.0074962603515980801043828E-05

Table 5: Convergence of derived expression for BCC lattice (Eq.(10)) as a function
of summation limit N for l = 6; m = 6; n = 6.

N t = 2.3 t = 6.7
20 4.12513720557555557559088E-08 7.488251696692016617660855E-12
30 4.12540274336981408265343E-08 7.488251696737438699096846E-12
40 4.12540281884603820487692E-08 7.488251696737438699393929E-12
50 4.12540281886387878008419E-08 7.488251696737438699393929E-12
60 4.12540281886388275748139E-08
70 4.12540281886388275835067E-08
80 4.12540281886388275835087E-08

MB of RAM. The results show that the three methods almost have the satisfactory
precision, but the CPU time of the presented method is less than those of the other
methods. In the Tables 4 and 5 list partial summations, corresponding to progres-
sively increasing upper summations limits of equations (9) and (10). Using the new
decomposition, the obtained results are presented in Tables 4 and 5 to demonstrate
the improvements in convergence rates. The reason for empty columns in Tables 1
and 2 is that the indicated equations (Eqs. (9) and (10)) are not valid for the value
of the lattice Green functions parameters. We expect that our new formulae for
the FCC, BCC and SC lattice Green functions will be useful, in particular, in the
calculations of various lattice structures of solids.
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