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Sound Propagation Analysis on Sonic Crystal Elastic
Structures using the Method of Fundamental Solutions

(MFS)
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Abstract: The study of periodic structures, namely sonic crystals, for sound at-
tenuation purposes has been a topic of intense research in the last years. Some effi-
cient methods are available in literature to solve the problem of sound propagation
in the presence of this kind of structures such as those based in the Multiple Scat-
tering Theory (MST) or the Finite Element Method (FEM). In this paper a solution
based on the Method of Fundamental Solutions (MFS) which presents advantages,
namely in computational discretization and calculation costs, is presented. The pro-
posed formulation considers the presence of elastic ring shaped scatterers, correctly
accounting for their interaction with the host fluid. The model accuracy is tested
by comparing it to FEM in an exemplificative case. A set of numerical examples
is then presented and the results compared with the ones given by a MFS approach
where the structure is considered as rigid. The results showed that in the case of
low-contrasting between solid/fluid properties, the elastic behavior of the structure
could not be neglected.
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1 Introduction

The study of periodic structures for sound attenuation, namely sonic crystal type,
has been a topic of increasing interest in recent years. Sonic crystals get their name
by analogy with ordered structures of semiconductor materials such as silicon crys-
tals, whose feature of allowing certain energy waves to pass through and block
others is transposed, in sonic crystals, into the capacity to prevent or limit the prop-
agation of certain sound frequencies. Historically, it is generally considered that
the first evidence that it was possible to achieve some effect of acoustic obstruc-
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tion using structures in periodic arrays was derived fortuitously from a sculptural
element, in the gardens of the Fundación Juan March in Madrid [Martínez-Sala,
Sancho, Sánchez, Gómez, Llinares and Meseguer (1995)]. Since then, different
aspects of the behavior of sonic crystals have been studied, some of which from
a more theoretical point of view, such as the influence of point defects [Wu, Chen
and Liu (2009)] or the formation of waveguides in which the sound propagates with
low attenuation [Vasseur, Deymier, Djafari-Rouhani, Pennec and Hladky-Hennion
(2008)]. In the field of the practical uses of sonic crystals, one which may be re-
garded perhaps as the most promising is their use for the selective attenuation of
sound, for example as traffic noise barriers [Sánchez-Pérez, Rubio, Martínez-Sala,
Sánchez-Grandia and Gómez (2002)], since it could become a competitive solu-
tion when compared with classic noise barriers [Castiñeira-Ibáñez, Rubio, Romero-
García, Sánchez-Pérez and García-Raffi (2012)].

Several methods have been proposed to analyze the sound propagation of sonic
crystals, mainly based in 2D approaches. The Plane-Wave Expansion Method
[Kushwaha and Halevi (1996); Cao, Hou and Liu (2004); Yuan, Lu and Antoine
(2008)] and Wavelet-based Methods [Yan and Wang (2006)] are examples; how-
ever those methods could lead, in some situations, to inaccurate results, as they
do not account for the transverse waves in the solid elements, that are responsi-
ble for the appearance of significant band gaps due to the transverse modes in the
scatterers [Sigalas and García (2000)]. Even more, in the case of solid scatterers
embedded in a fluid medium, those methods, give inaccurate results, as they do not
account for the solid-fluid interface interaction [Li, Wang, Zhang and Yu (2013)].
Approaches based on the Finite Difference Time Domain Method [Sigalas and Gar-
cía (2000); Cao, Hou and Liu (2004)] have also been used, but they can also lead
to inaccurate estimations since the interface interaction in solid-fluid structures is
neglected [Li, Wang, Zhang and Yu (2013)]. These limitations are currently over-
passed by other developed methods as the Multi-Scattering Theory [Mei, Liu and
Qiu (2005)], the Dirichlet-to-Neumann Map Method [Wu and Lu (2008), Li, Wang
and Zhang (2011)], the Finite Element Method (FEM) [Wang, Wang and Su (2011)]
or the Boundary Element Method (BEM) [Li, Wang, Zhang and Yu (2013), Li, Yue-
Sheng, Chuanzeng and Gui-Lan (2013)], methods that accounts for the transverse
wave propagation in the solid elements as well the solid-fluid interactions. The last
two referred methods have some advantages in case of modelling complex geome-
tries of the scatterers.

Other types of numerical strategies may be applicable for the analysis of sonic crys-
tals. One class of numerical methods which may be of interest corresponds to the
so-called meshless methods, which require neither domain nor boundary discretiza-
tion. Techniques such as the MLPG (Meshless-Local-Petrov-Galerkin) [Atluri and
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Shen (2002)], Kansa’s Method [Kansa (1990a, 1990b)] or the Method of Funda-
mental Solutions (MFS) can be incorporated in this group. The latter (MFS) is a
boundary-only technique, in which the solution of a PDE within a given domain
is obtained using a linear combination of the effects of virtual sources located out-
side this domain. Some initial reference papers by Fairweather and Karageorghis
(1998), Golberg and Chen (1998), Fairweather, Karageorghis and Martin (2003),
or Smyrlis and Karageorghis (2003) describe the MFS and some of its possible
applications. More recently, further developments have been published, regard-
ing the analysis of the accuracy and stability of the MFS, such as in the works
of Tsai, Lin, Young and Atluri [2006], and also including the application of the
MFS for the propagation of electromagnetic waves [Young and Ruan (2005)], for
one-dimensional wave equations [Gu, Young and Fan (2009)] or for boundary iden-
tification problems [Marin and Karageorghis (2009)], among many others.

Recently, the application of the MFS to analyze a sonic crystal composed of cir-
cular cylinders was proposed by Martins, Godinho and Picado-Santos (2013). In
that work, the authors addressed the application for traffic noise attenuation in a
2D approach, with clear advantages in problem discretization and computational
cost when compared to the BEM and FEM approaches. In the formulation, the
scatterers were considered as rigid elements, and numerical comparisons with the
ones obtained with a BEM formulation (also considering the scatterers as rigid
elements) indicated a good level of accuracy of the model. Later, comparisons be-
tween numerical results with the ones obtained in an experimental campaign for a
reduced scale model (1:5) with different configurations, also revealed a fine level
of accuracy [Martins, Carbajo, Godinho, Mendes and Ramis (2013)]. The present
paper aims to extend this previously presented methodology to make it suitable for
the analysis of non-rigid (elastic) shell cylinders embedded in a fluid medium, and
so account for the influence of the scatterer’s stiffness as well as of the fluid-solid
interactions on the sound propagation phenomena through the sonic crystal. In this
new method, the problem is divided in a series of sub-regions, one of them being the
outer region (host fluid), and the remaining regions being defined around each scat-
terer structure. Since the analytical solutions are known for each of those defined
sub-regions (fundamental solutions), it becomes possible to establish a coupled
model based on MFS, which accounts for the full interaction between the involved
fluids and the solids that compose the scatterer structures, by just establishing the
continuity of pressures and displacements along the boundaries connecting the sub-
regions.

Summarily, the method will be presented and validated as follow: first the theo-
retical formulation in which the numerical analysis methodology is based will be
presented; the influence of the model parameters on its accuracy will be evaluated
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by comparison with FEM in an exemplificative case; a set of results obtained by the
proposed model will then be compared against a previous MFS model developed by
Martins, Godinho and Picado-Santos (2013), in which the scatterers are assumed
to be rigid. At this point, different combinations of materials and shell thickness
of the scatterers will be tested for two types of fluid, in order to vary the structure
stiffness as well as the properties’ contrast between solids and fluids. The compar-
ison between results from these two models will often show the influence of the
scatterer’s stiffness and of the fluid/solid interaction on the sonic crystal behavior.

2 Problem formulation

2.1 Governing equations

The numerical settling for the present work intends to simulate the propagation
of sound waves in the presence of a number of elastic scatterers embedded in a
fluid media, considering a 2D environment. The scatterers are considered to be
cylindrical ring-shaped structures, eventually including a second fluid in their inner
part. For that purpose, different governing equations must be considered for either
the solid or the fluid parts of the propagation domain, corresponding to the vectorial
or scalar wave equations, respectively.

For the case of an isotropic and linear elastic material, with mass density ρS, al-
lowing shear waves to propagate with a velocity βS and compressional waves to
propagate with a velocity αS, the vectorial wave equation can be written as:

α
2
S (∇∇.u)−β

2
S ∇×∇×u =−ω

2u (1)

in which the vector u refers to displacements, ω is the circular frequency and ∇ =
(∂/∂x) î, î and ĵ being the unit vectors along the x and y directions.

In the case of a fluid medium, with a mass density ρ f , the corresponding scalar
wave equation in the frequency domain is the well-known Helmholtz equation. For
this type of problems, it can be written as:

∇
2p+ k2

f p = 0 (2)

in which p is the pressure and k f = ω/α f is the wave number, with α f being the
speed of sound in the fluid medium; for this scalar equation, ∇2 =

(
∂ 2/∂x2

)
+(

∂ 2/∂y2
)
. For this case, the definition of a fundamental solution corresponding to

the effect of a 2D sound source in a fluid medium is possible, and can be easily
found in the literature, in the form:

p(xxx,k f ) =−
i
4

H(2)
0

(
k f r′
)

(3)
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where r′ = ‖xxx− xxx0‖ is the distance between the source position (xxx0) and the field
point to be evaluated (xxx), and H(2)

0 (.) is the Hankel function of order 0 and second
kind. Similarly, a solution for the particle velocity field can be derived by taking
the spatial derivative of Eq. 3 in the relevant direction,

v(xxx,k f ,~n) =−
k f

4ρ f ω
H(2)

1

(
k f r′
) ∂ r′

∂~n
(4)

where~n represents the direction along which the particle velocity is calculated and
and H(2)

1 (.) is the Hankel function of order 1 and second kind

2.2 Analytical solution for a single circular shell scatterer in a fluid medium

Following the work by Godinho, Tadeu and Branco (2004), it is possible to ana-
lytically calculate the pressure field within a fluid medium in the presence of an
elastic ring shaped scatterer, embedded within this fluid. For this purpose, consider
a circular shell solid structure, defined by the internal and external radii, rA and rB,
and submerged in a homogenous fluid medium, as illustrated in Fig. 1.

This structure is illuminated by a pressure source, placed in the exterior fluid medium,
generating sound waves that propagate within the fluid reaching the surface of the
embedded structure. Part of the incident energy is then reflected back to the exte-
rior fluid medium, with the rest being transmitted into the solid material, where it
propagates as body and guided waves. These waves continue to propagate and may
eventually hit the inner surface of the structure, where similar phenomena occur.

The wavefield generated in the outer fluid medium (Fluid 1) depends both on the
incident pressure waves and on those coming from the external surface of the shell.
The latter propagate away from the cylindrical shell, and can be defined using the
following displacement potential when a cylindrical coordinate system is centered
on the axis of the circular cylindrical shell:

ϕ̂1 =−
1

ρ f1ω2

∞

∑
n=0

A1
nH(2)

n (k f1r)cos(nθ) (5)

where k f1 = ω/α1 with α1 being the pressure wave velocity in the outer fluid,
ρ f1 being the fluid density and r the distance from the center of the scatterer to the
calculation point. Inside the solid material of the shell, two distinct groups of waves
exist, corresponding to inward travelling waves, generated at the external surface,
and to outward travelling waves, generated at the internal surface of the shell. Each
of these groups of waves can be represented using one dilatational and one shear
potential:

ϕ̂2 =
∞

∑
n=0

A2
nJn (kαsr)cos(nθ) ; ψ̂2 =

∞

∑
n=0

A3
nJn
(
kβsr
)

sin(nθ) , (6)
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Figure 1: Circular cylindrical shell structure submerged in a fluid medium

ϕ̂3 =
∞

∑
n=0

A4
nH(2)

n (kαsr)cos(nθ) ; ψ̂3 =
∞

∑
n=0

A5
nH(2)

n
(
kβsr
)

sin(nθ) , (7)

where kαs = ω/αs, kβ s = ω/βs, αs and βs are respectively the dilatational and

shear wave velocities permitted in the solid material. H(2)
n (. . .) correspond to Han-

kel functions of the second kind and order n and Jn (. . .) corresponds to Bessel
functions of the first kind and order n. In the fluid that fills the shell structure (inner
fluid, Fluid 2), only inward propagating waves are generated. For this case, the
relevant dilatational potential is given by:

ϕ̂4 =−
1

ρ f2ω2

∞

∑
n=0

A6
nJn (k f2r)cos(nθ) (8)

where k f2 = ω/α2 with α2 being the pressure wave velocity in the inner fluid and
ρ f2 being the fluid density. The terms A j

n ( j = 1,6) for each potential of the Eq. 5,
Eq. 6, Eq. 7 and Eq. 8 are unknown coefficients to be determined by imposing the
required boundary conditions. For this case, the necessary boundary conditions are
the continuity of normal displacements and stresses, and null tangential stresses on
the two solid-fluid interfaces.

Consider, now, that the incident field, in terms of displacement potential, generated
by the acoustic source located at (x0,y0) can be defined at a point (x,y) as:

ϕ̂inc =−
i
4

(
− 1

ρ f1ω2

)
H(2)

0 (k f1r) (9)
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It should be noted that the pressure field can be obtained from this potential as
p = −ρ f1ω2ϕ̂inc, leading to Eq. 3. In order to establish the appropriate equation
system, this incident field must also be expressed in terms of waves centered on the
axis of the circular cylindrical shell structure. This can be achieved making use of
Graf’s addition theorem, leading to the expression (in cylindrical coordinates):

ϕ̂inc =−
i
4

(
− 1

ρ f1ω2

)
∞

∑
n=0

(−1)n
εnHn (k f1r0)Jn (k f1r)cos(nθ) (10)

where r0 is the distance from the source to the axis of the circular cylindrical shell;
εn is 1 if n = 0 and 2 in the remaining cases.

Using the previously presented equation, a linear equation system, with 6 equations
and 6 unknowns, can be assembled for each value of n. After the solution of the
equation system is computed, the unknown values A j

n ( j = 1,6) can be used to de-
termine the final wavefields. For the outer fluid, the pressure field at a point (x,y)
can be written as:

Gshell (xxx,xxx0,k f1) =−
i
4

H0
(
k f1r′

)
+

N

∑
n=0

A1
nHn (k f1r)cos(nθ) (11)

with r′ being the distance from the source to the field point, and N being the number
of terms required to attain convergence

2.3 Hybrid solution for multiple circular shell scatterers

To extend the applicability of the previously defined analytical solution to the case
of multiple scatterers embedded in a fluid medium, the meshless Method of Fun-
damental Solutions will be used, based in the work of Godinho, Amado-Mendes
and Pereira (2011). For that purpose, consider an infinite fluid medium and the
presence of an arbitrary number of circular ring shaped structures made of elastic
materials, and filled with a fluid material, as illustrated in Fig. 2.

Consider that, in the presence of NR scatterers, the problem is divided in NR+ 1
sub-regions, one of them being the outer region (host fluid medium), and each of
the remaining NR subregions corresponding to a limited region which includes one
of the scatterers. This configuration is also represented in Fig. 2.

For each of the regions described above, the corresponding fundamental solutions
are known, and can be written, in terms of acoustic pressure, by means of Eq. 3 and
Eq. 11. Using those solutions, it becomes possible to establish a coupled model
accounting for the full interaction between the involved fluids and the solids that
compose the scatterers, by just establishing the continuity of pressures and particle
velocities along the boundaries connecting the sub-regions that include scatterers
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Figure 2: Schematic representation of the problem.

with the outer sub-region, corresponding to the host fluid. If the MFS is used,
the acoustic field in the outer sub-region, containing the host infinite fluid, can be

defined by considering a number of virtual sources,
NR
∑
j=1

NV S j placed within each of

the remaining sub-regions, and linearly combining their effects as:

p(xxx,k f 1) =
NR

∑
j=1

NV S j

∑
l=1

a j,lGhost (xxx,xxxvs
j,l,k f 1

)
+Ghost (xxx,xxx0,k f 1) (12)

where xxx represents a field point of coordinates (xxx,y), located in the host (external)
fluid, xxx0 is the position of the real source exciting the system, and xxxvs

j,l is the posi-
tion of each of the NV S j virtual sources placed within sub-region j. Additionally,

Ghost (xxx,xxx0,k f 1) and Ghost
(

xxx,xxxvs
j,l,k f 1

)
are the fundamental solutions for the host

fluid at a point xxx originated by a source positioned at xxx0 and xxxvs
j,l , respectivelly,

which is indeed the same presented in Eq. 3. The coefficients a j,l correspond to the
amplitudes of each of the virtual sources used to simulate the pressure field in the
host medium, and are “a-priori” unknown.

If a point located within the outer fluid of the kth inner sub-region is considered, the
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pressure field can be written as:

p(xxx,k f 1) =
NV Sk

∑
l=1

bk,lGshell (xxx,xxxvs
k,l,k f 1

)
(13)

In this equation, xxxvs
k,l is the position of the lth virtual source of the kth internal sub-

region, Gshell
(

xxx,xxxvs
k,l,k f 1

)
is the fundamental solution for each interior subregion

defined in Eq. 11, incorporating the full interaction between the shell structures and
the outer and inner fluids; the coefficients bk,l are, once again, “a-priori” unknown
and must be determined

To determine the unknown coefficients a j,l and bk,l defined above, it becomes nec-
essary to establish a system of linear equations, enforcing the continuity of pres-
sures and normal particle velocities along each of the NR boundaries separating the
outer sub-region from each internal sub-region. Assuming that the boundary condi-
tions are enforced at NV Sk collocation points along the kth interface (as illustrated
in Fig. 2), the continuity equations at the mth collocation point xc,k

m of that boundary
can be written in terms of acoustic pressure as:

NR

∑
j=1

NV S j

∑
l=1

a j,lGhost
(

xxxc,k
m ,xxxvs

j,l,k f 1

)
+Ghost

(
xxxc,k

m ,xxx0,k f 1

)
=

NV Sk

∑
l=1

bk,lGshell
(

xxxc,k
m ,xxxvsshell

k,l ,k f 1

)
(14)

and of normal particle velocity as:

NR

∑
j=1

NV S j

∑
l=1

a j,l
∂

∂~n
Ghost

(
xxxc,k

m ,xxxvs
j,l,k f 1

)
+

∂

∂~n
Ghost

(
xxxc,k

m ,xxx0,k f 1

)
=

NV Sk

∑
l=1

bk,l
∂

∂~n
Gshell

(
xxxc,k

m ,xxxvsshell
k,l ,k f 1

) (15)

Writing these two equations for each collocation point, a NxN system of linear

equations, with = 2×
NR
∑
j=1

NV S j , can be built. Once this system of equations is

solved, one may obtain the pressure at any point in the host fluid by applying Eq.
12.

Considering, as an example, the case of a fluid with four embedded scatterers, each
of them within a sub-region with an interface defined with Mk (k = 1,4) colloca-
tion points and incuding NV Sk virtual sources, the corresponding equation system
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would assume the form:

Ghost
1 −Gshell

1 0 0 0
Hhost

1 −Hshell
1 0 0 0

Ghost
2 0 −Gshell

2 0 0
Hhost

2 0 −Hshell
2 0 0

Ghost
3 0 0 −Gshell

3 0
Hhost

3 0 0 −Hshell
3 0

Ghost
4 0 0 0 −Gshell

4
Hhost

4 0 0 0 −Hshell
4


X =



−Ginc
1

−Hinc
1

−Ginc
2

−Hinc
2

−Ginc
3

−Hinc
3

−Ginc
4

−Hinc
4


(16)

in which each of the sub-matrices of the system matrix related to the host fluid can
be defined as:

Ghost
k =

[
G̃host

k,1 G̃host
k,2 G̃host

k,3 G̃host
k,4

]
, (17)

Hhost
k =

[
H̃host

k,1 H̃host
k,2 H̃host

k,3 H̃host
k,4

]
, (18)

with:

G̃host
k,m =


Ghost

(
xxxc,k

1 ,xxxvs
m,1,k f 1

)
· · · Ghost

(
xxxc,k

1 ,xxxvs
m,NV Sm,k f 1

)
...

. . .
...

Ghost
(

xxxc,k
Mk,xxx

vs
m,1,k f 1

)
· · · Ghost

(
xxxc,k

Mk,xxx
vs
m,NV Sm,k f 1

)
 (19)

H̃host
k,m =


∂

∂~n Ghost
(

xxxc,k
1 ,xxxvs

m,1,k f 1

)
· · · ∂

∂~n Ghost
(

xxxc,k
1 ,xxxvs

m,NV Sm,k f 1

)
...

. . .
...

∂

∂~n Ghost
(

xxxc,k
Mk,xxx

vs
m,1,k f 1

)
· · · ∂

∂~n Ghost
(

xxxc,k
Mk,xxx

vs
m,NV Sm,k f 1

)
 (20)

The sub-matrices related to each scatterer can be written as:

Gshell
k,m =


Gshell

(
xxxc,k

1 ,xxxvsshell
k,1 ,k f 1

)
· · · Gshell

(
xxxc,k

1 ,xxxvsshell
k,NV Sk

,k f 1

)
...

. . .
...

Gshell
(

xxxc,k
Mk,xxx

vsshell
k,1 ,k f 1

)
· · · Gshell

(
xxxc,k

Mk,xxx
vsshell
k,NV Sk

,k f 1

)
 (21)

Hshell
k,m =


∂

∂~n Gshell
(

xxxc,k
1 ,xxxvsshell

k,1 ,k f 1

)
· · · ∂

∂~n Gshell
(

xxxc,k
1 ,xxxvsshell

k,NV Sk
,k f 1

)
...

. . .
...

∂

∂~n Gshell
(

xxxc,k
Mk,xxx

vsshell
k,1 ,k f 1

)
· · · ∂

∂~n Gshell
(

xxxc,k
Mk,xxx

vsshell
k,NV Sk

,k f 1

)
 (22)
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The unknown vector in Eq. 16 is given by:

X =
[

a1,1 · · · a4,NV S4 b1,1 · · · b4,NV S4
]T

, (23)

and the right-hand-side term is defined as:

Ginc
k =

[
Ghost

(
xxxc,k

1 ,xxx0,k f 1

)
. . . Ghost

(
xxxc,k

Mk,xxx0,k f 1

) ]T
, (24)

Hinc
k =

[
∂

∂~n Ghost
(

xxxc,k
1 ,xxx0,k f 1

)
. . . ∂

∂~n Ghost
(

xxxc,k
Mk,xxx0,k f 1

) ]T
. (25)

An important point that should be highlighted concerning this formulation is that
the coupling between sub-regions is enforced in fluid-fluid interfaces, at some dis-
tance from the interfaces between each scatterer and the host fluid. Thus, the cou-
pling conditions are imposed in a region with smooth variations of the pressure,
which greatly improves the global performance of the strategy. Additionally, since
the interface between sub-regions is virtual, it can assume a smooth shape, such
as that of a circle, which has been demonstrated in previous works to lead to very
accurate results [Godinho, Tadeu, and Mendes (2007)]. Since the fundamental so-
lutions are computed analytically for both the host fluid and for the sub-regions
containing the scatterers, high accuracy may be obtained in the calculations.

2.4 Time domain responses

Using the above defined method, all the responses are initially computed in the fre-
quency domain, and additional steps are required in order to calculate time domain
signals. For the purpose of computing time signals, in all presented results it is
assumed that the source emits a Ricker pulse, which is defined in the frequency
domain as:

U (ω) = A
[
2
√

πt0e−iωts
]

Ω
2e−Ω2

(26)

where Ω = ωt0/2, A is the amplitude, ts is the time when the maximum occurs and
πt0 is the dominant wavelet period. The choice of the Ricker pulse to simulate the
temporal variation of the acoustic source is related to the fact that it decays rapidly
both in time and frequency domains, reducing computational effort and allowing
easier interpretation of the computed time series and synthetic waveforms After
calculating the frequency domain responses for a full range of discrete frequencies,
these responses must be scaled using the frequency spectrum defined in Eq. 26, and
after this an inverse Fast Fourier Transform (iFFT) must be applied to the result.

In this process, it becomes necessary to make use of complex frequencies, defined
as ωc = ω− iξ , with ξ = 0.7∆ω where ∆ω represents the frequency increments, to
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reduce the aliasing effect that occurs due the frequency discretization. In the time
domain, this shift is later taken into account by applying an exponential window
eξ t to the response [Kausel and Roësset (1992)] Using this process, it is possible to
adequately compute time signals within a time window defined by T = 2π/∆ω .

3 Model verification

In order to analyze the proposed MFS model efficiency and accuracy, the results
for the Insertion Loss obtained for a specific example are compared with the ones
provided by the Finite Element Method (FEM), as no analytical solution is known
for this kind of problem. The proposed example consists in a set of four scatterers
embedded in a fluid medium, water with a density of 1000 kg/m3 and allowing
sound waves to propagate at 1500 m/s The scatterers are assumed to be made of
PolyVinyl Chloride (PVC) with a density of 1400 Kg/m3 a Young’s modulus of
3.0146 GPa and a Poisson’s ration of 0.40622. The scatterers, consisting of a ring
shaped structure, have an external radius of 0.1 m and a thickness of 0.025 m,
with their centres equally spaced of 0.4 m between them in a rectangular lattice
configuration. An acoustic source placed 3 m away, aligned with the middle of
the scatterers illuminates the system and the response is evaluated as the average
value obtained over a square grid of 25 receivers, positioned behind the scatterers
as depicted in Fig. 3a).

The response was evaluated in the frequency range from 10 Hz to 5000 Hz with a
frequency step of 10 Hz. In the FEM model a very refined mesh was used in this
study in order to allow the analysis of higher frequencies (smaller wavelengths) of
5000 Hz as depicted in Fig. 3b).

these responses must be scaled using the frequency spectrum defined in Eq. 26, and 

after this an inverse Fast Fourier Transform (iFFT) must be applied to the result. 

In this process, it becomes necessary to make use of complex frequencies, defined as 

𝜔𝑐 = 𝜔 − i𝜉, with 𝜉 = 0.7Δ𝜔 where Δ𝜔 represents the frequency increments, to 

reduce the aliasing effect that occurs due the frequency discretization. In the time 

domain, this shift is later taken into account by applying an exponential window 𝑒𝜉𝑡 

to the response [Kausel and Roësset (1992)]. Using this process, it is possible to 

adequately compute time signals within a time window defined by 𝑇 = 2𝜋 Δ𝜔⁄ . 
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In order to analyze the proposed MFS model efficiency and accuracy, the results for 

the Insertion Loss obtained for a specific example are compared with the ones 

provided by the Finite Element Method (FEM), as no analytical solution is known for 
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3
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have an external radius of 0.1 m and a thickness of 0.025 m, with their centres equally 

spaced of 0.4 m between them in a rectangular lattice configuration. An acoustic 

source placed 3 m away, aligned with the middle of the scatterers illuminates the 

system and the response is evaluated as the average value obtained over a square grid 

of 25 receivers, positioned behind the scatterers as depicted in Fig. 3a).  

The response was evaluated in the frequency range from 10 Hz to 5000 Hz with a 

frequency step of 10 Hz. In the FEM model a very refined mesh was used in this 

study in order to allow the analysis of higher frequencies (smaller wavelengths) of 

5000 Hz as depicted in Fig. 3b). 
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Figure 3: a) Configuration of the problem; b) FEM mesh around the scatterers 
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In order to evaluate the influence of the proposed model parameters in the accuracy
of the results, namely the radius of the interface delimiting the sub-regions (R), the
distance of the virtual sources to the interface (D) and the number of collocation
points (n), a set of combinations of these parameters were defined: R varied be-
tween 1.1 and 1.2 times the external scatterers radius; the ratio between D and R
varied from 0.10 to 0.50 with increments of 0.10, and n assumed values of 10, 15,
20 and 30. Fig. 4 presents the results of the Insertion Loss obtained by the reference
FEM formulation and the MFS with the variations on those model parameters.

Analysing Fig. 4 for all the cases, it becomes clear that increasing the number
of collocation points improves the accuracy of the results, as it allows a better
definition of the virtual interface, with more points in which continuity is enforced.
For the considered maximum frequency (5000Hz) and fluid medium sound speed
(1500m/s), if we assume that at least 5 to 6 collocation points per wavelength should
be used (as in [Godinho, Amado-Mendes and Pereira (2011)]), it is concluded that
at least 12 to 15 points are necessary to obtain more reasonable results, particularly
when R=1.2. This can contribute to the fact that the results are not satisfactory for
n=10, independently of the interface radius and of the R/D ratio (Fig. 4a, b); this
inaccuracy is also particularly detected by observing a false resonance peak that
appears approximately at 4500 Hz in all the cases in which 10 collocation points
are used (Fig. 4a, b). In addition, for the smaller numbers of points, the distance of
the sources to the boundary becomes small when compared to the spacing between
sources, a situation which is also not advisable in the MFS, leading to an inaccurate
result.

For the case of 15 collocation points and for both interface radius, the results seems
to stabilize for D/R equal or above 0.40 (Fig. 4c, d). Similarly, for n=20 the results
stabilize for D/R equal or above 0.30 (Fig. 4e, f), while for n=30 this occurs for
D/R equal or above 0.20 (Fig. 4g, h). In short, the results show that the number
of colocation points is closely correlated with the D/R ratio in what concerns the
accuracy of the results. However, the interface position seems to have no relevant
influence on the accuracy of the results in the presented cases, assuming that it is
not too far away from the scatterers (which in some cases could lead to very closely
spaced collocation points and virtual sources corresponding to different scatterers),
or far too close to the scatterer (which implies stronger spatial variations of the
pressure, thus creating problems in correctly simulating this field).

Observing the results provided by the two models (MFS and FEM), it becomes
evident that when an adequate choice of the MFS model parameters is done, an
excellent agreement exists. However, very small differences are still visible origi-
nated by the fact that the FEM model truncates the discretization at some distance
from the scatterers, and then simulates the infinite fluid by means of a PML. This
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R=1.1x0.1 R=1.2x0.1 

a)  b) 

c)  d) 

e)  f) 

g) h) 

Figure 4: Insertion Loss obtained as a function of the D/R ratio, the number of 

collocation points (n) and interface radius (R): a) n=10, R=1.1x0.1; b) n=10, 

R=1.2x0.1; c) n=15, R=1.1x0.1; d) n=15, R=1.2x0.1; e) n=20, R=1.1x0.1; f) n=20, 

R=1.2x0.1; g) n=30, R=1.1x0.1; h) n=30, R=1.2x0.1. 
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Figure 4: Insertion Loss obtained as a function of the D/R ratio, the number
of collocation points (n) and interface radius (R): a) n=10, R=1.1x0.1; b) n=10,
R=1.2x0.1; c) n=15, R=1.1x0.1; d) n=15, R=1.2x0.1; e) n=20, R=1.1x0.1; f) n=20,
R=1.2x0.1; g) n=30, R=1.1x0.1; h) n=30, R=1.2x0.1.
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approximation introduces some errors, and can be responsible for those small dif-
ferences. It should also be noted that the MFS model in this example only requires
a total of 80 collocation points (considering 20 colocation points per scatterer with
D/R=0.30), and thus a matrix with just 160x160 elements had to be formed. In
comparison, the number of nodes in the FEM model was of several thousands, and
thus the computational performance is considerably better in the MFS.

4 Numerical simulations

In order to observe the effect of modelling the elastic behaviour of the scatterers
on the sound propagation through a sonic crystal using the proposed MFS model,
results for a set of different examples were compared with those obtained when con-
sidering perfectly rigid scatterers [Martins, Godinho and Picado-Santos (2013)]. In
the presented examples the two basic layouts consisted of a set of shell cylinders
arranged in rectangular or triangular lattice configurations as depicted in Fig 5.

In both layouts the shell cylinders had their geometric centres equally spaced at 0.4
m with a fixed radius of 0.1 m. The acoustic point source was placed 3 m apart from
the scatterers, and varied its vertical position considering two situations: centred
with the periodic structure, at y=1.8 m (middle), and close to the top, at y=3.24 m
(top). In both cases the response was evaluated at a square grid of 25 points equally
spaced of 0.25 m, and positioned 0.5 m away from the array of scatterers.both cases the response was evaluated at a square grid of 25 points equally spaced of 

0.25 m, and positioned 0.5 m away from the array of scatterers.  

a) b) 

Figure 5: Tested layout configurations: a) rectangular lattice; b) triangular lattice 

The scatterers were placed within a fluid medium and filled with the same fluid.  A 
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position (middle and top). The fluid medium properties (density, 𝜌𝑓, and sound wave 
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In the numerical models, the model parameters were set to R=1.1 times the external 

radius of the cylinders (to define the virtual fluid-fluid interface) and D/R=0.40 (to 

define the position of the virtual sources), while 30 collocation points were used in 

the cases involving water and 60 points in the cases in which the fluid is air (indeed, 

fewer points are required when the fluid is water due to the larger wavelengths 

involved in the analysis). In the analysis of the Insertion Loss, both damping in the 

solid and sound absorption in the host fluid were set to zero. 
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3
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Air 1.22 340 

Water 1000.00 1500 

Table 2: Scatterer’s material properties 

Material ρ (kg/m
3
) α (m/s) β (m/s) 

PVC 1400 2143 875 

Concrete 2400 3727 2282 

Steel 7900 5982 3197 
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Figure 5: Tested layout configurations: a) rectangular lattice; b) triangular lattice.

The scatterers were placed within a fluid medium and filled with the same fluid.
A set of variations were established: the type of fluid medium (air and water); the
scatterer’s material (PVC, Concrete and Steel); the scatterer’s thickness (5, 25 and
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95 mm, which correspond to 5%, 25% and 95% of the radius), as well as the source
position (middle and top). The fluid medium properties (density, ρ f , and sound
wave velocity, α f ) are presented in Tab. 1, and the scatterer’s material properties
(density, compressional wave velocity, α and shear wave velocity, β ) are presented
in Tab. 2. In the numerical models, the model parameters were set to R=1.1 times
the external radius of the cylinders (to define the virtual fluid-fluid interface) and
D/R=0.40 (to define the position of the virtual sources), while 30 collocation points
were used in the cases involving water and 60 points in the cases in which the fluid
is air (indeed, fewer points are required when the fluid is water due to the larger
wavelengths involved in the analysis). In the analysis of the Insertion Loss, both
damping in the solid and sound absorption in the host fluid were set to zero.

Table 1: Fluid medium properties.

Fluid ρ f (kg/m3) α f (m/s)
Air 1.22 340

Water 1000.00 1500

Table 2: Scatterer’s material properties.

Material ρ (kg/m3) α (m/s) β (m/s)
PVC 1400 2143 875

Concrete 2400 3727 2282
Steel 7900 5982 3197

In what follows, two sub-sections are presented, the first corresponding to a fre-
quency domain analysis of the behaviour of the sonic crystal structures in terms of
their Insertion Loss, and the second to the analysis of time-domain responses, try-
ing to better illustrate the propagation of the sound waves in the presence of those
structures.

4.1 Frequency domain Insertion Loss

The results for the acoustic attenuation provided by the different structures are pre-
sented in Fig. 6 to Figure 8, where ‘Rigid’ refers to the results obtained with the
model in [Martins, Godinho and Picado-Santos (2013)].

As can be seen, and as a general statement, for a fluid with the properties of air,
the Insertion Loss results are almost independent of the scatterers stiffness as the
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results provided by the two models match almost perfectly. It can be concluded
that in this case, as expected, the strong contrast of properties between the fluid
and the solid elements leads to a quasi-rigid behaviour of all the tested scatterers,
and thus the assumption of rigid boundaries should be a sufficiently good approx-
imation. On the other hand, in the case of a fluid with the properties of water, the
results provided by the new numerical model are quite different from those of the
rigid model, and the differences become even more pronounced as the cylinders’
stiffness is progressively reduced.

Scrutinizing the presented results in more detail, it can be seen that, for rigid scatter-
ers in a rectangular lattice (Fig. 6), a band of large attenuation (usually designated
as band gap) is clearly identifiable around 400 Hz when the fluid is air, and around
1800 Hz when it is water; this shift for higher frequencies in the case of water is
clearly related with the higher sound speed in that fluid, which originates longer
wavelengths and translates the band gap phenomenon to those higher frequencies.
A similar behaviour is identifiable in Fig. 7, for the case of a triangular lattice, al-
though the band gaps occur at slightly higher frequencies. When elastic scatterers
are analysed, the same band gaps occur when the fluid medium has the properties of
air, and considerable attenuation can be observed; however when the fluid medium
is water, and in particular for the lower thickness (5 mm), the provided attenua-
tion is drastically reduced, and the Insertion Loss reaches almost zero; exception is
made to specific frequencies that correspond to resonance peaks of the scatterers,
where considerable attenuation peaks are visible.

Focusing in the case in which the host fluid is water, it is worth analysing the sig-
nificant differences that occur between the different elastic materials. In the case
of scatterers made of PVC, it can be seen that the Insertion Loss curve differs dra-
matically from the one obtained with the model in [Martins, Godinho and Picado-
Santos (2013)]; for that material, the sound reduction effect is only visible when the
thicker scatterers are modelled, and even in that case the computed Insertion Loss
has a distinctly different character when compared to the rigid structure. For the
other materials, concrete and steel, it is observed that as the stiffness increases, the
Insertion Loss curve computed by the proposed model tends to approach the one
of the rigid model; again, exception is made to some specific frequencies, where
relatively high values of attenuation occur, corresponding to resonance peaks of
the scatterers. In spite of the marked approximation of the computed curves to the
rigid case, it can be noted that, even for steel scatterers, the Insertion Loss never
reaches those levels, and thus modelling the real properties of the elastic materials
is mandatory in order to provide physically meaningful results when the host fluid
is water.

Fig. 8 illustrates the Insertion Loss results computed when the acoustic source
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Air Water 
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Figure 6: Insertion Loss for the rectangular lattice when the source is at middle and 

the fluid medium is: air - a1) PVC; a2) Concrete; a3) Steel; water - b1) PVC; b2) 

Concrete; b3) Steel 
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Figure 6: Insertion Loss for the rectangular lattice when the source is at middle and
the fluid medium is: air - a1) PVC; a2) Concrete; a3) Steel; water - b1) PVC; b2)
Concrete; b3) Steel.
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Figure 7: Insertion Loss for the triangular lattice when the source is at middle and the 

fluid medium is: air – a1) PVC; a2) Concrete; a3) Steel; water – b1) PVC; b2) 

Concrete; b3) Steel. 
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Figure 7: Insertion Loss for the triangular lattice when the source is at middle and
the fluid medium is: air - a1) PVC; a2) Concrete; a3) Steel; water - b1) PVC; b2)
Concrete; b3) Steel.
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Figure 8: Insertion Loss when the source is at top and the fluid medium is air (a) or 

water (b), and when the elastic material is PVC, for a source positioned close to the 

top of the structure. In a1) and b1), a rectangular lattice is considered, while in a2) 

and b2) a triangular lattice is modeled 
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Figure 8: Insertion Loss when the source is at top and the fluid medium is air (a)
or water (b), and when the elastic material is PVC, for a source positioned close to
the top of the structure. In a1) and b1), a rectangular lattice is considered, while in
a2) and b2) a triangular lattice is modeled.

is positioned closer to the top of the sonic crystal structures made on PVC, for
both propagation media and for the two lattice configurations. Observing the be-
haviour registered when rigid structures are considered, it can be observed that
small changes occur in the position of the first band gap and that the correspond-
ing attenuation becomes smaller, for both the rectangular and triangular lattices.
A second gap seems to be formed in this case, with very significant attenuations
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being registered specially for the triangular lattice. It should be noted that, in this
case, the dominant incidence of sound waves is oblique to the structure, and thus
different interference phenomena are generated. As for the different materials that
may compose the structures, the comments given above for the first source position
are still valid.

4.2 Time domain analysis

In order to better analyse the obtained results, time domain responses were calcu-
lated for the triangular lattice configuration with 25 mm thickness, considering the
host fluid medium with the properties of water and the source centred with the pe-
riodic structure, for the three types of material. In the presented cases, the pressure
field in the host fluid was evaluated over a regular grid, with a spacing of 0.1 m,
spreading over a rectangular area between (x= -3 m, y= -2 m) and (x= 3 m, y= 5.6
m).

Fig. 9 presents a sequence of snapshots taken at different time instants, for the case
of steel scatterers, and assuming that the central frequency of the pulse emitted by
the source is 2000 Hz.

To allow a better identification of the effect of the structure, the chosen frequency
is located within the band gap identified in the previous section.

For an initial time instant of t=2.35 ms, the sound wave has propagated away from
the source, and is reaching the scatterers, but still evidencing a perfectly circular
wavefront. For t=3.13 ms, the wavefront has already entered the structure, and
the scattering effect becomes visible, with a fraction of the incident energy being
reflected back to the source side of the structure. When t=3.90 ms, the scattering
effect is now very clearly, as well as a reduction of the wave amplitude in the region
behind the scatterers. Indeed, this reduction evidences the band gap effect of the
sonic crystal, which occurs precisely around the dominant frequency of the Ricker
pulse. The presence of multiple scattering from the structures is further revealed
for the snapshot taken at t=4.69 ms, with multiple wavefronts radiating from the
scatterers. Part of this effect may also be related to resonances occurring in the
elastic structures, which were also identified in Fig. 7.

To further scrutinize the dynamic behaviour of the structure, the time signals com-
puted at three receivers, all of them at y=2.7 m and with x=-3 m (R1), x=-1 m (R2)
and x=2 m (R3), are illustrated in Fig. 10; in the same figure, the corresponding
frequency spectra are also presented.

Clearly, at R1 there is very little effect of the periodic structure, and only some
minor disturbance is visible starting at t=4 ms as a sequence of oscillations with low
amplitude. Similarly, the FFT of this signals exhibits a shape very similar to the
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In order to better analyse the obtained results, time domain responses were calculated 

for the triangular lattice configuration with 25 mm thickness, considering the host 

fluid medium with the properties of water and the source centred with the periodic 

structure, for the three types of material. In the presented cases, the pressure field in 

the host fluid was evaluated over a regular grid, with a spacing of 0.1 m, spreading 

over a rectangular area between (x= -3 m, y= -2 m) and (x= 3 m, y= 5.6 m).  

Fig. 9 presents a sequence of snapshots taken at different time instants, for the case of 

steel scatterers, and assuming that the central frequency of the pulse emitted by the 

source is 2000 Hz.  

a) b) 

c) d) 

Figure 9: Snapshots displaying the pressure wave field calculated using the proposed 

model when the fluid medium is water and considering steel scatterers, for a central 

frequency of 2000Hz at: a) t=2.35 ms; b) t=3.13 ms; c) t=3.90 ms; d) t=4.69 ms 

To allow a better identification of the effect of the structure, the chosen frequency is 

located within the band gap identified in the previous section.  

Figure 9: Snapshots displaying the pressure wave field calculated using the pro-
posed model when the fluid medium is water and considering steel scatterers, for a
central frequency of 2000Hz at: a) t=2.35 ms; b) t=3.13 ms; c) t=3.90 ms; d) t=4.69
ms.

Ricker wavelet, with a small disturbance between 1500 Hz and 2500 Hz. In fact, at
this receiver the pulse coming from source strongly dominates the response, and is
responsible for a very large fraction of the energy reaching the receiver. At R2 and
R3, the effect of the structure is much stronger, and affects both time and frequency
responses. Indeed, although at R2 the incident pulse is still dominant, the sequence
of pulses arriving later has now a comparatively more significant amplitude. In the
frequency spectrum, the effect of these oscillations is also very clear, affecting the
range around the central frequency of the Ricker pulse. At R3, this effect is now
extremely marked, and only a trace of the incident pulse can be identified. The
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For an initial time instant of t=2.35 ms, the sound wave has propagated away from the 

source, and is reaching the scatterers, but still evidencing a perfectly circular 

wavefront. For t=3.13 ms, the wavefront has already entered the structure, and the 

scattering effect becomes visible, with a fraction of the incident energy being 

reflected back to the source side of the structure. When t=3.90 ms, the scattering 

effect is now very clearly, as well as a reduction of the wave amplitude in the region 

behind the scatterers. Indeed, this reduction evidences the band gap effect of the sonic 

crystal, which occurs precisely around the dominant frequency of the Ricker pulse. 

The presence of multiple scattering from the structures is further revealed for the 

snapshot taken at t=4.69 ms, with multiple wavefronts radiating from the scatterers. 

Part of this effect may also be related to resonances occurring in the elastic structures, 

which were also identified in Fig. 7.  

To further scrutinize the dynamic behaviour of the structure, the time signals 

computed at three receivers, all of them at y=2.7 m and with x=-3 m (R1), x=-1 m 

(R2) and x=2 m (R3), are illustrated in Fig. 10; in the same figure, the corresponding 

frequency spectra are also presented.  

 

a1) a2) 

b1) b2) 

c1) c2) 

Figure 10: Responses at receivers R1 (a), R2 (b) and R3 (c). Left column exhibit 

time signals (a1, b1, c1), and right column the corresponding FFT (a2, b2, c2). 
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Figure 10: Responses at receivers R1 (a), R2 (b) and R3 (c). Left column exhibit
time signals (a1, b1, c1), and right column the corresponding FFT (a2, b2, c2).

filtering effect of the sonic crystal can be clearly identified also in the frequency
spectrum, in which the frequency range of the band gap is greatly attenuated (see
also Fig. 7 for a clearer identification of the band gap). The final part of the time
signal at R3 also reveals further oscillations, which are displayed in more detail in
Fig. 11.

The analysis of this detailed view and of the corresponding FFT response reveal that
these oscillations are strongly related with peaks and dips observable also in Fig.
7, the first (and dominant) being related to the resonance of the elastic scatterers.

Snapshots of the pressure wave field at the time instant t=3.90 ms were also taken
for the cases in which the scatterers are composed of the various elastic materials,
and are shown in Fig. 12, again for a central frequency of 2000 Hz.

These plots help confirming the effect of the different elastic materials in the scat-
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Clearly, at R1 there is very little effect of the periodic structure, and only some minor 

disturbance is visible starting at t=4 ms as a sequence of oscillations with low 

amplitude. Similarly, the FFT of this signals exhibits a shape very similar to the 

Ricker wavelet, with a small disturbance between 1500 Hz and 2500 Hz. In fact, at 

this receiver the pulse coming from source strongly dominates the response, and is 

responsible for a very large fraction of the energy reaching the receiver. At R2 and 

R3, the effect of the structure is much stronger, and affects both time and frequency 

responses. Indeed, although at R2 the incident pulse is still dominant, the sequence of 

pulses arriving later has now a comparatively more significant amplitude. In the 

frequency spectrum, the effect of these oscillations is also very clear, affecting the 

range around the central frequency of the Ricker pulse. At R3, this effect is now 

extremely marked, and only a trace of the incident pulse can be identified. The 

filtering effect of the sonic crystal can be clearly identified also in the frequency 

spectrum, in which the frequency range of the band gap is greatly attenuated (see also 

Fig. 7 for a clearer identification of the band gap). The final part of the time signal at 

R3 also reveals further oscillations, which are displayed in more detail in Fig. 11.  

 
 

a) 

 

 b) 

Figure 11: Detail of the time signal at the receiver R3 with the resonance effect from 

the scatterers (a). In (b) the FFT of the signal between 6.5 ms and 10 ms is shown. 

The analysis of this detailed view and of the corresponding FFT response reveal that 

these oscillations are strongly related with peaks and dips observable also in Fig. 7, 

the first (and dominant) being related to the resonance of the elastic scatterers. 

Snapshots of the pressure wave field at the time instant t=3.90 ms were also taken for 

the cases in which the scatterers are composed of the various elastic materials, and are 

shown in Fig. 12, again for a central frequency of 2000 Hz.  

These plots help confirming the effect of the different elastic materials in the 

scattering patterns, revealing that very little energy is reflected back when the PVC 

scatterers are used, and the scattering becomes more significant as stiffer materials 

are considered. Indeed, for the case of PVC scatterers, almost no distortion or loss of 

amplitude is visible in the propagating wavefront, and only traces of scattered energy 

are observable on the source side of the structure. 

 

5    Conclusions 

In this paper, a model based on the Method of Fundamental Solutions that models the 

sound propagation through a sonic crystal structure is presented. The model makes 

use of known analytical solutions for the case of a shell solid cylinder embedded in a 

fluid medium, performing a coupling between these solutions and those for an infinite 

6.5 7 7.5 8 8.5 9 9.5

-4

-2

0

2

4

x 10
-4

time [ms]

P
re

s
s
u
re

[P
a

]

0 1000 2000 3000 4000 5000 6000
0

0.002

0.004

0.006

0.008

0.01

Frequency [Hz]

P
re

s
s
u
re

[P
a

]

Figure 11: Detail of the time signal at the receiver R3 with the resonance effect
from the scatterers (a). In (b) the FFT of the signal between 6.5 ms and 10 ms is
shown.

tering patterns, revealing that very little energy is reflected back when the PVC
scatterers are used, and the scattering becomes more significant as stiffer materials
are considered. Indeed, for the case of PVC scatterers, almost no distortion or loss
of amplitude is visible in the propagating wavefront, and only traces of scattered
energy are observable on the source side of the structure.

5 Conclusions

In this paper, a model based on the Method of Fundamental Solutions that models
the sound propagation through a sonic crystal structure is presented. The model
makes use of known analytical solutions for the case of a shell solid cylinder em-
bedded in a fluid medium, performing a coupling between these solutions and those
for an infinite fluid along a virtual interface located at some distance from the solid,
creating a fluid-fluid virtual interface. With this procedure, it is possible to avoid
the discretization of the solid material and of the solid-fluid interfaces, reducing
computational efforts compared to other approaches such as BEM or FEM, but
maintaining a fine level of accuracy.

A set of numerical simulations comparing the proposed model and a previous MFS
formulation where the structure behaviour is assumed to be rigid are presented.
The simulations included variations on the basic structure geometry as well as the
fluid and solid properties. In the simulated cases it was found that when the fluid
medium has the properties of air, a considerable band of attenuation could be ob-
served; however when the fluid medium is water, and specially for the lower stiff-
ness scatterers, almost zero level of attenuation is observed, with exception of the
frequencies that corresponds to resonance peaks of the scatterers. It was also con-
cluded that in case of high contrast between solid and fluid, the sound propagation
through the sonic crystal is not widely affected by the structure stiffness; however
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fluid along a virtual interface located at some distance from the solid, creating a fluid-

fluid virtual interface. With this procedure, it is possible to avoid the discretization of 

the solid material and of the solid-fluid interfaces, reducing computational efforts 

compared to other approaches such as BEM or FEM, but maintaining a fine level of 

accuracy. 

a) b) 

c) 

Figure 12: Snapshots displaying the pressure wave field calculated using the 

proposed model when the fluid medium is water and for a central frequency of 

2000Hz at t=3.90ms, when the material of the scatterers is: a) PVC; b) concrete; c) 

steel. 

A set of numerical simulations comparing the proposed model and a previous MFS 

formulation where the structure behaviour is assumed to be rigid are presented. The 

simulations included variations on the basic structure geometry as well as the fluid 

and solid properties. In the simulated cases it was found that when the fluid medium 

has the properties of air, a considerable band of attenuation could be observed; 

however when the fluid medium is water, and specially for the lower stiffness 

Figure 12: Snapshots displaying the pressure wave field calculated using the pro-
posed model when the fluid medium is water and for a central frequency of 2000Hz
at t=3.90ms, when the material of the scatterers is: a) PVC; b) concrete; c) steel.

in case of low contrast between fluid and solids, strong contrasts between results
occur. Indeed, as the stiffness decreases, the more the results tends to diverge, as
the Insertion Loss curve of the proposed model starts differing more from the one
obtained with the rigid structure model.

In conclusion, the computed results are indicative that the effect of the elastic ma-
terial of the scatterers cannot be neglected whenever the contrast between the prop-
erties of both media is not large. If, however, a very strong contrast occurs (as for
example when the fluid is air), the elastic cylinders behave as rigid structures, and
almost no differences could be identified.
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